

Proposition de stage 2008/2009

2^e Master réseaux informatiques

Sujet:

Selection and Routing Protocols in Multi-hop Next Generation Cognitive Radio Networks

Durée:

5 Months

Descriptif:

Cognitive radio networking [1] is a new paradigm of communication that attracts wireless users, operators and service providers. Benefiting from unused licensed spectrum opportunistically can enhance the quality of communication for existing networks or provide new communication services such as slow-priced SMS and background media transfer. The concept is based on using dynamically as much frequency bands as needed without impacting ongoing licensed (called also primary) users transmission. Cognitive users can be connected through several primary networks using multi-hopping. Thus, in this scenario new routing protocols should be designed to take into account the interaction with primary users dynamically. Existing routing protocols designed for multi-channel mesh or ad-hoc networks are not adapted especially if the primary users activity is intermittent. Transmission channels should be chosen in order to avoid classic inter-and intra-interference but also interference with primary users, thus allocating powers for every user and for every channel should be carefully computed. Obviously, it is preferable to allocate jointly powers, channels and routes in the network to target high rates for every route.

The first task in this internship is to determine adequate metrics for channel selection and routing that aim to optimize the performance of routing while sharing adequately the power among cognitive radio users. Then, using these metrics we shall design a routing algorithm and its corresponding protocol for cognitive radio networks. In order to evaluate the effectiveness of the routing protocol, we should implement new modules in OMNET++ that introduce the properties of cognitive environment such as multiple channels, parallel transmissions and primary users. Particularly, the implementation should be able to measure the impact of wrong primary detection on the performance of primary-based architecture of OMNET++. Accordingly, the internship calendar is the following:

- State of the art of cognitive radio networks and routing in multi-hop multi-channel networks
- Study of OMNET++ simulation environment
- Analysis of cognitive/primary interaction and concepts of metrics
- Design and implementation of a simulation environment in OMNET++ for cognitive/primary networks
- Design of the routing algorithm
- Design of the routing protocol and its implementation in OMNET++
- Simulation and Evaluation

Mots clés: Cognitive Radio Networks, Multi-hop, Frequency band, Parallel transmissions, Primary users, Routing, Power Sharing, Simulation

Responsables: Naceur Malouch (Naceur.Malouch@lip6.fr) and Serge Fdida (Serge.Fdida@lip6.fr)

Équipé d'accueil: Networks and Performance Analysis (NPA)

Lieu du stage: LIP6-CNRS, 104 avenue du Président Kennedy, PARIS 75016

Pré-requis: TCP/IP, Wireless Networks, IEEE 802.11, C/C++.

Matériel et logiciel utilisés: omnetpp, inet, C/C++, LINUX.

Références:

[1] <http://www.ece.gatech.edu/research/labs/bwn/CR/>