
Distributed Computing
with Byzantine Players

Sébastien Tixeuil
Sebastien.Tixeuil@lip6.fr

Motivation

Approach

• Faults and attacks occur in the network

• The network’s user must not notice
something wrong happened

• A small number of faulty components

• Masking approach to fault/attack
tolerance

Principle

CPU

CPU

CPU

Comparator

Temperature

Pressure

Throttle

Problems

• Replicated input sensors may not give the
same data

• Faulty input sensor or processor may not
fail gracefully

• The system might not be tolerant to
software bugs

Telling Truth from Lies

The Island of Liars
and Truth-tellers

• An island is populated by two tribes

• Members of one tribe consistently lie

• Members of the other tribe always tell
the truth

• Tribe members can recognize one
another, but an external observer can’t

Puzzle 1

• You run into a man and ask him if he is a
truth-teller, but fail to hear the answer

• You inquire: “Did you say you are a truth-
teller?”

• He responds: “No, I did not.”

• To which tribe does the man belong ?

Puzzle II

• You meet a woman on the island.

• What single question can you ask her to
determine whether she is a liar or a truth-
teller?

Puzzle III

• You meet two people A and B on the island

• A says: “Both of us are from the liar tribe.”

• Which tribe is A from ?

• What about B ?

Puzzle IV

• You meet two people, C and D on the
island.

• C says: “Exactly one of us is from the liars
tribe.”

• Which tribe is D from ?

Puzzle V

• You meet two people E and F on the island

• E says: “It is not the case that both of us are
from truth-tellers tribe.”

• Which tribe is E from?

• What about F?

Puzzle VI

• You meet two people G and H on the island

• G says: “We are from different tribes.”

• H says: “G is from the liars tribe.”

• Which tribes are G and H from ?

Puzzle VII

• You meet three people A, B, and C

• You ask A: ”how many among you are
truth-tellers?”, but don’t hear the answer

• You ask B: “What did A say?”, hear “one.”

• C says: “B is a liar.”

• Which tribes are B and C from?

Puzzle VII

A

B B

CCCC

0 1 1 2 1 2 2 3

The Island of
Selective Liars

• Inhabitants lie consistently on Tuesdays,
Thursdays, and Saturdays, and tell the
through on the remaining days

• You ask: “What is today?” ”Tomorrow?”

• Responses: “Saturday.”, “Wednesday.”

• What is the current day ?

The Island of
Random Liars

• A new Island has three tribes

• truth-tellers

• consistent liars

• randomly lie or tell the truth

• How to identify three representants of
each tribe with only three yes/no
questions?

Byzantine Generals

Settings

• Byzantine generals are camping outside an
enemy city

• Generals can communicate by sending
messengers

• Generals must decide upon common plan
of action

• Some of the Generals can be traitors

Goal

• All loyal generals decide upon the same
plan of action

• A small number of traitors cannot cause
the loyal generals to adopt a bad plan

Two Generals Paradox

G1 G2

Unreliable communication media

Besieged

city

Besieged

city

Two Generals Paradox

G1 G2

Unreliable communication media

Besieged

city

Besieged

city

Attack at noon ?

Two Generals Paradox

G1 G2

Unreliable communication media

Besieged

city

Besieged

city

Attack at noon ?

Two Generals Paradox

G1 G2

Unreliable communication media

Besieged

city

Besieged

city

Two Generals Paradox

G1 G2

Unreliable communication media

Besieged

city

Besieged

city

Ack !

Two Generals Paradox

G1 G2

Unreliable communication media

Besieged

city

Besieged

city

Ack !

Two Generals Paradox

G1 G2

Unreliable communication media

Besieged

city

Besieged

city

The Byzantine Generals
Problem

L1

L2

Besieged

city

G

The (simple) Byzantine
Generals Problem

• Generals lead n divisions of the Byzantine
army

• The divisions communicate via reliable
messengers

• The generals must agree on a plan
(“attack” or “retreat”) even if some of
them are killed by enemy spies

Oral Model

• A1: Every message that is sent is delivered
correctly

• A2: The receiver of a message knows who
sent it

• A3: The absence of a message can be
detected

Solution?

plan: array of {A,R}; finalPlan: {A,R}

1: plan[myID] := ChooseAorR()

2: for all other G send(G, myID, plan[myID])

3: for all other G receive(G, plan[G])

4: finalPlan := majority(plan)

Reliable Networks

Alice:A

Bob:R Charlie:A

Reliable Networks

Alice:A

Bob:R Charlie:A

Reliable Networks

Alice:A

Bob:R Charlie:A

(A,A,R)

(A,A,R)
(A,A,R)

Reliable Networks

Alice:A:A

Bob:R:A Charlie:A

(A,A,R)

(A,A,R)
(A,A,R)

Crashing Networks

Alice:A

Bob:R Charlie:A

Crashing Networks

Alice:A

Bob:R Charlie:A

A

Crashing Networks

Alice:A

Bob:R Charlie:A

A

A

Crashing Networks

Alice:A

Bob:R Charlie:A

R

R

(R,A,-) (A,A,R)

Crashing Networks

Alice:A

Bob:R:R Charlie:A:A

R

R

(R,A,-) (A,A,R)

The Byzantine Generals
Problem

• A general and n-1 lieutenants lead n
divisions of the Byzantine army

• The divisions communicate via messengers
that can be captured or delayed

• The generals must agree on a plan
(“attack” or “retreat”) even if some of
them are traitors that want to prevent
agreement

The Byzantine Generals
Problem

• A commanding general must sent an order
to his n-1 lieutenants generals such that

• IC1: all loyal lieutenants obey the same
order

• IC2: if the commanding general is loyal,
then every loyal lieutenant obeys the
order he sends

Oral Model

• A1: Every message that is sent is delivered
correctly

• A2: The receiver of a message knows who
sent it

• A3: The absence of a message can be
detected

3k+1 nodes are
necessary (oral model)

Commander

Lieutenant 1 Lieutenant 2

Attack Attack

Retreat

3k+1 nodes are
necessary (oral model)

Commander

Lieutenant 1 Lieutenant 2

Retreat Retreat

Attack

3k+1 nodes are
necessary (oral model)

Commander

Lieutenant 1 Lieutenant 2

Attack Retreat

Retreat

3k+1 nodes are
necessary (oral model)

Commander

Lieutenant 1 Lieutenant 2

Retreat Attack

Attack

3k+1 nodes are
necessary (oral model)

Commander

Lieutenant 1 Lieutenant 2

Attack Retreat

Retreat

Retreat
Attack

3k+1 nodes are
sufficient (oral model)

Commander

Lieutenant 1 Lieutenant 2

v v

Lieutenant 3

v

3k+1 nodes are
sufficient (oral model)

Commander

Lieutenant 2
Lieutenant 1

(v)

Lieutenant 3

(v)

v

v

3k+1 nodes are
sufficient (oral model)

Commander

Lieutenant 2
Lieutenant 1

(v)

Lieutenant 3

(v,v)

3k+1 nodes are
sufficient (oral model)

Commander

Lieutenant 2
Lieutenant 1

(v)

Lieutenant 3

(v,v)

vv

3k+1 nodes are
sufficient (oral model)

Commander

Lieutenant 2
Lieutenant 1

(v,v)

Lieutenant 3

(v,v)

3k+1 nodes are
sufficient (oral model)

Commander

Lieutenant 2
Lieutenant 1

(v,v)

Lieutenant 3

(v,v)

x

x

3k+1 nodes are
sufficient (oral model)

Commander

Lieutenant 2
Lieutenant 1

(v,v,x)

Lieutenant 3

(v,v,x)

3k+1 nodes are
sufficient (oral model)

Commander

Lieutenant 2
Lieutenant 1

(v,v,x)

Lieutenant 3

(v,v,x)

Maj(v,v,x)

Maj(v,v,x)

3k+1 nodes are
sufficient (oral model)

Commander

Lieutenant 1 Lieutenant 2

x z

Lieutenant 3

y

3k+1 nodes are
sufficient (oral model)

Commander

Lieutenant 1

(x,y,z)

Lieutenant 2

(x,y,z)

Lieutenant 3

(x,y,z)

3k+1 nodes are
sufficient (oral model)

Commander

Lieutenant 1

(x,y,z)

Lieutenant 2

(x,y,z)

Lieutenant 3

(x,y,z)

Min(x,y,z) Min(x,y,z)

Min(x,y,z)

Written Model

• A1-A3: Same as before

• A4:

• A loyal general’s signature cannot be
forged, and any alteration of the contents
of his signed messages can be detected

• Anyone can verify the authenticity of a
general’s signature

k+2 nodes are sufficient
(written model)

Commander

Lieutenant 1 Lieutenant 2

Attack:C Attack:C

k+2 nodes are sufficient
(written model)

Commander

Lieutenant 1 Lieutenant 2Attack:C:L1

k+2 nodes are sufficient
(written model)

Commander

Lieutenant 1 Lieutenant 2Attack:C:L2

k+2 nodes are sufficient
(written model)

Commander

Lieutenant 1 Lieutenant 2

Attack:C Retreat:C

k+2 nodes are sufficient
(written model)

Commander

Lieutenant 1 Lieutenant 2Attack:C:L1

k+2 nodes are sufficient
(written model)

Commander

Lieutenant 1 Lieutenant 2Retreat:C:L2

k+2 nodes are sufficient
(written model)

Commander

Lieutenant 1 Lieutenant 2

Attack:C

Retreat:C:L2
Retreat:C

Attack:C:L1

Arbitrary Networks

Topology Discovery

• Given

• asynchronous network

• up to k Byzantine nodes

• each node knows its immediate neighbors
identifiers

• Goal

• each node must discover the complete
network topology

Weak Topology
Discovery

• Termination

• either all non-faulty processes determine the
system topology or at least one detects fault

• Safety

• for each non-faulty process, the determined
topology is subset of actual

• Validity

• fault detected only if it indeed exists

Weak Topology
Discovery

Weak Topology
Discovery

Weak Topology
Discovery

• Bounds

• cannot determine presence of edge if
both adjacent nodes are faulty

• cannot be solved if network is less than k
+1 connected

Strong Topology
Discovery

• Termination

• all non-faulty processes determine the
system topology

• Safety

• for each non-faulty process the
determined topology is subset of actual

Strong Topology
Discovery

Strong Topology
Discovery

Strong Topology
Discovery

Strong Topology
Discovery

Strong Topology
Discovery

Strong Topology
Discovery

• Bounds

• cannot determine presence of edge if one
neighbor is faulty

• cannot be solved if network is less than
2k+1 connected

Solutions Preliminaries

• Main idea

• Menger’s theorem: if a graph is k
connected then for any two vertices
there exists two internally node-disjoint
paths connecting them

• a single (non-source) node cannot
compromise info if it travels over two
node-disjoint paths

Solutions Preliminaries

• Common Features

• every solution essentially involves
flooding each node’s neighbor info to the
other nodes

• solutions differ on how the nodes
forward neighborhood info received from
other nodes

A Naive Solution

• Store traveled path in message, forward
message that contains simple path to all
outgoing links

• Solves strong (and weak) topology
discovery problems

A Naive Solution

h

a

g

b

f d

c

e

A Naive Solution

• Store traveled path in message, forward
message that contains simple path to all
outgoing links

• Solves strong (and weak) topology
discovery problems

• requires exponential number of
messages

Detector

• Basic design

• propagate neighbor info message for each
process exactly once (first time)

• if receive different info for same
process, signal fault

• since network is k+1 connected, info
about non-faulty nodes reaches every
node

Detector

• Handling fake nodes

• faulty process may send info about non-
existent (fake) nodes thus compromising
safety and termination

• only faulty nodes can be connected to
fake nodes ? (discovered network is
less that k+1 connected)

Detector

• Handling fake nodes

• faulty process may send info about non-
existent (fake) nodes thus compromising
safety and termination

• when the network is not completely
discovered yet, it may also be less than
k+1 connected, problems with validity

Detector

h

a

g

b

f d

c

e

Detector

• Neighborhood closure

• connect all nodes whose neighbor
information is not received

• the connectivity of this graph is no less
than the actual topology

• if the connectivity if this graph falls
below k+1, signal fault

Detector
a b

dc

e

dc

e

Detector
a b

dc

e

dc

e

a,b,d

Detector
a b

dc

e

dc

e

a,b,d

Detector
a b

dc

e

dc

e

a b

Detector
a b

dc

e

dc

e

a b

b,c
Detector

a b

dc

e

dc

e

a b

b,c

Detector
a b

dc

e

dc

e

a b

b,c

Detector
a b

dc

e

dc

e

a b

Detector
a b

dc

e

dc

e

a b

a,c,d
Detector

a b

dc

e

dc

e

a b

a,c,d

Detector
a b

dc

e

dc

e

a b

a,c,d

Detector
a b

dc

e

dc

e

a b

Handling Faults
a b

dc

e

dc

e

a b

Handling Faults
a b

dc

e

dc

e

a b

Handling Faults
a b

dc

e

dc

e

a b

???

Handling Faults
a b

dc

e

dc

e

a b

Handling Faults
a b

dc

e

dc

e

a b

Handling Faults
a b

dc

e

dc

e

a b

Handling Faults
a b

dc

e

dc

e

a b

Handling Faults
a b

dc

e

dc

e

a b

Handling Faults
a b

dc

e

dc

e

a b

Detector

• Definition

• Solution is adjacent-edge complete if non-
faulty nodes discover all non-faulty nodes
and their adjacent edges

Detector

• Theorem

• Detector is an adjacent-edge complete
solution to the weak topology discovery
problem if the connectivity of the system
exceeds the maximum number of faults

Explorer

• Main idea

• collect node’s neighbor information such
that the info goes along more than twice
as many node disjoint paths as max
number of faulty nodes

Explorer

• Confirmed neighbor information

• k+1 disjoint paths from source

• non-intersecting paths from k+1
confirmed neighbors

Explorer
a b

dc

e

Explorer
a b

dc

e

a<b,c>
Explorer
a b

dc

e

a<b,c>a<b,c>

Explorer
a b

dc

e

a<b,c>

a<b,c>

Explorer
a b

dc

e

a<b,c>

a<b,c>

Explorer
a b

dc

e

a<b,c>b:a<b,c>

c:a<b,c>

Explorer
a b

dc

e

a<b,c>

b:a<b,c>

c:a<b,c>

Explorer
a b

dc

e

b:a<b,c>

c:a<b,c>
b,d:a<b,c>

Explorer
a b

dc

e

b:a<b,c>

a<b,c>

Explorer

• Definition

• Solution is two-adjacent edge complete if
non-faulty nodes discover all non-faulty
nodes and edges adjacent to two non-
faulty nodes

Explorer

• Theorem

• (generalized) Explorer is a two-adjacent-
edge complete solution to the strong
topology discovery problem in case the
graph connectivity is more than twice the
number of faults

Composing Detector
and Explorer

• Observation

• Detector uses less messages when there
are no faults

• Idea

• run Detector, if a node discovers fault,
invoke Explorer

• requires 2k+1 connected topologies

Malice in Online Video
Games

Online Games
• First Person Shooter

(FPS)

• Real-time Strategy (RTS)

• Role playing Game
(RPG)

• Massively Multiplayer
Online Game (MMOG)

• Sports, puzzles

Online Games
• First Person Shooter

(FPS)

• Real-time Strategy (RTS)

• Role playing Game
(RPG)

• Massively Multiplayer
Online Game (MMOG)

• Sports, puzzles

Online Games
• First Person Shooter

(FPS)

• Real-time Strategy (RTS)

• Role playing Game
(RPG)

• Massively Multiplayer
Online Game (MMOG)

• Sports, puzzles

Online Games
• First Person Shooter

(FPS)

• Real-time Strategy (RTS)

• Role playing Game
(RPG)

• Massively Multiplayer
Online Game (MMOG)

• Sports, puzzles

E-sport
• International competitions

(ESWC, WCG, WSVG)

• Prizes over $1 million

• Professional leagues

• Professional players with
sponsors, coachs ...

• In some countries, e-
players are really famous

Online Cheat
• First major online

cheat: Diablo 1997

• FPS: aim bot, aim proxy
(Quake, Counter strike)

• RTS: maphack
(Warcraft, Age of
Empires)

• 1999-2000: awareness
of industry

• recently: gaming bots
in MMOG (World of
Warcraft)

Architectures
• Client Server

• safer, server is
trustable

• “easy” to design

• “centralized”

• expensive, not
scalable, faults ?

• Peer-to-peer

• scalable

• cheap

• autonomous

• difficult to design,
cheating is easier

Binaries Protection

• Avoid client-side modifications

• avoid unauthorized behaviors

• ensure clients follow the same protocol

• [Munch06] proposes to execute dynamic
verifications named mobile agents

Detection Mechanisms

• Sometimes it is not possible to
prevent cheating

• Keep log and verify afterwards [Kabus05]

• Runtime verification of rules [Delap04]

• Detection against Prevention

• Latency constraint are very high,
prevention needs many message
exchanges impacting this latency

Protocols

• Enforcing fairness in spite of various
latencies

• [Aggarwal05] on dead-reckoning

• [Guo03] removing unfair advantage of low delay

• Synchronisation protocols

• [Baughman01] lockstep protocol

• [GD04] lockstep with improvements

Example:
Synchronization

• Each round, every client sends its timestamped
update

• Timestamps are needed to balance latency

• The server updates the world simulation using
timestamps

• The server broadcasts the new game view

• If a message is late, the server modifies the view

Example:
Synchronization

• Problem

• Because latency may vary, timestamps are
not verified

• Malicious clients may ``know'' the future.

Example: Lockstep
Protocol

• Each client sends to every other a commit
of its update

• When every client has received every
other update, they send the clear update

• The game view is updated and broadcast

• Performance issue: a late message freezes
all messages

Defeating Maphack

• In RTS, maphack is to be avoided

• Game clients are not trustable

• Any information that leaked may be
revealed

• Zero-Knowledge Protocols

Defeating Maphack

• Consider two players such that:

• Player 1 has value A

• Player 2 has value B

• Question: How to know whether A=B
without revealing A or B if A!=B

• Bad solution: exchange hash(A) and
hash(B) and then compare

Defeating Maphack

• Let f and g be two commutative
cryptographic functions respectively known
only to P1 and P2

• f(g(A)) = g(f(A)) for any A

Defeating Maphack
• P1 computes f(A)

• P1 sends f(A) to P2

• P1 computes f(g(B))

• P1 sends f(g(B)) to P2

• if f(g(B))=g(f(A)) then A=B

• P2 computes g(B)

• P2 sends g(B) to P1

• P2 computes g(f(A))

• P2 sends g(f(A)) to P1

• if f(g(B))=g(f(A)) then A=B

Roadmap

• Currently designing a P2P version of World
of Warcraft server, that will be later used as
a basis for experimenting malice-resilient
protocols on a ``real'' platform.

• Malice-proof protocol design and
implementation

Conclusion

Conclusion

• Goal: mask faults and attacks to the user

• Basic principle: redundancy and majority

• not necessary to identify who misbehaves

• most people must be reliable

• protocols are much easier with
cryptography (but how is crypto set up?)

Pros

• Masks the faults and attacks to the user

• Natural way to cope with failures

• Many protocols are available

• Consensus, Atomic commit, Reliable
Broadcast, Renaming,...

Cons

• Network must be properly initialized

• Global knowledge is assumed

• size, names, maximum number of faults,...

• Global communication is used

• Global synchrony is assumed

