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Arbres Couvrants de Poisson-Voronoïet applications à l'optimisation de réseaux de communicationRésumé : Nous dé�nissons une famille d'arbres aléatoires du plan. Leurs noeuds de niveau k; k =0; : : : ;m, sont les points d'un processus ponctuel de Poisson �k, et leurs arcs relient les noeuds de niveauk à ceux de niveau k+1 selon le principe du plus court chemin: si l'on appelle V la cellule de Voronoi parrapport à �k+1 de centre x, où x est un point de �k+1, on relie par un arc le point x à tout point de �kqui appartient à V . Ceci dé�nit une famille stationnaire d'arbres aléatoires qui permettent de modéliserl'organisation hiérarchique de certains réseaux de communication. En relation avec ces problèmes, il estnaturel d'associer des fonctions de coût à ces arbres. Nous montrons comment calculer les moyennes deces fonctions de coût grâce à des outils mathématiques issus de la théorie des processus ponctuels, commela formule d'échange entre deux mesures de Palm, et de la géométrie intégrale. Dans certains cas, onpeut obtenir des formules explicites pour ces fonctions de coût moyennes et procéder à une optimisationparamétrique explicite des intensités des divers processus ponctuels mis en jeu.



Poisson-Voronoi Spanning Trees with Applications to the Optimization of Communication Networks 31 IntroductionConsider the following distribution problem: a family of concentration points is given, characterizedby their random coordinates in the plane. Another family of subscribers is also given, with a similarcharacterization via the set of their random coordinates. A typical example, which is the one consideredthroughout this paper, is that when both point processes are homogeneous Poisson processes, althoughmore general cases can also be considered along the same lines.Assume one has to connect each subscriber to exactly one concentrator. A typical example is that wherethe concentrators are all linked by a connected network, so that when each subscriber is connected toone concentrator, it is actually interconnected to all subscribers as well.For connecting each subscriber to one concentrator, one can either use a direct link, or an indirectlink via some distribution point. A distribution point is a location where several links originating fromsubscribers can be grouped into one further link to some concentrator with some economy of scale (seeFigure 2).The �rst problem that we consider in this paper is that of the optimal use of such distribution points. Wedo not address the problem of a minimal spanning tree structure, which is a quite di�erent combinatorialoptimization question. We restrict ourselves to a parametric optimization which consists in introducingan independent Poisson process of distribution points and in determining the intensity of this processwhich minimizes a cost function which re�ects the economy of scale alluded to above. The generalassumption is that connections are always to the closest point (i.e. each subscriber is connected to theclosest distribution point, and each distribution point to the closest concentrator); the Voronoi cellsassociated with the Poisson point processes play therefore a central role in the construction of thesetrees.The paper is structured as follows: Section 2 gives the basic model and a precise de�nition of the costfunction, together with the main characteristics of the optimal parametric model. Section 3 focuses onan extension of this to a hierarchical model with several layers which was proposed in [2] to describethe structure of certain communication networks, and which includes the basic model of �2 as a specialcase. Finally, Sections 4 and 5 give some extensions of the optimization method proposed in �1-2 torelated problems, also arising in communication network modeling, and also based on Poisson-Voronoitesselations and trees: a non purely hierachical model is considered in �4, a tracking problem in mobilecommunications in �5.1, and a class of in�nite spanning graphs in �5.2.Although the models are described throughout the paper are originating from communication problems,it is worthwhile stressing that they are generic in that they could in principle be applied to other planaror spatial distribution problems, where randomness is natural.2 Three level connection systems2.1 Stochastic AssumptionsConsider 3 independent homogeneous Poisson processes �i (i = 0; 1; 2) in the plane R2 with intensities�i, representing subscribers (process �0), distribution points (process �1) and concentrators (process�2), respectively.
RR n�3040



4 F. Baccelli et S. ZuyevRandom trees are built from any realizations of these three point processes as follows: each point of theprocess �0 is connected to a point of process �1 according to the least distance principle. Similarly,each points of �1 is connected to the closest point of the process �2 (this closest point is almost surelyuniquely de�ned under the above Poisson and independence assumptions).

Figure 1: A family of Poisson-Voronoi trees of height two.A typical realization of such Poisson-Voronoi trees is shown in Figure 1.2.2 Cost function via an exampleThere is a cost function associated with such random trees. This cost function is perhaps best describedthrough a physical example. In this example, the connections represent links. Each link has an associatedcost which consists of two parts:1. the capacity cost which represents the cost of the communication medium (e.g. optical �ber, copperetc.) and
INRIA



Poisson-Voronoi Spanning Trees with Applications to the Optimization of Communication Networks 52. the infrastructure cost, which represents the cost of the civil engineering (trench, poles etc.) whichsupports the medium.In our example, the capacity cost for connecting a point of �i to the closest point of �i+1, is given bya function of the form Ai;i+1r�i;i+1 , where r is the distance between the points and Ai;i+1; �i;i+1 aresome non-negative parameters. This example of non�linear dependence in the variable r (more generalcases will be considered in the next section) stems from the fact that the type of medium to be useddepends on the distance r.The infrastructure cost is also assumed to be given by a polynomial function of the form Bi;i+1r�i;i+1 ,where Bi;i+1; �i;i+1 > 0. Note that the cables from a distribution point to a concentrator share the samecivil engineering, and it is reasonable to assume that the cost of civil engineering does not depend on thenumber of cables which are grouped there. The various elements of this cost structure are illustrated inFigure 2.
II
I
0 Figure 2: Links in a three-level modelOur �rst question is the following: given the intensities �0; �2 of the subscriber and concentrator pointprocesses and a cost C1 associated with the introduction of a distribution point, what is the intensity�1 of the distribution point process which minimizes the average total cost?2.3 Mathematical formulationMore precisely, the cost function is the following:G def= E02 � Xyi2�1\V0(�2) �C1 +B1;2jyij�1;2 +A1;2jyij�1;2Nyi+ Xxj2�0\Vyi (�1)(B0;1jxj � yij�0;1 +A0;1jxj � yij�0;1) �� : (1)
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6 F. Baccelli et S. ZuyevHere and below,� E0k denotes the expectation with respect to the Palm distribution P0k with respect to the pointprocess �k;� Vx(�k) is the Voronoi cell constructed with respect to �k, with nucleus x 2 �k;� Nx is the number of �0-points linked to the point x.For more on de�nitions and properties of these objects and the ones used below, see the Appendix.Using Neveu's exchange formula (28), which describes the relationship between the two Palm distribu-tions P01 and P02, the expression for the cost function simpli�es to�1�2C1 + �1�2 E01 �B1;2jz0j�1;2 +A1;2jz0j�1;2N0 + Xxj2�0\V0(�1)(B0;1jxj j�0;1 +A0;1jxj j�0;1) � ; (2)where z0 here denotes the point of the process �2 which is the closest to 0.On the other hand, for all a > 0, if one denotes Sjxj(u) the open ball centered in u and with radius jxj,E01 jz0ja =E01 Z jxja 1If�2(Sjxj(0)) = 0g�2(dx)=E Z jxja 1If�2(Sjxj(0)) = 0g�2(dx)=�2 Z jxjaP02[�0(Sjxj(�x)) = 0] dx=2��2 1Z0 ra+1 expf��2�r2g dr = � �a2 + 1�(��2) a2 ; (3)where the second equality follows from the independence of �1 and �2, and the third from Campbell'sre�ned formula ( �(�) here is the Euler Gamma-function).Denote by Ti, i = 1; 4, the i-th term of the sum in the expectation in (2). In view of (3), we haveE01 T1 = B1;2(��2) �1;22 ���1;22 + 1� :To compute the expectation of the second term, note that when the origin is occupied by a point ofthe process �1 the variables jz0j and N0 are independent since they are functions of two independentprocesses �2 and �0 [ �1, respectively. It is easily seen that E01N0 = �0=�1 (more complete results ongeometry of random points in a typical Voronoi cell can be found in [5]) and we obtainE01 T2 = A1;2E01 jz0j�1;2 E01N (0) = A1;2�0�1(��2)�1;22 ���1;22 + 1� :Similarly, using once more the above exchange formula (28), but this time between E01 and E00, we get�1 E01[T3 + T4] = B0;1�0(��1) �0;12 ���0;12 + 1�+ A0;1�0(��1)�0;12 ���0;12 + 1� :
INRIA



Poisson-Voronoi Spanning Trees with Applications to the Optimization of Communication Networks 7Combining the above expressions, we get the following explicit expression for the cost function:G = H1�1 +H2 +H3�� �0;121 +H4���0;121 ; (4)where H1 = B1;2� �1;22 � �1;22 +12 ���1;22 + 1�+ C1�2 ;H2 = A1;2�0� �1;22 ��1;22 +12 ���1;22 + 1� ;H3 = B0;1�0� �0;12 �2���0;12 + 1� ;H4 = A0;1�0� �0;12 �2���0;12 + 1� :We see that the cost function has a unique minimal value, attained in the point ��1 which solves theequation H3�0;1��( �0;12 +1)1 +H4�0;1��(�0;12 +1)1 = 2H1 :In particular case when �0;1 = �0;1 def= � we obtain��1 = ��(H3 +H4)2H1 � 22+�and the minimal value of the cost function is equal toG(��1) = �+ 2� H �2+�1 h�2 (H3 +H4)i 22+� +H2:For � = 1 and �1;2 = �1;2 = 1, we obtain��1 = � 132 " �0(A0;1 +B0;1)2B1;2 + 4C1�1=22 # 23and E02G = 1�2 �3�B1;2�1=32 + C1�1=3��04 �A0;1 +B0;1��2=3 + A122 �0�1=32 � :The upper curve in Figure 5 shows a typical example of the cost function of a three level system. Amore detailed discussion can be found in Section 4.3.3 Hierarchical model3.1 The modelConsider the following extension of the models introduced in �2: there are m � 3 independent homoge-neous Poisson processes �k, k = 0; 1 : : : ;m, in R2 with respective intensities �k.RR n�3040



8 F. Baccelli et S. ZuyevWe will use a terminology which continues that of our typical example so as to make things moreeasy to name and manipulate: the point process �0 represents the network subscribers , whereas thepoint processes �1;�2;�3, etc. represent distribution points or stations of various levels in the hierarchy.Of course in practice, we should have �0 > �1 > : : : > �m, although this is not mandatory in ourmathematical treatment.Associated with the realizations of these point processes, which can be seen as denumerable collections ofnodes located in the plane, one then de�nes arcs between certain pairs of nodes, which are built followingthe least distance hierarchical principle: for all k = 1; : : : ;m, each point of �k�1 is connected to thepoint of �k which is the closest. Equivalently, with each station xj of level k, if one denotes Vxj (�k) theVoronoi cell with nucleus xj constructed with respect to �k, each point of �k�1 lying inside Vxj (�k)has an arc connecting it to xj . These arcs represent connections or links in the communication network.This set of arcs de�nes a random graph on the nodes, which can be decomposed into a denumerablefamily of connected subgraphs which are all random trees of level m at most; there is one such treerooted in each point of �m (see Fig. 2), and this tree has subscribers or points of �k, k = 1; : : : ;m, asleaves. For instance, if the Voronoi cell Vx(�m) is empty of points of �m�1, then x is both a root anda leaf of the tree rooted in x. The random trees in this family are strongly dependent, but identicallydistributed. In that, this family is a collection of spanning trees allowing one to reach a certain subset ofthe set of subscribers from each root via some distribution points of levels m� 1; : : : ; 1. So if the rootsare interconnected, each subscriber can be connected via a �nite set of arcs to any other subscriber ofthe plane.3.2 Description of the cost function via the communication exampleRoughly speaking, the cost of each such tree consists of the cost of all the connections and stations oflower levels linked to its root. In our communication example:� each point of �k has a cost associated with the installation and maintenance of the correspondingstation of level k, which we denote Ck.� each arc from a node xj of �k to a node yl of �k+1 has two components in its cost:1. The capacity cost, namely the cost of the communication medium allowing the interconnectionbetween the subtree rooted in xj and yl; this communication medium should allow the networkto cope with the set of all subscribers being leaves of this subtree. The capacity cost of thismedium is assumed to be given by a function of the formHk;k+1(n)Ak;k+1(r);when the number Nxj of subscribers of the subtree rooted in xj is n, and when the archconnecting xj to yl is of length r. Here H and A are non-decreasing real-valued mapping.A typical example is that with Hk;k+1(n) � n, in which case this capacity cost is purelyadditive in Nxj . However, the capacity of a connection is often designed to take advantageof the so-called statistical multiplexing between subscribers, and the function H is often sub-additive. The function A(r) will be referred to as the unit capacity cost (the capacity cost ofthe additive case when the variable Nxj is equal to 1). The particular case A(r) = Const � rand its polynomial generalizations were already commented in �1.2. The infrastructure cost, which is given by a function Bk;k+1(r) which does not depend on Nxjby assumption, although it may of course depend on k. INRIA



Poisson-Voronoi Spanning Trees with Applications to the Optimization of Communication Networks 93.3 De�nition of the cost functionThe cost function is de�ned recursively through the costs of the subtrees rooted in the points of �k forall k.Let again P0k denote the Palm probability of the point process �k, and E0k expectation w.r.t. P0k. Onthe Palm probability space of �k, there is a station of level k at the origin, and we de�ne the followingrandom variables (where � denotes a realization of the family of all point processes �0; : : : ;�m, andf�xg the group of translations of all these point processes � see the Appendix):� C(�) is the cost of the station in the origin (i.e. Ck);� G(�) is the cost of the subtree rooted in the origin;� N (�) (= N0) is the number of subscribers in this subtree;� A(�) the unit capacity cost of the arc from 0 to the nearest point of level k + 1;� B(�) the infrastructure cost of this arc.� H(�; �) is the mapping giving the dependence of the capacity cost in N (�) (i.e. Hk;k+1(�)).For k = 0, we obviously have G(�) = C0 = C(�) and N (�) = 1. For k = 1,G(�) = C1 + Xxj2�0\V0(�1)C0 +H0;1(1)A0;1(jxj j) +B0;1(jxj j)= C(�) + ZV0(�1) �G(�x�) +H(�x�;N (�x�))A(�x�) + B(�x�)��0(dx) :In general, on the Palm space of �k,G(�) = C(�) + ZV0(�k) �G(�x�) +H(�x�;N (�x�))A(�x�) + B(�x�)��k�1(dx) :Since under the Palm distribution P0k (k � 1) there is a.s. a station of level k in the origin, we canapply the exchange formula (see (28)) with N1 = �k�1 and N2 = �k to the Palm expectation of thelast expression to obtainE0kG(�) = Ck + �k�1�k E0k�1 �G(�) +H(�;N (�))A(�) + B(�)� : (5)To compute E0k�1 B(�), we use Campbell's re�ned formula as we did it (3) to obtainE0k�1A(�) = E0k Z Bk�1;k(jxj) 1If�k(Bjxj(0)) = 0g�k(dx)= �k Z Bk�1;k(jxj)P0k [�k(Bjxj(�x)) = 0] dx= 2��k 1Z0 rBk�1;k(r) expf��k�r2g dr :RR n�3040



10 F. Baccelli et S. ZuyevNext observe that the random variable N (�) in (5) depends only on �0 : : : ;�k�1, whereas A(�), likeB(�), depends only on �k. ThereforeE0k�1[Hk�1;k(N (�))A(�)] = E0k�1 [Hk�1;k(N (�))]E0k A(�):Finally, in the particular case when Hk�1;k = Id, it follows from (28) thatE0kN (�) = E0k ZV0(�k) N (�x�)�k�1(dx)= �k�1�k E0k�1N (�) = : : := �k�1�k �k�2�k�1 : : : �0�1 E00N (�) = �0�k ;and therefore E0k G(�) = Ck + �k�1�k E0k�1G(�)+2� 1Z0 ��0Ak�1;k(r) + �k�1Bk�1;k(r)� r expf��k�r2g dr :Thus we have proved the followingTheorem 1. In the case Hk;k+1 = Id for all k, for any k � 1, we have�k E0kG = �k�1 E0k�1G+Wk = kXn=0Wn (6)where W0 = �0C0, Wn = �nCn + �0R�n�An�1;n( � )�+ �n�1R�n�Bn�1;n( � )� (7)for n � 1 and the integral operatorR��f( � )� def= 2�� 1Z0 rf(r)e���r2 dr : (8)Remark 1. Operator R��f( � )� can be viewed as the expectation of random variable f(��) where ��follows Rayleigh distribution with the parameter 1=(2��).Equation (6) above receives the following natural interpretation: the increment of the cost densitybetween subtrees of level k � 1 and k is equal to the sum of the cost density of the inter-connectionsbetween these two levels and the cost density of the k-level stations.3.4 Example of optimizationConsider a four level system with the unit capacity cost and infrastructure cost depending linearly fromthe distance: Ai;j(r) = ai;jr and Bi;j(r) = bi;jr, respectively. It is readily seen that the cost functionINRIA



Poisson-Voronoi Spanning Trees with Applications to the Optimization of Communication Networks 11E03G is smooth in R2+ , tends to in�nity if �1 or �2 tends to 0 or to in�nity and the stationary point isgiven by the following system of equations:�3 @ E03G@�1 = C1 + b1;22p�2 � �0b0;14� 321 = 0 ;�3 @ E03G@�2 = C2 + b2;32p�3 � �0a1;2 + �1b1;24� 322 = 0 :Expressing �1 from the second equation and substituting it in the �rst one we obtain�1 = �� 322 � �0a1;2b1;2 ;C1 + b1;22p�2 � �0b0;14��� 322 � �0a1;2b1;2 � 32 = 0 ;where � = 4b1;2�C2 + b2;32p�3 � :Denoting � = p�2 after some algebra, we get���3 � �0a1;2b1;2 �3 = �20b20;1�24(C1� + b1;2)2 : (9)We see that in the LHS of (9) stands a continuous function which increases from a negative value toin�nity, whereas the function in the RHS is positive and decreasing for � > 0. Therefore there exists aunique positive solution to this equation. Noting that the value in the LHS is exactly �31 we concludethat there is a unique positive pair (�1; �2) providing the minimal value of the cost function. A typicalform of the cost function is shown in Figure 3.4 Case of direct connections4.1 ModelIn the hierarchical model considered in the previous sections, a k�1-level station is always attached to ak-level station, even if there are higher level stations closer to it. In this section we let such a station belinked to the station of levels k : : : ;m (see Fig. 4) which is the closest. We consider here only a 3-levelsystem and the case with H(n) = n; higher level models can in principal be treated by the same method.4.2 Cost functionWe introduce marks associated with the points of �0, namely functionals of con�gurations having a0-level station located at the origin:RR n�3040



12 F. Baccelli et S. Zuyev
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Figure 3: Cost function in a four level hierarchical model.
II
I
0 Figure 4: 3-level model with direct connectionsA0(�) is the unit capacity cost of the link from the origin to the nearest 1-st level station if thereis no closer 2-nd level station, and 0 otherwise; INRIA



Poisson-Voronoi Spanning Trees with Applications to the Optimization of Communication Networks 13A00(�) is the unit capacity cost of the link from the origin to the nearest 2-nd level station if thereis no closer 1-st level, and 0 otherwise;Infrastructure cost variables B0 and B00 are de�ned similarly. Let A(�) = A0(�) + A00(�) and B(�) =B0(�) + B00(�).Now under P01, G(�) = C1 + Xxj2�0\V0(�1[�2)C0 +A0;1(jxj j) +B0;1(jxj j)= C1 + ZV0(�1[�2) [G(�x�) +A0(�x�) + B0(�x�)]�0(dx) : (10)First of all note that due to the well known property of Poisson processes, �1[�2 is also a homogeneousPoisson process with intensity �1 + �2. Therefore by Campbell's theoremE01 Xxj2�0\V0(�1[�2)C0 = �0C0jV0(�1 [ �2)j = �0C0�1 + �2 :In addition, we have V0(�1 [�2) � V0(�1). But for x 2 V0(�1) nV0(�1 [�2), there exists zj 2 �2 suchthat jx� zj j < jxj, so that A0(�x�) = B0(�x�) = 0. Therefore we can replace the integration domain in(10) by V0(�1) and then apply (28) to writeE01G = C1 + �0C0�1 + �2 + �0�1 E00[A0(�) + B0(�)] :By the same arguments as in the proof of (6), we obtainE00 B0(�) = EZ B0;1(jxj) 1If�1(Sjxj(0)) = 0g 1If�2(Sjxj(0)) = 0g�1(dx)= 2��1 1Z0 rB0;1(r) expf��r2(�1 + �2)g dr = �1�1 + �2R�1+�2�B0;1( � )� (11)and a similar formula for E00A0(�). Combining all the above results, we obtainE01G = C1 + �0C0�1 + �2 + �0�1 + �2R�1+�2�A0;1( � ) +B0;1( � )� : (12)Consider now the Palm space of �2. On this space,G(�) = C2 + ZV0(�2) �G(�x�) + B(�x�) +N (�x�)A(�x�)��1(dx) (13)+ ZV0(�1[�2) �G(�x�) + B00(�x�) +A00(�x�)��0(dx) (14)and as in (10), the last integration over V0(�1 [ �2) can be replaced by an integration over V0(�2).Therefore using (28), we getE02G = C2 + �1�2 E01[G+ B +NA] + �0�2 E00[G+ B00 +A00] : (15)
RR n�3040



14 F. Baccelli et S. ZuyevWe have E00G = C0 ;E00A00(�) = EZ A0;2(jzj) 1If�1(Sjzj(0)) = 0g 1If�2(Sjzj(0)) = 0g�2(dz)= 2��2 1Z0 rA0;2(r) expf��r2(�1 + �2)g dr ;E00 B00(�) = 2��2 1Z0 rB0;2(r) expf��r2(�1 + �2)g dr :The expression for E01 B is given by (6) with k = 2, but some di�culties arise when computing E01NAsince these variables are no longer independent. However, we can writeE01NA = E01 ZV0(�1[�2) �0(dx) Z A1;2(jzj) 1If�2�Sjzj(0)� = 0g�2(dz)= E01 ZZ A1;2(jzj) 1If�1�Sjxj(x)� = 0g1If�2�Sjxj(x) [ Sjzj(0)� = 0g�0(dx)�2(dz)= �0 EZZ A1;2(jzj)e��1�jxj2 1If�2�Sjxj(x) [ Sjzj(0)� = 0g dx�(dz)= �0�2 ZZ A1;2(jzj)e��1�jxj2 P02[��z�2�Sjxj(x) [ Sjzj(0)� = 0] dxdz :Notice that the probability P02[��z�2�Sjxj(x) [ Sjzj(0)� = 0]above is 0 unless z 62 Sjxj(x). Switching to polar coordinates, the last expression reads2��0�2 ZZ rA1;2(r)e��1�jxj2 P02[�(r;0)�2�Sjxj(x) [ Sr(0)� = 0] dxdr= 2��0�2 ZZ� rA1;2(r) expf��1�jxj2 � �2jSjxj(x) [ Sr(0)jg dxdr ;where the integration is over� = f(x; r) 2 R2�R+ such that (r; 0) 62 Sjxj(x)g:This integral can be simpli�ed if we represent x in polar coordinates of the form (r�; �) and adopt � asnew integration variable. ThenE01NA = 2��0�2 Z 10 r3A1;2(r)dr ZZ� � exp�� r2��1��2 + �2U(�)�	 d�d� ;where U(�) is the area of the union of the discs S�(� cos�; � sin�) and S1(0), and where the doubleintegral is over the set � of couples (�; �) such that S�(� cos�; � sin�) does not contain point (1; 0), i. e.over � 2 h 1If� > 1=2g arccos 12� ; 2� � 1If� > 1=2g arccos 12�i : INRIA



Poisson-Voronoi Spanning Trees with Applications to the Optimization of Communication Networks 15Thus we �nally getE01NA = 4��0�2 Z 10 r3A1;2(r)dr Z 10 ��� � 1If� > 1=2g arccos 12��� expf�r2��1��2 + �2U(�)�g d� ; (16)where U(�) = (� if � 2 [0; 1=2]� + 12p4�2 � 1 + (2�2 � 1) arccos 12� if � > 1=2 (17)as elementary geometrical considerations show.We combine all the above results in the following theorem.Theorem 2. For 3-level hierarchical model with direct connections we haveE01G = C1 + �0�1 + �2C0 + �0�1 + �2R�1+�2�A0;1( � ) +B0;1( � )� ; (18)E02G = C2 + �0�2 hC0 + �1�1 + �2R�1+�2�A0;2( � ) +B0;2( � )�i+ �1�2 hE01G+R�2�B1;2( � )�+E01NAi ; (19)where E01NA is given by (16) and R��f( � )� is de�ned by (8).In the case when A1;2(r) = a1;2r�1;2 the integration over r in (16) can be explicitly made leading toE01NC = 4��0�2a1;2���1;2 + 32 �Z 10 ��� � 1If� > 1=2g arccos 12����1��2 + �2A(�)���1;2+32 d�= 2�0�2a1;2���1;2+12 ��1� �1;2�12 ����1;2+122 � (�1=4 + �2)��1;2+12 �+ 2�1;2+3��0�2a1;2���1;2 + 32 ��=2Z0 (� � 
) sin 
 cos�1;2 
 d
��(�1 + 2�2) + �2 sin 2
 + 2�2(� � 
) cos 2
��1;2+32 ; (20)where 
 = arccos 12� . Using R�(ar�) = a(��)��=2�(�=2 + 1) ;an explicit expression for the cost is obtained after substitution of (20) into (19).
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16 F. Baccelli et S. ZuyevIn particular, if all �i;j = �i;j = 1 we getE02G = C2 + �1�2C1 + �0(2�1 + �2)�2(�1 + �2) C0 + b1;2�12�3=22 + 2�0�1a1;2�2(�1 + 4�2)+ 8��0�1a1;2 �=2Z0 (� � 
) sin 2
 d
[�(�1 + 2�2) + �2 sin 2
 + 2�2(� � 
) cos 2
]2+ �0(a0;2 + b0;2)2(�1 + �2)3=2 + �0�1(a0;1 + b0;1)2�2(�1 + �2)3=2 : (21)4.3 Numerical examples and comparisonUnfortunately, there are no closed form expressions of the optimal value of parameters for this model.Figure 5 shows a numerical example for the costs of the strictly hierarchical model and the model withdirect connections, for the following choice of the parameters.� intensities: �0 = 10:91; �2 = 0:018 ;� station costs: C0 = 4; C1 = 18 ;� capacity and infrastructure cost functions: Ai;j(r) = 4r; Bi;j(r) = 9r for all i; j 2 f0; 1; 2g.(the second level station cost C2 is not pertinent for the optimal �1 and can be taken equal to 0). As wesee, for these values, allowing direct connections always improves the cost of the system. The optimalvalue of the intensity of �1 in the strictly hierarchical model is �1 � 0:779, with cost E02G � 18154. Forthe model with direct connections, the optimal value is �1 � 0:721, and the cost is E02G � 16168.Note the di�erence in behavior of the cost functions for small �1. For �1 small, there are mostly directconnections between 0 and 2-nd level stations, if they are allowed. The topology of the system becomesstar-shaped as in two level systems. The cost of the model with direct connections is E02G � 31789 for�1 = 0. In contrast, in the strictly hierarchical model, the 0-level stations are connected to 1-st levelstations even if they are far away, which makes the cost of the system explode as �1 vanishes.In another example we take the same values of the parameters except for B0;1(r) = B0;2(r) = 0:1r. Asin the previous example, direct connections improve the cost. But although for this model there is alocal minimum of the cost function in point �1 � 0:233, the global minimum of the cost E02G � 11686is attained in �1 = 0, i.e when there are no distribution points at all (see Figure 6).In the last example Ai;j(r) = 0:4r, for all i; j 2 f0; 1; 2g, B0;1(r) = 0:1r; B0;2 = 0:4r and B1;2 = 9r. Wesee that the optimal architecture here is strictly hierarchical, except for very small values of �1. Theoptimal intensity is �1 � 0:089 and the minimal cost gives the hierarchical model: E02G � 4091 (seeFig. 7). The corresponding optimal topology is visualized on Figure 1 and was drawn with the help ofthe program ARC (see [13]).5 Related spanning problemsThe methods considered in the previous sections can easily be adapted to other applications. Twoexamples of such applications are considered below. INRIA
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lambda_1Figure 5: Cost function in the hierarchical model (the upper curve) and the model with direct connections(ai;j = 4; bi;j = 9).5.1 Tracking in mobile communication systemsConsider two independent Poisson point processes �0 and �1 representing respectively the positions ofmobile subscribers at time 0 and the positions of the base stations of the network. The base stationlocated in point x of �1 is an antenna allowing for hertzian communication with any mobile locatedinside the �1-Voronoi cell with nucleus x. In case attenuation increases with distance in a translation-invariant and isotropic way, and if all stations have the same emission power, this cell is also the part ofthe plane where the reception level of the antenna located in x is best.However the mobility of the points of �0 (which we will discuss below) creates a new problem which isthat of mobile tracking. The system has to know where each mobile is located at any given time. This isparticularly true for mobiles which are not in communication. Should any of those be called, the systemhas to be able to �nd the cell where the mobile is located at the time of the call.This is done by updating the position of each mobile in some database, which is organized as follows:there is a third level of stations which we will refer to as location stations. This level will be representedas an independent Poisson process �2. The database is updated each time a mobile crosses a �2�cellboundary. So, one always knows the �2�cell in which the called mobile is located. In case of a call for
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lambda_1Figure 6: Cost function in the hierarchical model (the upper curve) and the model with direct connectionswith a small infrastructure cost on the lowest level (ai;j = 4; b0;1 = b0;2 = 0:1; b1;2 = 9).a mobile, it is then enough to broadcast a search message to all base stations in this �2 cell to �nd themobile and to establish the communication.There are two tracking costs associated with this scheme:1. an update cost which comes from the update messages sent by all mobiles to the database; we willrepresent this as a linear function of the number of mobiles crossing �2�cell boundaries per unitof time; let X denote the cost of one update message.2. a search cost which comes from the search messages sent to all called mobiles; let Y (n) denote thecost to broadcast the search messages for a mobile located in a �2�cell with n base stations.Here, the problem consists in �nding the intensity of the location stations, which minimizes the trackingcost.We now give a precise de�nition of the cost function.Assume that the reference probability space carries three independent point processes �0; �1 and �2,together with some marks associating a random motion in R2 , with each point of �0. Below, � denotesa realization of these point processes together with their marks. INRIA
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lambda_1Figure 7: Example when the strictly hierarchical model provides the optimal cost (ai;j = 0:4; b0;1 =0:1; b0;2 = 0:4; b1;2 = 9).We assume that these marks are such that the temporal point process which gives the epochs when themobile initially located in 0 crosses �2-cell boundaries, is stationary.A simple example is that when the mark is chosen independently for each mobile and represents thetrajectory of the mobile together with its velocity v, which it keeps constant. It is naturally to assumethat the trajectory of a mobile is continuous and piecewise 1-di�erentiable. >From [7, Formula (7.22)],the intensity of intersections of �2-cell boundaries with a straight line is equal to 4�1=22 =�. Thereforeapproximating each di�erentiable part of the trajectory by a segment, we see that the mean number ofcrossings during time �t equals 4v�tp�2=� + o(�t). Thus the temporal intensity of the cell boundarycrossings by a mobile is given by X = 4v�2 12�(see also [6] on intersections of a stationary �ber process with curves).On the Palm space of �0, let� X (�) be the temporal intensity of the crossings of �2�cell boundaries by the mobile located in 0.
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20 F. Baccelli et S. Zuyev� Y(�) be the search cost of the mobile located in 0.If we denote � the intensity of calls directed to mobile 0 (we assume that this is a constant), then thetracking cost per unit of time and space is naturally de�ned asEG = EZ[0;1]2 (X (�x�) + �Y(�x�))�0(dx); (22)that is, using Campbell's re�ned formula and the independence assumptionsEG = �0E00[X (�)] + �0�E00[Y(�)]= �0X 4v�2 12� + �0�E[Y (�1( ~V0(�2))] ; (23)where v is the mean velocity of the mobiles and ~V0(�2) is the Voronoi cell constructed with respect to�2 containing the origin in its interior. In case Y (n) = Y � n we haveE�1(V0(�2)) = E Xyi2�1 Xzj2�2 1Ifyi 2 Vzj (�2)g 1If0 2 Vzj (�2)g= �1E Xzj2�2 Z 1Ify 2 V0(�zj�2)g 1If�zj 2 V0(�zj�2)g dy= �1�2 E02 ZZ 1Ify 2 V0(�2)g 1Ifz 2 V0(�2)g dydz= �1�2 E02 jV0(�2)j2 ;since V0(�2) and �V0(�2) have the same distribution. Using the fact that E02 jV0(�2)j2 = 35=(8�2�22)(see e.g. [9, p. 324]), we obtain the following explicit expression for the cost function:EG = H1�2 12 +H2�1�2 (24)with H1 = 4v�0X� ; H2 = 358�2�0�1�Yand the minimum is reached for ��2 = �2H2H1 � 23 = �35�1�Y32�vX � 23 :Remark 2. Since the location stations are used to broadcast search messages to the antennas and even-tually to concentrate communications from or to mobiles connected to these antennas, they can alsobe seen as a higher level of stations allowing to reach the base stations according to the least distanceconnection principle. So, one can also naturally consider a cost associated with these connections whichis similar to what was considered in the previous sections, namely a capacity cost and an infrastructurecost.
INRIA



Poisson-Voronoi Spanning Trees with Applications to the Optimization of Communication Networks 215.2 In�nite spanning graphsIn all preceding cases, we assumed that the points of highest level (e.g. the roots of the trees) werelinked via some connected network, which was then ignored. The aim of this subsection is to take thisadditional structure into account within our parametric setting, and to show that optimization problemssimilar to those considered above can be also addressed.Consider the following problem which is an in�nite volume analog of the classical minimal spanninggraph problem in a bounded region [11]. Let �� be a homogeneous Poisson process with intensity � inR2 . Can we �nd a connected planar graph with vertices in all the points of the Poisson process withminimal �connection cost density� that is such that the cost of the edges of the graph per unit area isminimal. We have put quotes because such a quantity is only well de�ned for �nite graphs, and it maynot exist for the in�nite volume case.Suppose that for all realizations of a homogeneous Poisson process �� with intensity �, we are given arule to construct a connected graph G(�� ) with vertex set �� . Let SN ; N 2 N be a family of compactsets, where S1 is a 1-connected �gure with unit area containing the origin in its interior, and SN ishomothetic to S1 with coe�cient N1=2. Let LN(��) be the total length of (the parts of) the graph'sedges lying in SN and assume that the following almost sure limitCG def= limN!1LN(��)=(N�)1=2exists and does not depend on S1. Examples of such graphs include the Delaunay triangulation, forwhich CG = 32=(3�) � 3:395 (cf. [9, p.324]). The Delaunay triangulation seems to be a good �rstapproximation of what is observed in existing communications networks. Another example is the optimalspanning tree, for which CG � 0:656 (see [10]; the existence of the limit was proved in [11]). As alreadymentioned above, there is a basic di�erence between this and the preceding case as minimal spanningtrees are only well de�ned in the �nite volume case.Consider now the following variant of the basic problem of �2-3: we split of the initial process ��into independent subprocesses �1; : : : ;�n with intensities �1; : : : ; �n; Pi=1 n = �, say by a Bernoullithinning. Then the spanning graph consists of the set of Poisson-Voronoi hierarchical spanning treesrooted in the points of the process �n (see Section 3) and the graph G(�n) at the highest level. Weassume that the cost of a tree edge is its length and the cost of an edge of G is its length times a weight�.By Theorem 1 the edge-cost density of this spanning graph isF = nXk=2 �k�12p�k + �CGp�nand the problem now consists in �nding the parameters n; �1; : : : ; �n which minimize the value of F .Numerical evidence shows that the optimal value n of the number of levels is closely related to the valueof �CG . The larger �CG , the larger the optimal value of n and the larger the optimal proportion ofpoints connected through the trees. On the opposite, if �CG < 1 then n = 1 is optimal and the graphG(��) itself is the optimal topology in the described class.If G(�) is the Delaunay triangulation on the point set supp�, and if � = 1, then the optimal values ofthe parameters are the following: n = 3; �1 � 0:7121�; �2 � 0:2466� and �3 � 0:0413�. In this casethe minimal value of the cost is approximately 2:014p�, a typical con�guration of this optimal spanninggraph is shown in Figure 8.RR n�3040



22 F. Baccelli et S. Zuyev

Figure 8: The optimal spanning graph with Delaunay triangulation in the highest level.5.3 Simulation approachQuite often analytical expressions for the average cost functions of stochastic models of the consideredtype are di�cult to compute, even in the case considered here where all point processes are Poissonprocesses. In many such cases, the stochastic gradient method introduced in [3] can then be applied forestimating the optimum. It consists in �nding e�cient ways of calculating or of estimating the gradients@@�i EG and then using steepest descent type algorithms to �nd the optimum. For details and examplesof applications of this technique in telecommunication studies see [13] and the references therein.
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Poisson-Voronoi Spanning Trees with Applications to the Optimization of Communication Networks 23AppendixA Point processes refresherIn this Appendix we remind some basic notions of Palm theory of point processes and derive formulaswhich have been used in the paper.Throughout this section, X denotes the phase space of the point processes which is always here thed-dimensional Euclidean space Rd (generalizations to the case of locally compact topological groups arenot di�cult). B denotes the Borel �-algebra of Rd , N the set of �-�nite counting measures on B, B the�-algebra of subsets of N generated by the events f� 2 N : �(B) = kg, where B 2 B and k = 0; 1; 2; : : : .Each � 2 N can be represented as a countable sum Pi ni�xi of Dirac measures with masses ni 2 N,where xi are all distinct (by de�nition �x(B) = 1IB(x) ). The set [ifxig = supp � is the support of themeasure � and it has no accumulation point if � is �-�nite. A countable measure � is called simple if allni = 1.By point process, we mean a measurable mapping N from some abstract probability space (
;F ;P) into[N ;B]. We can for instance take [
;F ] equal to [N ;B], and N is then the identity mapping. Enrichingif necessary the phase space, one can always assume that all realizations of the point process are simple.The addition in X gives rise to measurable �ows in [X;B] and [N ;B], de�ned as �xB = B+x = fy+x :y 2 Bg for B 2 B and (�x�)(B) def= �(�xB) for � 2 N and all B 2 B. In particular, if N = Pi �xi then�xN =Pi �xi�x. The point process N is stationary with respect to the �ow � � if the distributions of Nand �xN coincide for all x 2 X . When dealing with several point processes, it is sometime convenientto introduce a shift �x, x 2 X on the probability space (
;F ;P), which is assumed to preserve P , andto assume that this shift is compatible with the translations � � in Rd , namely thatN(�x!) = �xN(!)for all x and !. The intensity measure of N is the measure on Rd de�ned by �(B) = EN(B), B 2 B. IfN is stationary then �(B) = �jBj, where jBj is the Lebesgue measure of B and � is the intensity of N .In this paper we often operate with several point processes Nk in R2 . The Palm probability of an eventof the form fN 2 �g, where � belongs to B with respect to Nk is de�ned byP0k(N 2 �) = 1�k jBj EZB 1I�(�xN)Nk(dx) ; (25)where �k is the intensity of the process Nk; it can be shown independent on the choice of B 2 B. Theintuitive meaning is that of the conditional distribution "given there is a point of the process Nk inthe origin 0". The expectation with respect to P0k is denoted by E0k. The re�ned Campbell formula forstationary marked processes follows by the standard monotone class argument from this de�nition:EZ F (x;N)Nk(dx) = �k Z E0k F (x; ��xN) dx (26)for any measurable function F : 
�Rd 7! R+ (cf. [12, Formula (4.4.11)]).Let now g : 
 7! R+ be a measurable function. The following identity which is a variant of well-knownRyll-Nardzewski formula (cf. [1, formula (4.1.2a)]) expresses the relationship between the Palm and the
RR n�3040



24 F. Baccelli et S. Zuyevoriginal distribution of a marked stationary point process:E g(N) = �k E0k ZV0(Nk) g(�xN) dx : (27)The set V0(Nk) above is the Voronoi cell with nucleus 0 constructed with respect to the point set suppNk(note that under Palm distribution P0k there is a.s. a point of Nk at the origin 0). By de�nition V0(Nk)consists of those points of Rd which are closer to 0 than to any other point of suppNk. V0(Nk), whichcoincides with the intersection of the half-spaces fx : jxj � jx� xijg, xi 2 suppNk, V0(Nk), is a convexpolygon.Identity (27) is readily obtained by modi�cation of the proof of Theorem 12.3.II of [4]. Take in (26)the function F (x;N) equal to g(N) if x is the closest to the origin point of the process Nk and to 0otherwise. In the left-hand side of (26) we get the expectation E g(N). Then it can be veri�ed thatF (x; ��xN) = g(��xN) 1I�V0(Nk)(x), where �V0(Nk) = fx : �x 2 V0(Nk)g and (27) follows from thechange of coordinates x! ���� x in the right-hand side of (26).The next formula plays the central role in our observations. It relates the Palm distributions with respectto di�erent marks and can be considered as a higher-dimensional analog of Neveu's exchange formula[8] (see also [1, formula (3.4.1)]). Although it can be obtained by taking a(!; t) equal the indicator ofthe event �t is the closest to the origin point of the process N1(!)� in the remark following the proof ofProposition 1 in [8, p.201], we, however, prefer to give a direct self-contained proof of this fact.Assertion 3. Let N1 and N2 be stationary with respect to the same �ow � � processes. Then for anymeasurable f : 
 7! R+ one has�1E01 f(N) = �2E02 ZV0(�2) f(�xN)N1(dx) : (28)Proof. First we prove this formula for a bounded function f . Take a ball S" of the volume " centered inthe origin and put g(N) = "�1 ZS" f(�yN)N1(dy)in (27). We then can writeE g(N) = �1 E01 f(N) = �2E02 ZV0(�2) h"�1 ZS" f(�x+yN) (�xN1)(dy)i dx= �2 E02 ZV0(�2) "�1 ZS"+x f(�zN)N1(dz) dx= �2E02 Z "�1j(�S" + z) \ V0(�2)j f(�zN)N1(dz) :Note that the function "�1j(�S" + z)\ V0(�2)j = "�1j(S" + z)\ V0(�2)j under the integral above tendsto 1 as " ! 0 for all z in the interior of V0(�2) and to 0 for all z in the interior of the complement ofV0(�2). Since V0(�2) is convex then its boundary has the Lebesgue measure 0 and thus (28) followsby the bounded convergence theorem. The case of unbounded integrable f follows by the standardmonotone argument. INRIA
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