

THE CASE FOR FEC-BASED RELIABLE MULTICAST IN WIRELESS MESH NETWORKS

EL MASRI ALI/Master 2 Networking/December 2008

Plan

2

- Problematic
- Characteristics of wireless networks
- Evaluation metrics
- Description, Simulation & Results for each protocol
 - ARQ
 - FEC
 - NP
 - RMDP
- Conclusion
- Future work and Research
- References

Problematic

3

- How to assured a reliable multicast protocol in wireless mesh networks????

Wireless vs Wired Networks

- Reason of losses
- Layer of broadcast
- Asymmetry of links
- Bandwidth
- Hierarchy of topology

Evaluation Metrics

- Average Packet Delivery Ratio (PDR)
- Average Throughput
- Efficiency

6

ARQ Automatic Repeat reQuest

Mechanism

7

- Receiver initiated
- Detecting loss → Request packet → Repair packet
- Request/Repair packets are multicasts
- Suppression mechanism
- Max. 5 requests of same packet

Results

- PDR: very low
- Throughput: very low
- Burst losses

Conclusion

9

- Scalability ($p(r,p) = 1 - (1-p)^r$) X
- Bidirectional links X
- Control overhead (rp) X

10

FEC Forward Error Detection

Mechanism

11

- packets → Encoder → n packets
- $n > k$
- (n,k) FEC
- Reception any k packets → Complete Reconstruction
- Reed Solomon code RS

Results

12

- PDR 100%
- Throughput: acceptable
- Efficient: very low
- (127,32)RS the best

Conclusion

13

- Scalability ✓
- Eliminate feedback channel ✓
- Efficient X

14

NP

Mechanism

15

- Hybrid
- File divided into TG (Transmission Group)
- (n,k) RS for each TG
- Sender:
 - ▣ k packets of $TG_i \rightarrow POLL(i,k) \rightarrow$ packets of TG_{i+1}
- Receiver: $POLL(i,k) \rightarrow NACK(i,l)$
- Sender:
 - ▣ packets of $TG_m \dots NACK(i,l) \rightarrow l$ packets of $TG_i \rightarrow POLL(i,l) \rightarrow$ packets of TG_m

Results

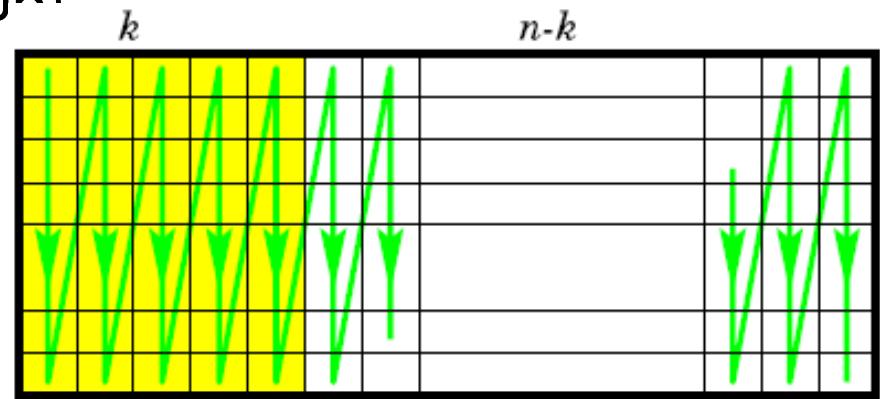
16

- (255,32)RS
- NP : PDR acceptable
- Np_opt : PDR → 100%
- Throughput : acceptable
- Efficient : very low

Conclusion

17

- Any new bonus X
- Immediate response X
- Future Response ?????


18

RMDP

Mechanism

19

- Hybrid
- File divided into TG (Transmission Groups)
- (n, k) RS for each TG
- Parameters: $f, D, \sqrt{f}, C_s, C_r, P_i$
- Sender:
 - Initialization: $C_s \leftarrow 0; i \leftarrow 0;$
 - Receive: $R[f, C_r]; C_s \leftarrow \max(C_s, k - C_r)$
 - Send: $S[f, k, C_s, i, P_i]; C_s \leftarrow C_s - 1; i \leftarrow \text{mod}(i + 1);$
- Receiver:
 - Initialization: $C_r \leftarrow 0$
 - Send: $R[f, C_r]$ periodically
 - Receive: $S[f, k, C_s, i, P_i];$ if($P_i \neq \text{duplicate}$): $C_r \leftarrow C_r + 1;$ if ($C_r = k$) exit;

Results

20

- (255,32)RS
- PDR 100%
- Throughput: acceptable
- Efficient: acceptable
- D=3 the best

Conclusion

21

- Redundancies packets before & after ✓
- Future Response ✓
- The Best ✓

General Conclusion

22

- ARQ
 - Poor Performance
 - Immediate Responses (Sender & Receiver)
- FEC
 - PDR 100%
 - Low efficient
- NP
 - Future Response(Receiver)
 - Immediate Response(Sender)
- RMDP
 - 100% PDR
 - Good Efficient
 - Future Response(Sender & Receiver)

Future Work & Research

23

- RMDP_opt
- Transmission D^*k packets of TG_i, \dots
- Receive all $R[f, Cr]$
- Transmission $(D - 1)^*(K - Cr)$

Bonus:

- Diminution the amount of redundancy
- Diminution the overhead control
- Eliminate the algorithm for calculus the period of R
- Simulation ?????

References

24

- [1] D. Koutsonikolas and Y. Charlie Hu “The Case for FEC based Reliable Multicast in Wireless Mesh Networks” *Dependable Systems and Networks conference*, 2007.
- [2] L. Rizzo and L. Visicano, “RMDP: an FEC-based reliable multicast protocol for wireless environments,” *Mobile Computing and Communications Review*, vol. 2, no. 2, 1998.
- [3] J. Nonnenmacher, E. Biersack, and D. Towsley, “Parity-based loss recovery for reliable multicast transmission,” in *ACM SIGCOMM*, 1997.

25

Thanks & Questions ???