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Systèmes Pair-à-Pair

• Concepts

• Exemples d'applications

• Infrastructure

– Overlays structurés

– Overlays non-structurés

• Problèmes classiques

• Perspectives (problèmes ouverts)
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Réseaux Classiques
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Réseaux P2P
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Taxonomie des Systèmes

Informatiques

Systèmes Centralisés
(mainframes, SMPs, stations)

Systèmes Informatiques

Systèmes Répartis

Client/Serveur Pair-à-Pair

Plat
Hiérarchique

(Grilles)

Hybride
(Index centralisé, Super-pairs) Pur
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Client/Serveur vs. P2P

Serveur

Clients

Pairs
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Client/Serveur vs. P2P

• Gérés

• Configurés

• Recherche de services

• Hiérarchique

• Ressources statiques

• Cycle de vie lié au serveur

• Centré IP

• Nommage basé sur le DNS

• Communications type RPC/RMI

• Synchrone

• Asymétrique

• Axé sur des modèles de liaison et
d'intégration du langage de
programmation (stub IDL/XDR,
compilateurs, etc...)

• Sécurité de type Kerberos : acl, crypto

• Auto-Gérés

• Ad-hoc

• Découverte de services

• Maillage

• Ressources volatiles

• Cycle de vie autonome

• Non restrictif à IP

• Nommage spécifique

• Communication par messages

• Asynchrone

• Symétrique

• Axé sur la localisation de services,
localisation du contenu, routage
applicatif

• Anonymat, haute disponibilité

• Plus difficile à maîtriser
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Objectifs du P2P

• Partage / réduction des coûts

!  Aggrégation dynamique de ressources volatiles

!  Autonomie totale

" Système disponible 7/7-24/24

" Maintenance nulle

" Indépendance vis-à-vis de l'infrastructure physique

• Passage à l'échelle

!  Disponibilité de ressources

!  Suppression des goulots d'étranglement

• Anonymat (hum...)
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P2P : Besoins algorithmiques

• Découverte de services (nom, adresse, route, métrique, ...)

• Recherche de voisins

• Routage de niveau applicatif

• Rémanence, récupération sur faute de liaison ou d'exécution
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Applications P2P

Catégories

• Calcul Massivement Parallèle

• Collaboration

• Partage / Répartition de données

! Plates-formes
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Applications P2P

Calcul Massivement Parallèle
But : Exécuter des programmes inexploitables autrement

Partage des ressources de calcul disponibles/inactives

Décomposition de l'application en micro-tâches parallélisables

!Seti@home (astronomie)

!genome@home (ADN)

! folding@home (repliement des protéines)
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SETI@home

• Calcul massivement parallèle

• Expérience en radioastronomie

SETI : Search for Extra-Terrestrial Intelligence

Analyse des données collectées par

le radiotélescope d' Arecibo

• Exploite la puissance inutilisée des ordinateurs connectés via Internet

Participants chargent et analysent les données durant la veille écran
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SETI@home

• 3.8M utilisateurs dans 226 pays

• 1200 années CPU / jour

• 38 TeraFlops soutenu (Le Earth

Simulator Japonais obtient 40 TF)

• 1.7 Zetaflops (1021) pour les 3

dernières années

• Très hétérogène :

> 77 types de processeurs !
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Folding@home

• Calcul massivement parallèle

• Comprendre le repliement et l’agrégation des protéines

• Etude de maladies résultant d’un repliement anormal des protéines
 eg. Alzheimer, fibrose cystique, EBS (Vache Folle), nombreux cancers

• A dépassé le PetaFlops (1015) ; supporte les PS3
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Applications P2P

Collaboration
But : Mettre en relation des pairs par centre d'intérêt

Gestion d'annuaires, transport de données

!Chat/Irc, NewsGroups

! Instant Messaging (AIM, ICQ, Yahoo!Messenger, MSN)

!Voice/IP (Skype)

!MMORPGs (WoW, Ultima Online, Second Life)
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Routage IP

• Collaboration

• Routeurs IP découvrent une topologie et la maintiennent

• Ne sont ni client ni serveurs

• Dialoguent continuellement entre eux

• Sont tolérants aux pannes

• Sont autonomes
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• Collaboration

• Transfert de communications (VoIP)

• Pairs partagent leur bande passante

• Annuaire totalement décentralisé

• Routage au moyen de super-nœuds

• 246 millions d'utilisateurs

• Gros problèmes de sécurité

Skype
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Applications P2P

Partage / Répartition de données
But : Partager des fichiers, des objets applicatifs, des services

Mise à disposition volontaire de données

Système de routage/localisation

! Napster, Publius, Freenet, MojoNation, FreeHaven, Groove, e-donkey

! Gnutella, Kazaa, BitTorrent

! Chord, Can, Pastry, Tapestry
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Napster

• Partage de fichiers

• Système d'indexation centralisé ; fichiers restent sur les clients

1. Connexion au serveur & chargement de la liste de fichiers (push)

2. Envoi des critères de recherche sur la liste principale

3. Sélection de la meilleure réponse (ping) puis téléchargement

• Considéré (à tort) comme le 1er réseau P2P
SMTP

UseNet News

Archie : système d'indexation de serveurs FTP en accès libre

• Apparition des problèmes légaux (DRMs, ...)
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Gnutella

• Partage de fichiers

• Contournement des déboires légaux de Napster
!  Décentralisation du système d'indexation

!  Chaque nœud est à la fois serveur et client (servent)

• Routage des requêtes en best effort
!  Inondation de proche en proche

!  Durée de vie prédéfinie pour chaque requête (TTL)

!  Identification unique et non ambigüe des requêtes
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Applications P2P

Plates-formes
But : Permettre le développement de systèmes à large échelle

Mise à disposition de composants paramétrables et réutilisables

Noyau : services prédéfinis (eg. sécurité, gestion de groupes)

! JXTA

! Globus

! .NET My Services
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(Juxtapose)

• Plate-forme de développement

• Spécification open source de protocoles P2P

!Pipes (canaux de comm.)

!Peer Groups (gestion de groupes)

!Rendezvous network (routage avec super-pairs)

• Initialement conçu par SUN pour Java

!  Adaptations pour C / C++ / C# (.NET)

Infrastructures P2P

Overlays
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Infrastructures P2P

Définition d'un overlay
Réseau construit au-dessus du réseau physique

Ensemble des liens établis entre pairs qui se connaissent

Pairs
Overlay
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Abstraction d'overlay

Réseau
Couche communications

Routage/Localisation

Découverte

de ressources

Sécurité

Gestion de ressources

Tol. aux pannes

Gestion de services

Ordonnancement

Messagerie

inter-services
Méta-données

Applications Outils Services

Couche gestion des nœuds / overlay

Couche gestion des fonctionnalités

Couche services

Couche applications
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Overlays P2P

Non-structurés (Gnutella, Kazaa )

• Topologie du système déterminée par les utilisateurs

Découverte du voisinage

• Placement ad-hoc des données dans le système

Sans lien avec la topologie

Structurés (Chord, CAN, Pastry,Tapestry)

• Topologie particulière

(eg. anneau, arbre, grille)

• Placement des données tient compte de la topologie

Utilisation des fonctions de « hash »

! Possibilité de déterminer l'inexistence de réponse
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P2P non-structuré : Gnutella

Protocole de recherche de données et services
Chaque nœud est à la fois client et serveur

Routage
par inondation (flooding)

cheminement aléatoire (random walk)

 Messages Gnutella (TimeToLive)
#Découverte de nœuds PING/PONG

#Découverte de données (fichiers) et services
• Query

• QueryHit
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P2P non-structuré : Gnutella

A

C

B
Query

Query

QueryHit

D
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Overlay semi-structuré

"Small-World Experiment" (Stanley Milgram, 1969)

Lettre distribuée aléatoirement à 150 personnes
Omaha (Nebraska) et Wichita (Kansas) " centre des USA

Contient des infos sur un dest. à Cambridge (Massachusetts) " côte ouest des USA

But : faire parvenir la lettre au destinataire
Transmission à des personnes

susceptibles de connaître le destinataire

connaissances proches uniquement (first-name basis)

Indication des expéditeurs successifs pour neutraliser les boucles

Résultats
Nb moyen de transmissions = 5 (entre 2 et 10 hops)

Passe très bien à l'échelle (287 millions d'habitants)

Basé sur des réseaux de connaissances : pas de centralisation

Fiable : transmission malicieuse ne fait que redémarrer la recherche
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P2P semi-structuré : FreeNet

Stockage persistant de données et services

Nœuds/Données identifiés par une clé binaire (fonction hash)

Identifiant de nœud : NodeID(utilisateur) = hash(@IP)

Identifiant (clé) de fichier : FileID(fichier) = hash(contenu)

Gestion de tables de routage

Construction de voisinages

! Connaissance approximative du contenu des nœuds proches

Types de requêtes

Récup. du fichier en cas de recherche fructueuseFetch

Routage de requête à partir du FileIDSearch

Routage des données (FileID) vers le NodeID le + ressemblantPublish

Contact de nœuds connus : récup. d'un NodeIDJoin
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P2P semi-structuré : FreeNet

Insertion de clé

– Diffusion d'un message routé vers le nœud tel que (key ~ nodeId)

msg d'insertion = clé + nb aléatoire de sauts (hop)

– Chaque pair contrôle si la clé est dans son système de stockage local
oui ! génération d'une nouvelle clé

non ! routée vers le nœud suivant (hop --) jusqu'à hop == 0

hop == 0 & pas de collision ! clé insérée sur tout le chemin de routage

Données qui traversent un nœud sont copiées dans son cache

" Utilisation de la politique LRU pour la gestion du cache

" Information stockée pour chaque donnée (fichier)

• code hash

• dernier temps d’accès/modification
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P2P semi-structuré : FreeNet

A

B

C

ED

F

Demandeur

Propriétaire
1

2

4

5

6 7

8

3
12

11 10

9

Séquence typique de routage de requête

Dissémination de proche en proche

Gestion de cul-de-sac (3) et de boucle (7)
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Gnutella vs. FreeNet

$ Routage basé sur la diffusion

(flooding)

$ Aucune mémoire du trafic véhiculé

$ Read-only

$ Système non sécurisé

$ Routage dynamique basé sur

la similarité des clés

$ Tables de routage + Cache

$ Read/Write

$ Système  sécurisé
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P2P Hybride

Notion de super-pair

Pair "plus égal" que les autres

Auto-proclamé dynamiquement

! Mécanisme d'acceptation/éviction au sein du voisinage

Création d'un niveau hiérarchique supérieur

! Connaissance étendue du voisinage (données, clés, ...)

! Serveur pour les pairs-pairs de ce voisinage

! Prise en charge du routage avec les autres super-pairs

Adopté par Gnutella et KaZaA
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P2P structuré : Motivations

• Faire mieux que les systèmes P2P ad hoc

• Guarantir le succès des localisations de noms

• Bornes démontrables sur les délais de recherche

• Preuve théorique du passage à l'échelle
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P2P structuré : DHT

Distributed Hash Table

Table de hash : pierre angulaire de toute indexation

• Put (clé, valeur)

• Get (clé) " valeur

• Remove (clé)

Un identifiant global unique pour chaque nœud/fichier du système

Principe : répartir la table sur l'ensemble des nœuds

! Pas de connaissance globale du système

Partitionnement de l'espace en propriétaires de clés

Redondance pour éviter la perte d'information
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P2P structuré : CAN

Idée de conception

Espace cartésien virtuel bidimensionnel découpé en zones

Chaque nœud du système est propriétaire d’une zone

Connait les @ des propriétaires des zones adjacentes

Données stockées sous la forme (clé, val)

• hash(clé) " un point (x,y) dans l’espace virtuel

• (clé, val) stocké sur le nœud propriétaire de (x,y)
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y
Peer

Q(x,y)

(x,y)

Q(x,y) Query/
Resource

key

P2P structuré : CAN

x

Routage
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P2P structuré : CAN

I

Bootstrap
 node

new node 1) Discover some node “I” already in CAN

Insertion de nœud
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P2P structuré : CAN

 2) Pick random point in space

I

(x,y)

new node

Insertion de nœud
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P2P structuré : CAN

(x,y)

3) I routes to (x,y), discovers node J 

I

J

new node

Insertion de nœud
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P2P structuré : CAN

newJ

4) split J’s zone in half… new owns one half

Insertion de nœud
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P2P structuré : CAN

1

2

3

4

1

3

2 4

Espace virtuel

Arbre de
partitionnement

Départ de nœud
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P2P structuré : CAN

1

3

4

1

3 4

Espace virtuel

Arbre de
partitionnement

Départ de nœud
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P2P structuré : Chord

Une infrastructure de stockage et de routage

Identifiants sur m bits (2m identifiants)

nodeID(nœud) = hash(@IP)

key(fichier) = hash(contenu)

L’espace des IDs est organisé en anneau

Un fichier de clé k (ou sa réf.) est stocké sur un nœud A tel que

" nodeID(A) > k mod 2m

" Il n'existe pas de nœud x pour lequel

{ nodeID(x) > k mod 2m } & { nodeID(x) < nodeID(A) }
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P2P structuré : Chord

6

1

2

6

0

4

26

5

1

3

7

2

identifiant

noeud

X clé

successeur(1) = 1

successeur(2) = 3successeur(6) = 0

Association clés - noeuds
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P2P structuré : Chord

0

4

26

5

1

3

7

clés
1

clés
2

clé

6

Association clés - noeuds
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P2P structuré : Chord

0

4

26

5

1

3

7

clés
1

clés
2

clés

clés
6

Entrée du noeud 6
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P2P structuré : Chord

0

4

26

5

1

3

7

1
2
4

1
3
0

finger table
start succ.

keys
1

2
3
5

3
3
0

finger table
start succ.

keys
2

4
5
7

0
0
0

finger table
start succ.

keys
6

0+20

0+21

0+22

For.

1+20

1+21

1+22

For.

3+20

3+21

3+22

For.

Les raccourcis
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P2P structuré : Chord

Recherche de la clé 54

N1

N8

N14

N21

N32

N38

N42

N51

N56

N48

lookup(54)

K54

42N8+32

32N8+16

21N8+8

14N8+4

14N8+2

14N8+1

Finger table
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P2P structuré : Chord

• Mémoire utilisée par noeud en O(log(N))

• Temps de recherche d’une clé en O(log(N))

• Auto-reconfigurable

• Tolérant aux pannes

Caractéristiques significatives

52

P2P structuré : Pastry

Une infrastructure de stockage et de routage

Mêmes principes de base que Chord

Identifiants sur m bits (2m identifiants)

nodeID(nœud) = génération aléatoire

key(fichier) = génération aléatoire (ou hash(contenu))

Topologie en anneau

Un fichier de clé k (ou sa réf.) est stocké sur son supérieur immédiat

Mais routage amélioré

Table de routage « incrémentale »

Voisinage logique (leafset) et physique (neighbourhood set)
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P2P structuré : Pastry

Voisins logiques

Routage
incrémental

Voisins physiques

Table de routage
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P2P structuré : Pastry

d46a1c
d462ba

d4213f

d13da3

65a1fc

d467c4
d471f1

Routage

lookup(d46a1c)
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P2P structuré : Pastry

• Mémoire utilisée par noeud en O(log(N))

• Auto-reconfigurable

• Routage optimisé (reste en O(log(N)) et sécurisé

• Extrêmement tolérant aux pannes

– Réplication des fichiers, détection de fautes dans le leafset

– Table de routage prévoit les départs intempestifs

Caractéristiques significatives

Applications P2P

Problèmes Classiques
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Réplication de données

FreeNet

Données copiées par les nœuds qui participent à leur routage

MojoNation

 Dissémination des copies les plus demandées par un serveur

CAN (multi-dimensionnel)

 Une donnée peut avoir une clé par dimension

Past (Stockage de fichiers sur Pastry)

 Données répliquées dans le leafset
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Sécurité P2P

Anonymat (majoritairement Freenet)

! Eviter les cx directes entre le demandeur d’information et le propriétaire

! Mensonge aléatoire au cours du routage

" Mandataire prend la place du demandeur / propriétaire

! Utiliser de TTL choisis aléatoirement

! Dissocier le propriétaire d’un document de sa localisation (CAN, Chord)
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Sécurité P2P

Intégrité des données

Vérification des données

Clés cryptographiques  (CFS, Past)

Dissémination des données

Fichiers à stocker décomposés en n blocs

Mais m blocs (m<n) suffisent pour reconstituer le fichier

(Publius, Mnemosyne, FreeHaven)
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Sécurité P2P

 « Free-riding »

Un ou +sieurs utilisateurs profitent du système sans partager leur ressources

Problème : écroulement du système

Solutions :

! Utilisation de techniques d’incitation à la participation

– Découverte des ressources du système proportionnelle à la participation

– Paiement virtuel ou micro-paiement (MojoNation)

! Surveiller les pairs
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Sécurité P2P

Collusion : « SYBIL attack » [Douceur 2002]

Un utilisateur peut entrer dans le réseau en utilisant plusieurs identités

Problèmes : attaques malicieuses

Monopolisation des copies d'un même fichier

Falsification du routage

Solutions

! utopique : identification unique des ressources d’un nœud

! à double tranchant : insertion coûteuse (paiement, computing challenge)
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Stockage Persistant

Spécification

Persistance
Chaque objet est répliqué plus d'une fois dans le système

Atomicité
Chaque opération de lecture renvoie la dernière valeur écrite

 L’ordre causal des événements est respecté
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Stockage Persistant

Abstraction
Vivacité  (Convergence)

 Invocation pour un objet « id » renvoie, au bout d’un temps fini, un ensemble
non vide de nœuds qui stockent les répliques de l’objet

Sûreté (Quorum)
2 invocations !  pour le même objet aboutissent à des résultats dont

l'intersection est non-vide

Equilibrage de charge
2 invocations réalisées par le même utilisateur pour des objets !  renvoient

avec une forte probabilité des ensembles de nœuds distincts

Implémentations (partielles)
Structurés : Malkhi et al (graphes de Bruijn), Naor et al. (diagrammes de Voronoy)

Non-structurés: Lynch et al. (RAMBO I, II, III), Geoquorums (version adhoc), SAM:
Self-adjusting Atomic Memory (I-SPAN 2005)
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Publication/Abonnement

Spécification

Légalité
Si un nœud p est notifié  avec un événement  « e »

alors p est abonné avec une condition « f »  satisfaite par « e »

Validité
Si un noeud est notifié avec un événement « e »

alors il existe un nœud dans le réseaux qui a publié « e »

Vivacité - Evénement
Si un événement « e » survient

& si un nœud p est abonné avec une condition « f »  satisfaite par « e »

alors p est notifié au bout d’une temps fini

Equité
Chaque nœud a le droit de publier infiniment souvent
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Publication/Abonnement

Abstraction

Toute invocation avec un événement “e” renvoie l’ensemble connecté minimal de

brokers pour les conditions “f” tel que “e” satisfait “f”

Implémentations

Systèmes P2P structurés  : Pastry (ex. Scribe, SPLIT-STREAM), CAN (Meghdoot)

Systèmes P2P non-structurés  : Gossip, Structures de filtrage

Problèmes ouverts

• Connectivité et tolérance aux fautes des structures de filtrage

• Réduction du nombre de nœuds qui reçoivent des événements non-désirés
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Résolution de Conflits

Spécification

Sûreté

Accès en exclusion mutuelle aux objets

Vivacité

Chaque invocation du service comporte une réponse au bout d’un

temps fini
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Résolution de Conflits

Abstraction
Registre Test&Set/Reset ou exclusion mutuelle (Sûrete)

Service de location de verrous (Vivacité + Equité)

Implémentations

Systèmes P2P structurés : problème ouvert

Systèmes non-structurés

• A fault-tolerant token based mutual exclusion using a dynamic tree

(EuroPar 2005)

• Stabilizing Mobile philosophers (IPL 2005)
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Problèmes ouverts P2P

• Mise en place de travail coopératif
(eg. Wikipedia, CVS, éditeurs de texte)

• Allocation de ressources

• Observation / Evaluation de performances

• Construction de systèmes de confiance

• Traitement des problèmes de sécurité


