
Stage M2 Informatique

Titre :
Vérification de modèles UML par Model Checking.
Responsables de stage :
Cédric Besse Cedric.Besse@lip6.fr 01 44 27 88 28
Yann.Thierry-Mieg Yann.Thierry-Mieg@lip6.fr01 44 27 53 03
Lieu du Stage : Laboratoire d’Informatique de Paris 6, 104 avenue du président Kennedy, 75016 Paris

Introduction

Le projet européen ModelPlex (http://www.modelplex.org, 20 millions d’euros sur 3 ans, industriels
nombreux Thales, SAP, IBM…) a pour objectif de fournir des solutions pour aider à faire face à la complexité
grandissante des systèmes informatiques, en se basant sur une approche centrée sur les modèles (méthodologie
type Model Driven Architecture).

Dans ce cadre, le stagiaire participera à la mise en place d’un outil permettant de vérifier la cohérence
de spécifications UML en utilisant des techniques issues du model-checking. L’approche consiste à construire
des réseaux de Petri à partir de la définition de la spécification UML de façon à pouvoir réutiliser des outils de
model-checking existants. Tout le problème est donc de

1. Définir des transformations permettant le passage des divers diagrammes de comportement :
machines à états, les diagrammes d’activité etc… vers des réseaux de Petri.

2. Composer les réseaux construits en suivant la structure (diagrammes de classes) et la topologie des
instances (diagrammes de composants, d’objets, de séquence).

3. Sélectionner le(s) outil(s) adapté(s) à la vérification d’une propriété jugée pertinente, et le configurer.
4. Interpréter le résultat de l’outil en termes du modèle UML initial.

L’outil doit globalement demander le moins de configuration possible, donc un des objectifs est de définir
différents scenarii d’assemblage et de traduction standard, qui contrôlent chacun un aspect de la spécification. Le
comportement global s’assimile à celui d’un compilateur : on appuie sur un bouton, et s’il y a des erreurs on
m’indique leur nature et leur position.

Travail à réaliser

• Ce travail s’appuiera sur un prototype en Java existant qui couvre déjà toutes les étapes de l’approche,
mais qu’il faudra enrichir au cours du stage. Le résultat s’il est de bonne qualité sera intégré dans les
délivrables du projet ModelPlex.

• Si le stagiaire a plutôt une orientation professionnelle l’accent sera mis sur le développement d’un outil
intégrable dans les délivrables du projet, et pourra donner l’occasion de participer aux réunions du
projet (à l’étranger) donc de côtoyer des industriels, tout en gardant une perspective de recherche
ouverte.

• Un profil plus recherche mettra l’accent sur un rapport de bibliographie portant sur les approches pour
la vérification des modèles UML, et sur la participation à la définition des transformations utiles ou des
améliorations du processus qu’on pourrait appliquer (cycle CEGAR). Le travail fera l’objet d’une
publication soumise dans une conférence internationale.

Connaissances requises :

• Notions de méta-modélisation. Le moteur de transformation actuel s’appuie sur l’API EMF (Eclipse
Modeling Framework) pour UML2. Il est donc nécessaire d’être capable de lire le document UML2
superstructure et de l’utiliser pour naviguer dans un modèle UML utilisateur.

• Programmation Java. Si les outils de model-checking sont majoritairement écrits en C, l’interaction
avec eux est déjà assurée par la plate-forme Cpn-ami. Un pilote en Java est fourni pour l’interaction
avec les outils de model-checking.

• Notions de base sur les réseaux de Petri et le model-checking. Suffisamment pour pouvoir modéliser
correctement la spécification UML.

Bibliographie

www.uml.org : Superstructure UML 2 et définition de l’approche MDA
www.modelplex.org : Le site officiel du projet ModelPlex
http://move.lip6.fr/CPNAMI : Plateforme utilisée en bout de chaîne pour le model-checking.
CEGAR : E. M. Clarke, O. Grumberg, S. Jha, Y. Lu and H. Veith. Counterexample-Guided Abstraction
Refinement. In Proc. 12th Int. Conf. Computer Aided Verification (CAV'2000), Chicago, IL, USA, July 2000,
volume 1855 of Lecture Notes in Computer Science, pages 154-169. Springer, 2000.

