
Systèmes Pair-à-Pair

Olivier Marin

Laboratoire d'Informatique de Paris 6

2

Systèmes Pair-à-Pair

• Concepts

• Exemples d'applications

• Infrastructure

– Overlays structurés

– Overlays non-structurés

• Problèmes classiques

• Perspectives (problèmes ouverts)

3

Réseaux Classiques

4

Réseaux P2P

5

Taxonomie des Systèmes

Informatiques

Systèmes Centralisés
(mainframes, SMPs, stations)

Systèmes Informatiques

Systèmes Répartis

Client/Serveur Pair-à-Pair

Plat
Hiérarchique

(Grilles)

Hybride
(Index centralisé, Super-pairs) Pur

6

Client/Serveur vs. P2P

Serveur

Clients

Pairs

7

Client/Serveur vs. P2P

• Gérés

• Configurés

• Recherche de services

• Hiérarchique

• Ressources statiques

• Cycle de vie lié au serveur

• Centré IP

• Nommage basé sur le DNS

• Communications type RPC/RMI

• Synchrone

• Asymétrique

• Axé sur des modèles de liaison et
d'intégration du langage de
programmation (stub IDL/XDR,
compilateurs, etc...)

• Sécurité de type Kerberos : acl, crypto

• Auto-Gérés

• Ad-hoc

• Découverte de services

• Maillage

• Ressources volatiles

• Cycle de vie autonome

• Non restrictif à IP

• Nommage spécifique

• Communication par messages

• Asynchrone

• Symétrique

• Axé sur la localisation de services,
localisation du contenu, routage
applicatif

• Anonymat, haute disponibilité

• Plus difficile à maîtriser

8

Objectifs du P2P

• Partage / réduction des coûts

! Aggrégation dynamique de ressources volatiles

! Autonomie totale

" Système disponible 7/7-24/24

" Maintenance nulle

" Indépendance vis-à-vis de l'infrastructure physique

• Passage à l'échelle

! Disponibilité de ressources

! Suppression des goulots d'étranglement

• Anonymat (hum...)

9

P2P : Besoins algorithmiques

• Découverte de services (nom, adresse, route, métrique, ...)

• Recherche de voisins

• Routage de niveau applicatif

• Rémanence, récupération sur faute de liaison ou d'exécution

10

Applications P2P

Catégories

• Calcul Massivement Parallèle

• Collaboration

• Partage / Répartition de données

! Plates-formes

11

Applications P2P

Calcul Massivement Parallèle
But : Exécuter des programmes inexploitables autrement

Partage des ressources de calcul disponibles/inactives

Décomposition de l'application en micro-tâches parallélisables

!Seti@home (astronomie)

!genome@home (ADN)

! folding@home (repliement des protéines)

12

SETI@home

• Calcul massivement parallèle

• Expérience en radioastronomie

SETI : Search for Extra-Terrestrial Intelligence

Analyse des données collectées par

le radiotélescope d' Arecibo

• Exploite la puissance inutilisée des ordinateurs connectés via Internet

Participants chargent et analysent les données durant la veille écran

13

SETI@home

• 3.8M utilisateurs dans 226 pays

• 1200 années CPU / jour

• 38 TeraFlops soutenu (Le Earth

Simulator Japonais obtient 40 TF)

• 1.7 Zetaflops (1021) pour les 3

dernières années

• Très hétérogène :

> 77 types de processeurs !

14

Folding@home

• Calcul massivement parallèle

• Comprendre le repliement et l’agrégation des protéines

• Etude de maladies résultant d’un repliement anormal des protéines
 eg. Alzheimer, fibrose cystique, EBS (Vache Folle), nombreux cancers

• A dépassé le PetaFlops (1015) ; supporte les PS3

15

Applications P2P

Collaboration
But : Mettre en relation des pairs par centre d'intérêt

Gestion d'annuaires, transport de données

!Chat/Irc, NewsGroups

! Instant Messaging (AIM, ICQ, Yahoo!Messenger, MSN)

!Voice/IP (Skype)

!MMORPGs (WoW, Ultima Online, Second Life)

16

Routage IP

• Collaboration

• Routeurs IP découvrent une topologie et la maintiennent

• Ne sont ni client ni serveurs

• Dialoguent continuellement entre eux

• Sont tolérants aux pannes

• Sont autonomes

17

• Collaboration

• Transfert de communications (VoIP)

• Pairs partagent leur bande passante

• Annuaire totalement décentralisé

• Routage au moyen de super-nœuds

• 246 millions d'utilisateurs

• Gros problèmes de sécurité

Skype

18

Applications P2P

Partage / Répartition de données
But : Partager des fichiers, des objets applicatifs, des services

Mise à disposition volontaire de données

Système de routage/localisation

! Napster, Publius, Freenet, MojoNation, FreeHaven, Groove, e-donkey

! Gnutella, Kazaa, BitTorrent

! Chord, Can, Pastry, Tapestry

19

Napster

• Partage de fichiers

• Système d'indexation centralisé ; fichiers restent sur les clients

1. Connexion au serveur & chargement de la liste de fichiers (push)

2. Envoi des critères de recherche sur la liste principale

3. Sélection de la meilleure réponse (ping) puis téléchargement

• Considéré (à tort) comme le 1er réseau P2P
SMTP

UseNet News

Archie : système d'indexation de serveurs FTP en accès libre

• Apparition des problèmes légaux (DRMs, ...)

20

Gnutella

• Partage de fichiers

• Contournement des déboires légaux de Napster
! Décentralisation du système d'indexation

! Chaque nœud est à la fois serveur et client (servent)

• Routage des requêtes en best effort
! Inondation de proche en proche

! Durée de vie prédéfinie pour chaque requête (TTL)

! Identification unique et non ambigüe des requêtes

21

Applications P2P

Plates-formes
But : Permettre le développement de systèmes à large échelle

Mise à disposition de composants paramétrables et réutilisables

Noyau : services prédéfinis (eg. sécurité, gestion de groupes)

! JXTA

! Globus

! .NET My Services

22

(Juxtapose)

• Plate-forme de développement

• Spécification open source de protocoles P2P

!Pipes (canaux de comm.)

!Peer Groups (gestion de groupes)

!Rendezvous network (routage avec super-pairs)

• Initialement conçu par SUN pour Java

! Adaptations pour C / C++ / C# (.NET)

Infrastructures P2P

Overlays

24

Infrastructures P2P

Définition d'un overlay
Réseau construit au-dessus du réseau physique

Ensemble des liens établis entre pairs qui se connaissent

Pairs
Overlay

25

Abstraction d'overlay

Réseau
Couche communications

Routage/Localisation

Découverte

de ressources

Sécurité

Gestion de ressources

Tol. aux pannes

Gestion de services

Ordonnancement

Messagerie

inter-services
Méta-données

Applications Outils Services

Couche gestion des nœuds / overlay

Couche gestion des fonctionnalités

Couche services

Couche applications

26

Overlays P2P

Non-structurés (Gnutella, Kazaa)

• Topologie du système déterminée par les utilisateurs

Découverte du voisinage

• Placement ad-hoc des données dans le système

Sans lien avec la topologie

Structurés (Chord, CAN, Pastry,Tapestry)

• Topologie particulière

(eg. anneau, arbre, grille)

• Placement des données tient compte de la topologie

Utilisation des fonctions de « hash »

! Possibilité de déterminer l'inexistence de réponse

27

P2P non-structuré : Gnutella

Protocole de recherche de données et services
Chaque nœud est à la fois client et serveur

Routage
par inondation (flooding)

cheminement aléatoire (random walk)

 Messages Gnutella (TimeToLive)
#Découverte de nœuds PING/PONG

#Découverte de données (fichiers) et services
• Query

• QueryHit

28

P2P non-structuré : Gnutella

A

C

B
Query

Query

QueryHit

D

29

Overlay semi-structuré

"Small-World Experiment" (Stanley Milgram, 1969)

Lettre distribuée aléatoirement à 150 personnes
Omaha (Nebraska) et Wichita (Kansas) " centre des USA

Contient des infos sur un dest. à Cambridge (Massachusetts) " côte ouest des USA

But : faire parvenir la lettre au destinataire
Transmission à des personnes

susceptibles de connaître le destinataire

connaissances proches uniquement (first-name basis)

Indication des expéditeurs successifs pour neutraliser les boucles

Résultats
Nb moyen de transmissions = 5 (entre 2 et 10 hops)

Passe très bien à l'échelle (287 millions d'habitants)

Basé sur des réseaux de connaissances : pas de centralisation

Fiable : transmission malicieuse ne fait que redémarrer la recherche

30

P2P semi-structuré : FreeNet

Stockage persistant de données et services

Nœuds/Données identifiés par une clé binaire (fonction hash)

Identifiant de nœud : NodeID(utilisateur) = hash(@IP)

Identifiant (clé) de fichier : FileID(fichier) = hash(contenu)

Gestion de tables de routage

Construction de voisinages

! Connaissance approximative du contenu des nœuds proches

Types de requêtes

Récup. du fichier en cas de recherche fructueuseFetch

Routage de requête à partir du FileIDSearch

Routage des données (FileID) vers le NodeID le + ressemblantPublish

Contact de nœuds connus : récup. d'un NodeIDJoin

31

P2P semi-structuré : FreeNet

Insertion de clé

– Diffusion d'un message routé vers le nœud tel que (key ~ nodeId)

msg d'insertion = clé + nb aléatoire de sauts (hop)

– Chaque pair contrôle si la clé est dans son système de stockage local
oui ! génération d'une nouvelle clé

non ! routée vers le nœud suivant (hop --) jusqu'à hop == 0

hop == 0 & pas de collision ! clé insérée sur tout le chemin de routage

Données qui traversent un nœud sont copiées dans son cache

" Utilisation de la politique LRU pour la gestion du cache

" Information stockée pour chaque donnée (fichier)

• code hash

• dernier temps d’accès/modification

32

P2P semi-structuré : FreeNet

A

B

C

ED

F

Demandeur

Propriétaire
1

2

4

5

6 7

8

3
12

11 10

9

Séquence typique de routage de requête

Dissémination de proche en proche

Gestion de cul-de-sac (3) et de boucle (7)

33

Gnutella vs. FreeNet

$ Routage basé sur la diffusion

(flooding)

$ Aucune mémoire du trafic véhiculé

$ Read-only

$ Système non sécurisé

$ Routage dynamique basé sur

la similarité des clés

$ Tables de routage + Cache

$ Read/Write

$ Système sécurisé

34

P2P Hybride

Notion de super-pair

Pair "plus égal" que les autres

Auto-proclamé dynamiquement

! Mécanisme d'acceptation/éviction au sein du voisinage

Création d'un niveau hiérarchique supérieur

! Connaissance étendue du voisinage (données, clés, ...)

! Serveur pour les pairs-pairs de ce voisinage

! Prise en charge du routage avec les autres super-pairs

Adopté par Gnutella et KaZaA

35

P2P structuré : Motivations

• Faire mieux que les systèmes P2P ad hoc

• Guarantir le succès des localisations de noms

• Bornes démontrables sur les délais de recherche

• Preuve théorique du passage à l'échelle

36

P2P structuré : DHT

Distributed Hash Table

Table de hash : pierre angulaire de toute indexation

• Put (clé, valeur)

• Get (clé) " valeur

• Remove (clé)

Un identifiant global unique pour chaque nœud/fichier du système

Principe : répartir la table sur l'ensemble des nœuds

! Pas de connaissance globale du système

Partitionnement de l'espace en propriétaires de clés

Redondance pour éviter la perte d'information

37

P2P structuré : CAN

Idée de conception

Espace cartésien virtuel bidimensionnel découpé en zones

Chaque nœud du système est propriétaire d’une zone

Connait les @ des propriétaires des zones adjacentes

Données stockées sous la forme (clé, val)

• hash(clé) " un point (x,y) dans l’espace virtuel

• (clé, val) stocké sur le nœud propriétaire de (x,y)

38

y
Peer

Q(x,y)

(x,y)

Q(x,y) Query/
Resource

key

P2P structuré : CAN

x

Routage

39

P2P structuré : CAN

I

Bootstrap
 node

new node 1) Discover some node “I” already in CAN

Insertion de nœud

40

P2P structuré : CAN

 2) Pick random point in space

I

(x,y)

new node

Insertion de nœud

41

P2P structuré : CAN

(x,y)

3) I routes to (x,y), discovers node J

I

J

new node

Insertion de nœud

42

P2P structuré : CAN

newJ

4) split J’s zone in half… new owns one half

Insertion de nœud

43

P2P structuré : CAN

1

2

3

4

1

3

2 4

Espace virtuel

Arbre de
partitionnement

Départ de nœud

44

P2P structuré : CAN

1

3

4

1

3 4

Espace virtuel

Arbre de
partitionnement

Départ de nœud

45

P2P structuré : Chord

Une infrastructure de stockage et de routage

Identifiants sur m bits (2m identifiants)

nodeID(nœud) = hash(@IP)

key(fichier) = hash(contenu)

L’espace des IDs est organisé en anneau

Un fichier de clé k (ou sa réf.) est stocké sur un nœud A tel que

" nodeID(A) > k mod 2m

" Il n'existe pas de nœud x pour lequel

{ nodeID(x) > k mod 2m } & { nodeID(x) < nodeID(A) }

46

P2P structuré : Chord

6

1

2

6

0

4

26

5

1

3

7

2

identifiant

noeud

X clé

successeur(1) = 1

successeur(2) = 3successeur(6) = 0

Association clés - noeuds

47

P2P structuré : Chord

0

4

26

5

1

3

7

clés
1

clés
2

clé

6

Association clés - noeuds

48

P2P structuré : Chord

0

4

26

5

1

3

7

clés
1

clés
2

clés

clés
6

Entrée du noeud 6

49

P2P structuré : Chord

0

4

26

5

1

3

7

1
2
4

1
3
0

finger table
start succ.

keys
1

2
3
5

3
3
0

finger table
start succ.

keys
2

4
5
7

0
0
0

finger table
start succ.

keys
6

0+20

0+21

0+22

For.

1+20

1+21

1+22

For.

3+20

3+21

3+22

For.

Les raccourcis

50

P2P structuré : Chord

Recherche de la clé 54

N1

N8

N14

N21

N32

N38

N42

N51

N56

N48

lookup(54)

K54

42N8+32

32N8+16

21N8+8

14N8+4

14N8+2

14N8+1

Finger table

51

P2P structuré : Chord

• Mémoire utilisée par noeud en O(log(N))

• Temps de recherche d’une clé en O(log(N))

• Auto-reconfigurable

• Tolérant aux pannes

Caractéristiques significatives

52

P2P structuré : Pastry

Une infrastructure de stockage et de routage

Mêmes principes de base que Chord

Identifiants sur m bits (2m identifiants)

nodeID(nœud) = génération aléatoire

key(fichier) = génération aléatoire (ou hash(contenu))

Topologie en anneau

Un fichier de clé k (ou sa réf.) est stocké sur son supérieur immédiat

Mais routage amélioré

Table de routage « incrémentale »

Voisinage logique (leafset) et physique (neighbourhood set)

53

P2P structuré : Pastry

Voisins logiques

Routage
incrémental

Voisins physiques

Table de routage

54

P2P structuré : Pastry

d46a1c
d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

Routage

lookup(d46a1c)

55

P2P structuré : Pastry

• Mémoire utilisée par noeud en O(log(N))

• Auto-reconfigurable

• Routage optimisé (reste en O(log(N)) et sécurisé

• Extrêmement tolérant aux pannes

– Réplication des fichiers, détection de fautes dans le leafset

– Table de routage prévoit les départs intempestifs

Caractéristiques significatives

Applications P2P

Problèmes Classiques

57

Réplication de données

FreeNet

Données copiées par les nœuds qui participent à leur routage

MojoNation

 Dissémination des copies les plus demandées par un serveur

CAN (multi-dimensionnel)

 Une donnée peut avoir une clé par dimension

Past (Stockage de fichiers sur Pastry)

 Données répliquées dans le leafset

58

Sécurité P2P

Anonymat (majoritairement Freenet)

! Eviter les cx directes entre le demandeur d’information et le propriétaire

! Mensonge aléatoire au cours du routage

" Mandataire prend la place du demandeur / propriétaire

! Utiliser de TTL choisis aléatoirement

! Dissocier le propriétaire d’un document de sa localisation (CAN, Chord)

59

Sécurité P2P

Intégrité des données

Vérification des données

Clés cryptographiques (CFS, Past)

Dissémination des données

Fichiers à stocker décomposés en n blocs

Mais m blocs (m<n) suffisent pour reconstituer le fichier

(Publius, Mnemosyne, FreeHaven)

60

Sécurité P2P

 « Free-riding »

Un ou +sieurs utilisateurs profitent du système sans partager leur ressources

Problème : écroulement du système

Solutions :

! Utilisation de techniques d’incitation à la participation

– Découverte des ressources du système proportionnelle à la participation

– Paiement virtuel ou micro-paiement (MojoNation)

! Surveiller les pairs

61

Sécurité P2P

Collusion : « SYBIL attack » [Douceur 2002]

Un utilisateur peut entrer dans le réseau en utilisant plusieurs identités

Problèmes : attaques malicieuses

Monopolisation des copies d'un même fichier

Falsification du routage

Solutions

! utopique : identification unique des ressources d’un nœud

! à double tranchant : insertion coûteuse (paiement, computing challenge)

62

Stockage Persistant

Spécification

Persistance
Chaque objet est répliqué plus d'une fois dans le système

Atomicité
Chaque opération de lecture renvoie la dernière valeur écrite

 L’ordre causal des événements est respecté

63

Stockage Persistant

Abstraction
Vivacité (Convergence)

 Invocation pour un objet « id » renvoie, au bout d’un temps fini, un ensemble
non vide de nœuds qui stockent les répliques de l’objet

Sûreté (Quorum)
2 invocations ! pour le même objet aboutissent à des résultats dont

l'intersection est non-vide

Equilibrage de charge
2 invocations réalisées par le même utilisateur pour des objets ! renvoient

avec une forte probabilité des ensembles de nœuds distincts

Implémentations (partielles)
Structurés : Malkhi et al (graphes de Bruijn), Naor et al. (diagrammes de Voronoy)

Non-structurés: Lynch et al. (RAMBO I, II, III), Geoquorums (version adhoc), SAM:
Self-adjusting Atomic Memory (I-SPAN 2005)

64

Publication/Abonnement

Spécification

Légalité
Si un nœud p est notifié avec un événement « e »

alors p est abonné avec une condition « f » satisfaite par « e »

Validité
Si un noeud est notifié avec un événement « e »

alors il existe un nœud dans le réseaux qui a publié « e »

Vivacité - Evénement
Si un événement « e » survient

& si un nœud p est abonné avec une condition « f » satisfaite par « e »

alors p est notifié au bout d’une temps fini

Equité
Chaque nœud a le droit de publier infiniment souvent

65

Publication/Abonnement

Abstraction

Toute invocation avec un événement “e” renvoie l’ensemble connecté minimal de

brokers pour les conditions “f” tel que “e” satisfait “f”

Implémentations

Systèmes P2P structurés : Pastry (ex. Scribe, SPLIT-STREAM), CAN (Meghdoot)

Systèmes P2P non-structurés : Gossip, Structures de filtrage

Problèmes ouverts

• Connectivité et tolérance aux fautes des structures de filtrage

• Réduction du nombre de nœuds qui reçoivent des événements non-désirés

66

Résolution de Conflits

Spécification

Sûreté

Accès en exclusion mutuelle aux objets

Vivacité

Chaque invocation du service comporte une réponse au bout d’un

temps fini

67

Résolution de Conflits

Abstraction
Registre Test&Set/Reset ou exclusion mutuelle (Sûrete)

Service de location de verrous (Vivacité + Equité)

Implémentations

Systèmes P2P structurés : problème ouvert

Systèmes non-structurés

• A fault-tolerant token based mutual exclusion using a dynamic tree

(EuroPar 2005)

• Stabilizing Mobile philosophers (IPL 2005)

68

Problèmes ouverts P2P

• Mise en place de travail coopératif
(eg. Wikipedia, CVS, éditeurs de texte)

• Allocation de ressources

• Observation / Evaluation de performances

• Construction de systèmes de confiance

• Traitement des problèmes de sécurité

