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Arbres Couvrants de Poisson-Voronoi

et applications a ’optimisation de réseaux de communication

Résumé : Nous définissons une famille d’arbres aléatoires du plan. Leurs noeuds de niveau k, k =
0,...,m, sont les points d’un processus ponctuel de Poisson IIj, et leurs arcs relient les noeuds de niveau
k & ceux de niveau k+ 1 selon le principe du plus court chemin: si ’on appelle V' la cellule de Voronoi par
rapport & IIx 4, de centre z, olt x est un point de Il 1, on relie par un arc le point = & tout point de II,
qui appartient & V. Ceci définit une famille stationnaire d’arbres aléatoires qui permettent de modéliser
I’organisation hiérarchique de certains réseaux de communication. En relation avec ces problemes, il est
naturel d’associer des fonctions de cotlit & ces arbres. Nous montrons comment calculer les moyennes de
ces fonctions de coiit grace a des outils mathématiques issus de la théorie des processus ponctuels, comme
la formule d’échange entre deux mesures de Palm, et de la géométrie intégrale. Dans certains cas, on
peut obtenir des formules explicites pour ces fonctions de cotit moyennes et procéder & une optimisation
paramétrique explicite des intensités des divers processus ponctuels mis en jeu.
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1 Introduction

Consider the following distribution problem: a family of concentration points is given, characterized
by their random coordinates in the plane. Another family of subscribers is also given, with a similar
characterization via the set of their random coordinates. A typical example, which is the one considered
throughout this paper, is that when both point processes are homogeneous Poisson processes, although
more general cases can also be considered along the same lines.

Assume one has to connect each subscriber to exactly one concentrator. A typical example is that where
the concentrators are all linked by a connected network, so that when each subscriber is connected to
one concentrator, it is actually interconnected to all subscribers as well.

For connecting each subscriber to one concentrator, one can either use a direct link, or an indirect
link via some distribution point. A distribution point is a location where several links originating from
subscribers can be grouped into one further link to some concentrator with some economy of scale (see
Figure 2).

The first problem that we consider in this paper is that of the optimal use of such distribution points. We
do not address the problem of a minimal spanning tree structure, which is a quite different combinatorial
optimization question. We restrict ourselves to a parametric optimization which consists in introducing
an independent Poisson process of distribution points and in determining the intensity of this process
which minimizes a cost function which reflects the economy of scale alluded to above. The general
assumption is that connections are always to the closest point (i.e. each subscriber is connected to the
closest distribution point, and each distribution point to the closest concentrator); the Voronoi cells
associated with the Poisson point processes play therefore a central role in the construction of these
trees.

The paper is structured as follows: Section 2 gives the basic model and a precise definition of the cost
function, together with the main characteristics of the optimal parametric model. Section 3 focuses on
an extension of this to a hierarchical model with several layers which was proposed in [2] to describe
the structure of certain communication networks, and which includes the basic model of §2 as a special
case. Finally, Sections 4 and 5 give some extensions of the optimization method proposed in §1-2 to
related problems, also arising in communication network modeling, and also based on Poisson-Voronoi
tesselations and trees: a non purely hierachical model is considered in §4, a tracking problem in mobile
communications in §5.1, and a class of infinite spanning graphs in §5.2.

Although the models are described throughout the paper are originating from communication problems,
it is worthwhile stressing that they are generic in that they could in principle be applied to other planar
or spatial distribution problems, where randomness is natural.

2 Three level connection systems

2.1 Stochastic Assumptions

Consider 3 independent homogeneous Poisson processes II; (i = 0,1,2) in the plane R? with intensities
A;, representing subscribers (process Ily), distribution points (process II;) and concentrators (process
I1,), respectively.

RR n " 3040



4 F. Baccelli et S. Zuyev

Random trees are built from any realizations of these three point processes as follows: each point of the
process Il is connected to a point of process II; according to the least distance principle. Similarly,
each points of II; is connected to the closest point of the process Il (this closest point is almost surely
uniquely defined under the above Poisson and independence assumptions).
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Figure 1: A family of Poisson-Voronoi trees of height two.

A typical realization of such Poisson-Voronoi trees is shown in Figure 1.

2.2 Cost function via an example
There is a cost function associated with such random trees. This cost function is perhaps best described
through a physical example. In this example, the connections represent links. Each link has an associated

cost which consists of two parts:

1. the capacity cost which represents the cost of the communication medium (e.g. optical fiber, copper
etc.) and

INRIA
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2. the infrastructure cost, which represents the cost of the civil engineering (trench, poles etc.) which
supports the medium.

In our example, the capacity cost for connecting a point of II; to the closest point of IT;;1, is given by
a function of the form A;;y1r®" i+, where r is the distance between the points and A;;41, oy 1 are
some non-negative parameters. This example of non-linear dependence in the variable r (more general
cases will be considered in the next section) stems from the fact that the type of medium to be used
depends on the distance r.

The infrastructure cost is also assumed to be given by a polynomial function of the form Bi7i+1rﬁi~'i+1,
where B; ; 11, Bi:+1 > 0. Note that the cables from a distribution point to a concentrator share the same
civil engineering, and it is reasonable to assume that the cost of civil engineering does not depend on the
number of cables which are grouped there. The various elements of this cost structure are illustrated in
Figure 2.

/// N AL N

yx INIYAY

Figure 2: Links in a three-level model

Our first question is the following: given the intensities Ay, A2 of the subscriber and concentrator point
processes and a cost C; associated with the introduction of a distribution point, what is the intensity
A1 of the distribution point process which minimizes the average total cost?

2.3 Mathematical formulation

More precisely, the cost function is the following;:

def 2 o
¢TE { Yo [t Bualyil™® + Ay N,
yi €M1NVo(Il2)

+ > (Boalry —uil™ + Aoz —wil™on)]| (1)
z; €EMpNVy, (1)
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6 F. Baccelli et S. Zuyev

Here and below,
e E) denotes the expectation with respect to the Palm distribution P with respect to the point
process Ilj;
o V. (II;) is the Voronoi cell constructed with respect to I, with nucleus z € IIj;
e /, is the number of IIy-points linked to the point .
For more on definitions and properties of these objects and the ones used below, see the Appendix.

Using Neveu’s exchange formula (28), which describes the relationship between the two Palm distribu-
tions P{ and P9, the expression for the cost function simplifies to

A A
)\—101 + )\—1 E} [Bi2|20]7% + A1 2]20|* 2 Np + Z (Bo,1lz;]7 + Aoz [*)], (2)
2 2 z; €NV, (II1)

where zg here denotes the point of the process II; which is the closest to 0.

On the other hand, for all @ > 0, if one denotes S|, |(u) the open ball centered in v and with radius |z|,
Y ol" =B [ Jal* T{TLa(S11(0) = 0} Mada)
:E/ |z|* T{II2(S|4(0)) = 0} IIz(dx)

=Xz / |z|* PY[Mo(S),((—)) = 0] dz
:270\2/7414-1 eXp{—AQ’ﬂ"I“Q}d’r‘ =

0

L(%&+1) 3)
(7!')\2)% ’

where the second equality follows from the independence of II; and Il,, and the third from Campbell’s

refined formula ( T'(+) here is the Euler Gamma-function).

Denote by T;, i = 1,4, the i-th term of the sum in the expectation in (2). In view of (3), we have

B
EM}:__ii_r<%§+1>.

51,2
7T>\2)/IT‘“

To compute the expectation of the second term, note that when the origin is occupied by a point of
the process I1; the variables |zg| and Aj are independent since they are functions of two independent
processes Il and IIy U Iy, respectively. It is easily seen that E(f No = Ao/A1 (more complete results on
geometry of random points in a typical Voronoi cell can be found in [5]) and we obtain

A1z r(%2+1).

E{ Ty = A 5 EY |2|*"2 E) N (0) = 5

B )\1 (71_)\2)“1_22
Similarly, using once more the above exchange formula (28), but this time between EY and EJ, we get

Boy1 o r <60,1

— + 1> + —=57
o\ 2 ENES

Ando p (04 4),

MENT; +Ty] = 5
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Combining the above expressions, we get the following explicit expression for the cost function:

Bo,1 ap,1

G=H\ +H, —l—[fg)\;T +H4)\1 2

where
_ B B1,2
Hl — 131‘72 ﬁlT~2+1F <T + 1 + —
T2 )y
Ar 2\
H, = — 220 p (%H);
1,2 =41 2
T2 A
Bo 1A
Ho = Ser(Ba).
™ 2 )\2
Agi A «
Hy = “570r (22 41),
T2 Ao 2

)

We see that the cost function has a unique minimal value, attained in the point A} which solves the

equation

£o.,1 )

@0,1
H3,80,1A;(T+1 (T‘Fl) —

+ H4CMO,1A;

In particular case when £y = a1 def « we obtain
2
A= o(Hs + Hy) | %
te 2H,
and the minimal value of the cost function is equal to

. a+2 o
G(A1) = TH1+ [

2
« 24+a
§(H3 +H4):| 2+

For a =1 and ay 2 = 1,2 = 1, we obtain

2H; .

+ Hs.

o3 [ A(Aes +Boy) |7
A=A ob 4 21/2
2B172 + 401)\2
and
1 /3 7\ 2/3 A
Eg G = — 3(31,2A;/3 + Cl) (—0 (Ao,l + BO,l)) + £A0A5/3 .
A2 4 2

The upper curve in Figure 5 shows a typical example of the cost function of a three level system.

more detailed discussion can be found in Section 4.3.

3 Hierarchical model

3.1 The model

Consider the following extension of the models introduced in §2: there are m > 3 independent homoge-
neous Poisson processes II,, k =0,1...,m, in R? with respective intensities \j.

RR n " 3040



8 F. Baccelli et S. Zuyev

We will use a terminology which continues that of our typical example so as to make things more
easy to name and manipulate: the point process Iy represents the network subscribers, whereas the
point processes IIy, I, I3, etc. represent distribution points or stations of various levels in the hierarchy.
Of course in practice, we should have A\ > Ay > ... > A,,, although this is not mandatory in our
mathematical treatment.

Associated with the realizations of these point processes, which can be seen as denumerable collections of
nodes located in the plane, one then defines arcs between certain pairs of nodes, which are built following
the least distance hierarchical principle: for all £ = 1,...,m, each point of II;_; is connected to the
point of ITj, which is the closest. Equivalently, with each station z; of level k, if one denotes V,, (II;) the
Voronoi cell with nucleus z; constructed with respect to II;, each point of II;_; lying inside Ve, (T1k)
has an arc connecting it to z;. These arcs represent connections or links in the communication network.

This set of arcs defines a random graph on the nodes, which can be decomposed into a denumerable
family of connected subgraphs which are all random trees of level m at most; there is one such tree
rooted in each point of IT,, (see Fig. 2), and this tree has subscribers or points of I, k =1,... ,m, as
leaves. For instance, if the Voronoi cell V, (II,,) is empty of points of II,,_;, then x is both a root and
a leaf of the tree rooted in z. The random trees in this family are strongly dependent, but identically
distributed. In that, this family is a collection of spanning trees allowing one to reach a certain subset of
the set of subscribers from each root via some distribution points of levels m — 1,...,1. So if the roots
are interconnected, each subscriber can be connected via a finite set of arcs to any other subscriber of
the plane.

3.2 Description of the cost function via the communication example

Roughly speaking, the cost of each such tree consists of the cost of all the connections and stations of
lower levels linked to its root. In our communication example:

e cach point of II has a cost associated with the installation and maintenance of the corresponding
station of level k, which we denote CY.

e each arc from a node z; of Il to a node y; of II;; has two components in its cost:

1. The capacity cost, namely the cost of the communication medium allowing the interconnection
between the subtree rooted in z; and y;; this communication medium should allow the network
to cope with the set of all subscribers being leaves of this subtree. The capacity cost of this
medium is assumed to be given by a function of the form

Hi 1 (n) Ak g1 (1),

when the number A, of subscribers of the subtree rooted in z; is n, and when the arch
connecting z; to y; is of length . Here H and A are non-decreasing real-valued mapping.
A typical example is that with Hy ,41(n) = n, in which case this capacity cost is purely
additive in J\/x].. However, the capacity of a connection is often designed to take advantage
of the so-called statistical multiplexing between subscribers, and the function H is often sub-
additive. The function A(r) will be referred to as the unit capacity cost (the capacity cost of
the additive case when the variable NV, is equal to 1). The particular case A(r) = Const - r
and its polynomial generalizations were already commented in §1.

2. The infrastructure cost, which is given by a function By p41(r) which does not depend on A,
by assumption, although it may of course depend on k.

INRIA
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3.3 Definition of the cost function

The cost function is defined recursively through the costs of the subtrees rooted in the points of II; for
all k.

Let again PY denote the Palm probability of the point process Iz, and Eg expectation w.r.t. P?. On
the Palm probability space of IIj, there is a station of level k at the origin, and we define the following
random variables (where II denotes a realization of the family of all point processes Iy, ... ,IL,,, and
{6} the group of translations of all these point processes — see the Appendix):

C(II) is the cost of the station in the origin (i.e. Cj);

G(IT) is the cost of the subtree rooted in the origin;

e N(II) (= Np) is the number of subscribers in this subtree;

e A(II) the unit capacity cost of the arc from 0 to the nearest point of level k + 1;
e B(II) the infrastructure cost of this arc.

e H(IL, ) is the mapping giving the dependence of the capacity cost in N'(II) (i.e. Hi p+1(+)).

For k = 0, we obviously have G(II) = Cy = C(II) and NV (II) = 1. For k = 1,
G = Ci+ > Co+Hoa(1)Aos(|z;]) + Boa(|zs])
x,-EHOOVg(Hl)
= )+ / [G(O.TT) + H(0,TT, A (6,11)) A(6,TT) + B(8,1T)] Tlo (d) .
V()(Hl)

In general, on the Palm space of Iy,

G(II) = C(IT) + / [G(0.TT) + H(6,TT, N (6,TT)) A(6,TT) + B(6,1)] TTy,_1 (dx) .

Vo (IIy)

Since under the Palm distribution P9 (k > 1) there is a.s. a station of level & in the origin, we can
apply the exchange formula (see (28)) with Ny = II;_; and No = Il to the Palm expectation of the
last expression to obtain

E) G(TT) = Cy + A;—: E)_, [G(I) + H(IL N (1)) A(T) + B(IL)] . (5)

To compute Ej)_, B(II), we use Campbell’s refined formula as we did it (3) to obtain

E;_; A(ID)

E! / By (J2]) T{TLL(By,(0)) = 0} TL, (d)

= [ Bt e(fel) PYTL(B (o) = 0] o

= 27r)\k/TB;C_L;C(T)exp{—Akﬂ'TQ}dr.
0

RR n " 3040



10 F. Baccelli et S. Zuyev

Next observe that the random variable A'(IT) in (5) depends only on Il ... ,II;_;, whereas A(II), like
B(II), depends only on II;. Therefore

B [Hion s WID)AID] = By [Hi—1,x(V (1)) B A(I).

Finally, in the particular case when Hy_1 = Id, it follows from (28) that

BN = B} [ V(6D ()
Vo(TTy)
_ Ak_l 0 _
= Mol ) =
k
Ak=1 Ae=2 Ao o Ao
= Ej N (1T
MNe A1 A I = A
and therefore
E? G(I) = C), + Ak—1 E)_, G(II)

Ak

-1-271'/ /\(]A}C 1k +/\k,1Bk,1’k(T)]TeXp{—)\kWTQ}dT.
0

Thus we have proved the following

Theorem 1. In the case Hy 41 = Id for all k, for any k > 1, we have
k
MEQG =N B GHW =Y W, (6)

where WO = )\()Co,
Wn = >\ncn + AOR)\T, (An—Ln(')) + An—len (Bn—Ln(')) (7)

for n > 1 and the integral operator

[ee]

RA(f(+)) def 271')\/1“]”(1°)6_A’”2 dr. (8)

0

Remark 1. Operator Ry (f(-)) can be viewed as the expectation of random variable f(py) where py
follows Rayleigh distribution with the parameter 1/(27\).

Equation (6) above receives the following natural interpretation: the increment of the cost density
between subtrees of level £ — 1 and k is equal to the sum of the cost density of the inter-connections
between these two levels and the cost density of the k-level stations.

3.4 Example of optimization

Consider a four level system with the unit capacity cost and infrastructure cost depending linearly from
the distance: A; ;(r) = a; ;v and B; ;(r) = b, ;r, respectively. It is readily seen that the cost function

INRIA
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Eg G is smooth in ]Ri, tends to infinity if A\; or Ay tends to 0 or to infinity and the stationary point is
given by the following system of equations:

OEG b1 .2 Xobo,1
A3—— = C1 + —=—= — =5 = 0;
S Ton Y Y
OE G ba3 Ao@i,2 + Arbi 2
)\ 3 :C -|- 2 — 2 : :0
50N, T2V 4N3

Expressing Ay from the second equation and substituting it in the first one we obtain

3\
A\ = ‘I))‘E _ o2 ,
bi,2
bi,2 Aobo,1
Cy + — — : 3 — 0,
2 )\2 3 Xoa12 \ 2
VR a(eng - e
where
4 b2 .3
o= (C + 2 ) .
bia\ 2 2y
Denoting v = /Ay after some algebra, we get
3 )\2b2 2
(q)ys _ )\061,2) _ 0001V . (9)
bl,g 4(011/ + b1,2)2

We see that in the LHS of (9) stands a continuous function which increases from a negative value to
infinity, whereas the function in the RHS is positive and decreasing for v > 0. Therefore there exists a
unique positive solution to this equation. Noting that the value in the LHS is exactly A\? we conclude
that there is a unique positive pair (A1, A2) providing the minimal value of the cost function. A typical
form of the cost function is shown in Figure 3.

4 Case of direct connections

4.1 Model

In the hierarchical model considered in the previous sections, a k& — 1-level station is always attached to a
k-level station, even if there are higher level stations closer to it. In this section we let such a station be
linked to the station of levels k... ,m (see Fig. 4) which is the closest. We consider here only a 3-level
system and the case with H(n) = n; higher level models can in principal be treated by the same method.

4.2 Cost function

We introduce marks associated with the points of IIy, namely functionals of configurations having a
0-level station located at the origin:

RR n " 3040
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Figure 3: Cost function in a four level hierarchical model.

Figure 4: 3-level model with direct connections

A'(IT) is the unit capacity cost of the link from the origin to the nearest 1-st level station if there
is no closer 2-nd level station, and 0 otherwise;

INRIA
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A"(II) is the unit capacity cost of the link from the origin to the nearest 2-nd level station if there
is no closer 1-st level, and 0 otherwise;

Infrastructure cost variables B’ and B” are defined similarly. Let A(II) = A’(TI) + A" (II) and B(II) =
B'(I1) + B"(11).
Now under P?,

GI) = G+ > Co + Ao,1(|z;]) + Bo,1(|a;])
ijHoﬂVQ(HlLJHQ)

- o+ / (G(6,TT) + A'(6,T1) + B'(6, )] Ty (dx) . (10)

Vo(H1 UHQ)

First of all note that due to the well known property of Poisson processes, IT; UII; is also a homogeneous
Poisson process with intensity A\; + A2. Therefore by Campbell’s theorem

2o

DYDY

E(l) Z Co = )\000|V0(H1 U H2)|
iL'jGHoﬂVg(HlUHQ)

In addition, we have V,(II; UIIy) C V4 (II1). But for x € Vo(II;) \ Vo(II; UIIy), there exists z; € Il such
that |z — z;| < |z|, so that A'(8,1I) = B'(8,II) = 0. Therefore we can replace the integration domain in
(10) by Vo(II;) and then apply (28) to write

ACo Ao or ,
—E II B(II)] .
)\1+>\2+>\1 O[A( )+ ( )]

By the same arguments as in the proof of (6), we obtain

E'G=0C +

Eq B'(I) = E/Bm(lxl) {1 (S (0)) = 0} M{TI2(S)4(0)) = 0} 1T (dx)

A
=27\ /1“3071(1“) exp{—mr?(\1 + Xo)} dr = 717%1“\2 (Bo,l(' )) (11)
A1+ Ao
0

and a similar formula for EJ A’(IT). Combining all the above results, we obtain

XoCo Ao
E'G =0 + + Rytxs (Ao1(*) 4+ Boa(+)) . 12
1 1 )\1 + )\2 Al + )\2 A1+ ( 071( ) 071( )) ( )

Consider now the Palm space of IT,. On this space,

G(IT) = Cy + / [G(0,TT) + B(6,T1) + (6, 1) A(6,T1)] TI, (d) (13)
Vo (II2)
+ [ 6O + 56, + A6, Mo(da) (14)
Vg(H1UH2)

and as in (10), the last integration over Vp(II; U II3) can be replaced by an integration over Vp(Ilz).
Therefore using (28), we get

A
E)G =C, + Al

2

E?[G+B+/\/A]+%E3[G+B”+A”]. (15)
2

RR n " 3040



14 F. Baccelli et S. Zuyev

We have
Eg G = C() y
Eg A"(IT) = E/Aoa(lzl) I{I1; (S}, (0)) = 0} T{TI>(S),)(0)) = 0} M2(dz)

=21y [ rApa(r)exp{—mri(A; + X))} dr;

Ej B"(IT) = 21)y | 7Boa(r) exp{—mr*(\1 + A\2)} dr.

[
/

The expression for E} B is given by (6) with k = 2, but some difficulties arise when computing EY A" A
since these variables are no longer independent. However, we can write

BINVA = B[ Ho(dn) [ Ara(el) 1{TIa(S]. (0) = 0} Tia(dz)

V()(Hl UHQ)

B [ [ Avael) 1411 (S.02) = 0)
I[{HQ (Sm(x) U S‘z‘(O)) = 0} Iy (dx)s(dz)

/\OE/ Ara(|2))e e T, (S)4(2) U S)2(0)) = 0} daTI(dz)

/\0/\2/ Az s(|2))e 1P P9 TTy (S, () U S.)(0)) = 0] dad> .
Notice that the probability
Pg[G,zH2 (5|z|($) U 5|Z|(0)) = 0]

above is 0 unless z ¢ S|;|(7). Switching to polar coordinates, the last expression reads
2T Ao A2 // 1“141,2(1°)6_A1’T‘“”‘2 PY[00)2 S}z (z) U S-(0)) = 0] dadr

— 2mAohe // rALa(r) exp{—Airlel — AalSiu (2) U S, (0)]} dudr,
A

where the integration is over
A ={(z,r) € R xRy such that (r,0) & Sj, ()}

This integral can be simplified if we represent z in polar coordinates of the form (rp, ¢) and adopt p as
new integration variable. Then

0

EY N A = 27X )2 / r3 Ay o (r)dr // pexp{ —r*(Mmp® + MU(p)) } dpds
5

where U(p) is the area of the union of the discs S,(pcos ¢, psing) and S;(0), and where the double
integral is over the set 6 of couples (p, ¢) such that S,(pcos @, psin ¢) does not contain point (1,0), i. e.
over

1 1
¢ € []I{p > 1/2}arccos2—,27r— I{p > 1/2}arccos2—] .
p p
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Thus we finally get

o) o) 1
EY N A = 47X )o / r3A172(r)dr/ p(ﬂ' — I{p > 1/2} arccos 2_p)
0

0
x exp{—r*(Mmp® + \oU(p)) } dp, (16)
where
U(p) = 7T if p €[0,1/2] (17)
T+ 1/4p2 — 1+ (207 —1)arccos% if p>1/2

as elementary geometrical considerations show.

We combine all the above results in the following theorem.

Theorem 2. For 3-level hierarchical model with direct connections we have

Ao Ao

E(I)G =G+ AL+ Ao Co+ A+ AQRA“”‘Z (A0’1(°) + B071(°)) ) (18)
A A
Eg G=0Cr+ /\—2 [Co + mRA1+A2 (A072(') + 3072('))]
A
L EG R (Bia(+) + BINA] (19)

where E] V' A is given by (16) and R (f(+)) is defined by (8).

In the case when Aq »(r) = a1,2r*"> the integration over r in (16) can be explicitly made leading to

3
ECNC = 47rA0A2a1,2F(%)
) 1 _«1,243
/ p(7r — I{p > 1/2} arccos 2_/)) ()\17rp2 + AgA(p)) T odp
0
2)\0/\2a1,2r(al++1) _apa+l aq o+l
e T g
)\17‘1’ 2
a1.043 ai + 3
+ 2 7T>\0>\2a1721_‘(72 )
w/2 ( )
T — ) siny cos™':2 v dry
1243 (20)

0 [7r(/\1 + 2X2) + A9 sin 2 42X (7w — ) cos 27] 2
where 7 = arccos %. Using
Ralar®) = a(xX)~**T(a/2 + 1),

an explicit expression for the cost is obtained after substitution of (20) into (19).
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In particular, if all a; ; = 3;; = 1 we get
)\1 )\0(2)\1 + )\2) bl 2)\1 2)\0)\1&1 2
ESG =0+ —C1 + 7 :
2 T ) T 3 T (00 + 4
/2

+ 87‘1’)\0)\1&172 /
0

(m — 7y)sin 2y dy
[m(A1 + 2X2) + A2 sin 29 + 2)o(7m — ) cos 27]?

Ao(@o,2 +bo2)  AoAi(ao +bo1)
20n 4 )2 T Dl + A)P2

(21)

4.3 Numerical examples and comparison

Unfortunately, there are no closed form expressions of the optimal value of parameters for this model.
Figure 5 shows a numerical example for the costs of the strictly hierarchical model and the model with
direct connections, for the following choice of the parameters.

e intensities: Ao = 10.91, Ay = 0.018;
e station costs: Cp =4, C; = 18;

e capacity and infrastructure cost functions: A, ;(r) =4r, B; ;(r) = 9r for all 7,5 € {0,1,2}.

(the second level station cost Cy is not pertinent for the optimal A\; and can be taken equal to 0). As we
see, for these values, allowing direct connections always improves the cost of the system. The optimal
value of the intensity of IT; in the strictly hierarchical model is A\; ~ 0.779, with cost E3 G' ~ 18154. For
the model with direct connections, the optimal value is A\; ~ 0.721, and the cost is Eg G ~ 16168.

Note the difference in behavior of the cost functions for small A\;. For A\; small, there are mostly direct
connections between 0 and 2-nd level stations, if they are allowed. The topology of the system becomes
star-shaped as in two level systems. The cost of the model with direct connections is E3 G' ~ 31789 for
A1 = 0. In contrast, in the strictly hierarchical model, the 0-level stations are connected to 1-st level
stations even if they are far away, which makes the cost of the system explode as A; vanishes.

In another example we take the same values of the parameters except for By 1(r) = Bo2(r) = 0.1r. As
in the previous example, direct connections improve the cost. But although for this model there is a
local minimum of the cost function in point A; &~ 0.233, the global minimum of the cost EY G ~ 11686
is attained in A; = 0, i.e when there are no distribution points at all (see Figure 6).

In the last example A; ;(r) = 0.4r, for all 4,5 € {0,1,2}, By,1(r) = 0.1r, By2 = 0.4r and By o = 9r. We
see that the optimal architecture here is strictly hierarchical, except for very small values of A\;. The
optimal intensity is A\; ~ 0.089 and the minimal cost gives the hierarchical model: Eg G =~ 4091 (see
Fig. 7). The corresponding optimal topology is visualized on Figure 1 and was drawn with the help of
the program ARC (see [13]).

5 Related spanning problems

The methods considered in the previous sections can easily be adapted to other applications. Two
examples of such applications are considered below.
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32000+

30000

28000

24000

22000

20000

18000

160001

Figure 5: Cost function in the hierarchical model (the upper curve) and the model with direct connections
(ai; =4, bij =9).

5.1 Tracking in mobile communication systems

Consider two independent Poisson point processes IIy and II; representing respectively the positions of
mobile subscribers at time 0 and the positions of the base stations of the network. The base station
located in point x of II; is an antenna allowing for hertzian communication with any mobile located
inside the II;-Voronoi cell with nucleus z. In case attenuation increases with distance in a translation-
invariant and isotropic way, and if all stations have the same emission power, this cell is also the part of
the plane where the reception level of the antenna located in z is best.

However the mobility of the points of IIy (which we will discuss below) creates a new problem which is
that of mobile tracking. The system has to know where each mobile is located at any given time. This is
particularly true for mobiles which are not in communication. Should any of those be called, the system
has to be able to find the cell where the mobile is located at the time of the call.

This is done by updating the position of each mobile in some database, which is organized as follows:
there is a third level of stations which we will refer to as location stations. This level will be represented
as an independent Poisson process II,. The database is updated each time a mobile crosses a II,—cell
boundary. So, one always knows the ITs—cell in which the called mobile is located. In case of a call for
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18000

17000+

160001

150001

14000+

13000+

12000+

1100079 0.2 0.4 0.6 0.8 1 1.2 1.4

Figure 6: Cost function in the hierarchical model (the upper curve) and the model with direct connections
with a small infrastructure cost on the lowest level (a; ; =4, bp1 =bp2 =0.1, b1 2 =9).

a mobile, it is then enough to broadcast a search message to all base stations in this I cell to find the
mobile and to establish the communication.

There are two tracking costs associated with this scheme:
1. an wupdate cost which comes from the update messages sent by all mobiles to the database; we will

represent this as a linear function of the number of mobiles crossing IIo—cell boundaries per unit
of time; let X denote the cost of one update message.

2. a search cost which comes from the search messages sent to all called mobiles; let Y'(n) denote the
cost to broadcast the search messages for a mobile located in a II—cell with n base stations.
Here, the problem consists in finding the intensity of the location stations, which minimizes the tracking

cost.

We now give a precise definition of the cost function.

Assume that the reference probability space carries three independent point processes IIy, IIy and Ils,
together with some marks associating a random motion in R?, with each point of IIy. Below, II denotes
a realization of these point processes together with their marks.
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Figure 7: Example when the strictly hierarchical model provides the optimal cost (a;; = 0.4, b1 =
0.1, bo2 =04, b12=09).

We assume that these marks are such that the temporal point process which gives the epochs when the
mobile initially located in O crosses II;-cell boundaries, is stationary.

A simple example is that when the mark is chosen independently for each mobile and represents the
trajectory of the mobile together with its velocity v, which it keeps constant. It is naturally to assume
that the trajectory of a mobile is continuous and piecewise 1-differentiable. >From [7, Formula (7.22)],
the intensity of intersections of IIy-cell boundaries with a straight line is equal to 4)\5/ ? /7. Therefore
approximating each differentiable part of the trajectory by a segment, we see that the mean number of
crossings during time at equals 4vaty/Ay /7 + o(at). Thus the temporal intensity of the cell boundary
crossings by a mobile is given by

_ 4’1))\2%

™

X

(see also [6] on intersections of a stationary fiber process with curves).

On the Palm space of I, let

e X (II) be the temporal intensity of the crossings of IIs—cell boundaries by the mobile located in 0.
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e Y(II) be the search cost of the mobile located in 0.

If we denote u the intensity of calls directed to mobile 0 (we assume that this is a constant), then the
tracking cost per unit of time and space is naturally defined as

EG=E / (X(0.11) + 1(6,11)) To(de), (22)
[0,1]2

that is, using Campbell’s refined formula and the independence assumptions

EG Xo EQ[X(TD)] + Aop ES[V(ID)]

1
4o 2

= XX + Aop E[Y (I (Vo (T2))] (23)

where 7 is the mean velocity of the mobiles and Vo (II3) is the Voronoi cell constructed with respect to
Iy containing the origin in its interior. In case Y (n) =Y - n we have

EIL(Vo(IL) =B Y > Iy € V., ()} T{0 € V. ()}

yi €My z; €Tl

=ME ) /I[{y € Vo(6:,112)} T{—2; € Vp(6:,1I2)} dy
zj€ll2

=M\ E) // I{y € Vo(ITy)} T{z € Vu(Ily)} dyd=
= Ao EJ [Vo(TIo)

since Vp(TIy) and —V,(IIy) have the same distribution. Using the fact that E |V5(IT2)|? = 35/(872\3)
(see e.g. [9, p. 324]), we obtain the following explicit expression for the cost function:

EG:Hl/\ﬁ-i-Hz% (24)
2

with

_ 4TAX
a ™

35
H,y , Hy = —=XoMpY
872

and the minimum is reached for

v (2H2\P_ (35apy

2T <H1> B <32ﬁX> '

Remark 2. Since the location stations are used to broadcast search messages to the antennas and even-
tually to concentrate communications from or to mobiles connected to these antennas, they can also
be seen as a higher level of stations allowing to reach the base stations according to the least distance
connection principle. So, one can also naturally consider a cost associated with these connections which

is similar to what was considered in the previous sections, namely a capacity cost and an infrastructure
cost.
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5.2 Infinite spanning graphs

In all preceding cases, we assumed that the points of highest level (e.g. the roots of the trees) were
linked via some connected network, which was then ignored. The aim of this subsection is to take this
additional structure into account within our parametric setting, and to show that optimization problems
similar to those considered above can be also addressed.

Consider the following problem which is an infinite volume analog of the classical minimal spanning
graph problem in a bounded region [11]. Let IT) be a homogeneous Poisson process with intensity A in
R?. Can we find a connected planar graph with vertices in all the points of the Poisson process with
minimal “connection cost density” that is such that the cost of the edges of the graph per unit area is
minimal. We have put quotes because such a quantity is only well defined for finite graphs, and it may
not exist for the infinite volume case.

Suppose that for all realizations of a homogeneous Poisson process II,, with intensity v, we are given a
rule to construct a connected graph G(IT,) with vertex set IT,. Let Sy, N € N be a family of compact
sets, where S; is a 1-connected figure with unit area containing the origin in its interior, and Sy is
homothetic to S; with coefficient N'/2. Let Ly(II,) be the total length of (the parts of) the graph’s
edges lying in Sy and assume that the following almost sure limit

Cg = lim Ly(IL)/(Nv)'/?

exists and does not depend on S;. Examples of such graphs include the Delaunay triangulation, for
which Cg = 32/(37) = 3.395 (cf. [9, p.324]). The Delaunay triangulation seems to be a good first
approximation of what is observed in existing communications networks. Another example is the optimal
spanning tree, for which Cg =~ 0.656 (see [10]; the existence of the limit was proved in [11]). As already
mentioned above, there is a basic difference between this and the preceding case as minimal spanning
trees are only well defined in the finite volume case.

Consider now the following variant of the basic problem of §2-3: we split of the initial process I,
into independent subprocesses IIy,...,II,, with intensities Ay,...,A,, > ,_; n = A, say by a Bernoulli
thinning. Then the spanning graph consists of the set of Poisson-Voronoi hierarchical spanning trees
rooted in the points of the process II,, (see Section 3) and the graph G(II,,) at the highest level. We
assume that the cost of a tree edge is its length and the cost of an edge of G is its length times a weight
.

By Theorem 1 the edge-cost density of this spanning graph is

SN YRt
F = +0Cc\/ A\,
Lo x e

and the problem now consists in finding the parameters n, A1, ..., A, which minimize the value of F.

Numerical evidence shows that the optimal value n of the number of levels is closely related to the value
of 0Cg. The larger 0Cg, the larger the optimal value of n and the larger the optimal proportion of
points connected through the trees. On the opposite, if ¢Cg < 1 then n =1 is optimal and the graph
G(II,) itself is the optimal topology in the described class.

If G(II) is the Delaunay triangulation on the point set suppII, and if o = 1, then the optimal values of
the parameters are the following: n = 3, Ay = 0.7121A, Ay =~ 0.2466A and A3 ~ 0.0413\. In this case
the minimal value of the cost is approximately 2.014v/), a typical configuration of this optimal spanning
graph is shown in Figure 8.
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. ——y

Figure 8: The optimal spanning graph with Delaunay triangulation in the highest level.

5.3 Simulation approach

Quite often analytical expressions for the average cost functions of stochastic models of the considered
type are difficult to compute, even in the case considered here where all point processes are Poisson
processes. In many such cases, the stochastic gradient method introduced in [3] can then be applied for
estimating the optimum. It consists in finding efficient ways of calculating or of estimating the gradients
81)\5 E G and then using steepest descent type algorithms to find the optimum. For details and examples
of applications of this technique in telecommunication studies see [13] and the references therein.
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Appendix

A Point processes refresher

In this Appendix we remind some basic notions of Palm theory of point processes and derive formulas
which have been used in the paper.

Throughout this section, X denotes the phase space of the point processes which is always here the
d-dimensional Euclidean space R? (generalizations to the case of locally compact topological groups are
not difficult). B denotes the Borel o-algebra of R?, N the set of o-finite counting measures on B, B the
o-algebra of subsets of A" generated by the events {n € N': n(B) =k}, where B € Band k=0,1,2,....
Each n € A can be represented as a countable sum Zi"iéz; of Dirac measures with masses n; € N,
where x; are all distinct (by definition é,(B) = Ip(z)). The set U;{z;} = suppn is the support of the
measure 7 and it has no accumulation point if 5 is o-finite. A countable measure 7 is called simple if all
n; = 1.

By point process, we mean a measurable mapping N from some abstract probability space (2, F, P) into
[V,8B]. We can for instance take [Q, F] equal to [V, B], and N is then the identity mapping. Enriching
if necessary the phase space, one can always assume that all realizations of the point process are simple.

The addition in X gives rise to measurable flows in [X, B] and [V, 8], defined as §,B=B+z = {y+x:

y € B} for B € B and (0,n)(B) et n(0,B) for n € N and all B € B. In particular, if N = ), 6., then

0N =", 6s,—2. The point process N is stationary with respect to the flow 6. if the distributions of N
and @, N coincide for all x € X. When dealing with several point processes, it is sometime convenient
to introduce a shift ¢., x € X on the probability space (2, F, P), which is assumed to preserve P, and
to assume that this shift is compatible with the translations #. in R?, namely that

N(¢zw) = ezN(w)

for all z and w. The intensity measure of N is the measure on R? defined by A(B) = EN(B), B € B. If
N is stationary then A(B) = \|B|, where |B| is the Lebesgue measure of B and A is the intensity of N.

In this paper we often operate with several point processes Ny, in R?. The Palm probability of an event
of the form {A € Z}, where = belongs to B with respect to Ny, is defined by

_ 1
P)(Ne=) = Bl E/]IE(GmN) Ni(dz), (25)

where ). is the intensity of the process Ny; it can be shown independent on the choice of B € B. The
intuitive meaning is that of the conditional distribution "given there is a point of the process N in
the origin 0". The expectation with respect to P9 is denoted by Eg. The refined Campbell formula for
stationary marked processes follows by the standard monotone class argument from this definition:

E / F(z,N) Np(dz) = M\ / E) F(z,0_.N)dx (26)

for any measurable function F': QxR? — Ry (cf. [12, Formula (4.4.11)]).

Let now g : 2 — R} be a measurable function. The following identity which is a variant of well-known
Ryll-Nardzewski formula (cf. [1, formula (4.1.2a)]) expresses the relationship between the Palm and the
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original distribution of a marked stationary point process:

Eg(N)=\. EY g(0:N)dx . 27
k
Vo(Ny)

The set Vo (Ng) above is the Voronoi cell with nucleus 0 constructed with respect to the point set supp Ny
(note that under Palm distribution P? there is a.s. a point of Ny at the origin 0). By definition Vj(Ny)
consists of those points of R? which are closer to 0 than to any other point of supp Nj. Vo(Ni), which
coincides with the intersection of the half-spaces {z : |z| < |z — x4|}, z; € supp Ni, Vo(Ny), is a convex
polygon.

Identity (27) is readily obtained by modification of the proof of Theorem 12.3.IT of [4]. Take in (26)
the function F(z,N) equal to g(N) if x is the closest to the origin point of the process Ny and to 0
otherwise. In the left-hand side of (26) we get the expectation E g(N). Then it can be verified that
F(z,0 oN) = g(0_oN)T_y,(n,)(7), where =Vo(Ng) = {z : —z € Vp(Ng)} and (27) follows from the
change of coordinates * — — — — — x in the right-hand side of (26).

The next formula plays the central role in our observations. It relates the Palm distributions with respect
to different marks and can be considered as a higher-dimensional analog of Neveu’s exchange formula
[8] (see also [1, formula (3.4.1)]). Although it can be obtained by taking a(w,t) equal the indicator of
the event “¢ is the closest to the origin point of the process N;(w)” in the remark following the proof of
Proposition 1 in [8, p.201], we, however, prefer to give a direct self-contained proof of this fact.

Assertion 3. Let Ny and N» be stationary with respect to the same flow 6. processes. Then for any
measurable f : Q — R, one has

ME! f(N) =\ ES / f(6.N) Ny (dz). (28)

VQ(HQ

Proof. First we prove this formula for a bounded function f. Take a ball S. of the volume ¢ centered in
the origin and put

- / 7(6,N) N (dy)
n (27). We then can write

Bg(N) = MELF(N) = hB) [ [ / F(OeesN) (0N ()] da

Vo(T12)

= A2 Eg / -1 / f Nl dZ)d
Vo (II2) Sc+x

— A, E! / e 1|(=S. + 2) N Vo(IIy)| F(8.N) Ny (dz) .

Note that the function e~1|(—=S. + 2) N Vo(I2)| = e7|(S: + 2) N Vo(II2)| under the integral above tends
to 1 as ¢ — 0 for all z in the interior of V(Ily) and to O for all z in the interior of the complement of
Vo(Ilz). Since Vi(Il) is convex then its boundary has the Lebesgue measure 0 and thus (28) follows
by the bounded convergence theorem. The case of unbounded integrable f follows by the standard
monotone argument. O
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