Pratique de TinyOS'

T.Hérault <herau1t@1ri.fr>

Master 2 Recherche '‘Réseaux et
Télécommunications

1

Introduction

- Caractéristiques des
Réseaux de Senseurs

® Petite taille et faible consommation
electrique '

® Fonctionnement a fort parallélisme

% Parallélisme matériel et hiérarchie de
contréle limités

® Diversité de 1’utilisation et de la
conception

® Robustesse des opérations et de la
conception d’applications

Petite taille et

faible consommation

MCU Berkeley
(version XP.) g Piéce de 1 cents

Bl 10

taille contraint (ou finira par contraindre)
la capacité de calcul

la quantité de mémoire

les fonctionnalités de réseaux

systeme d’exploitation se doit
d’économiser la consommation énergétique
de tenir dans le minimum d’espace

de tirer le meilleur parti possible du matériel

La 1o1 de Moore n’est pas une porte de sortie a ces
contraintes.

Fonctionnement a fort
parallélisme

® | Parallélisme des capteurs, certes, mais ce n’est pas celui
qul nous 1intéresse ici ! '

% Parallélisme des opérations menées par chaque capteur

Pas (ou peu) de
buffers

Un unique CPU
généraliste

Un réseaux tres
actif

Capteur
Temp®

&

Capteur

IF
&3

Capteur
Lum.

/
CPU -’<@> Mémoire

£

xL ~
— > d—
Ed

Emetteur/Recepteur
RF

‘Taches complexes

(p.e. calcul de
résultat
synthétique)

Tdaches temps-
réel

Interruptions
fréquentes

Parallélisme matériel et
hiérarchie de controle limités
AT90S1200 (AVR) CPU

Typical Pentium-Based
Architecture

TN

-

B

=l A EEEEEEEEDR BEEEN

Devices

Diversité de 1’utilisation et
de la conception

Applications

Logiciels Systémes
(bibliotheques
standard)

Systéme
d'exploitation

Matériel

-

| Application 1

TinyOS

Matériel

Application 2

TinyOS

Matériel

Robustesse des opérations et

de la conceptlon

- Augmenter la
& fiabilité du systéme

140 via des protocoles
100 |1 hour reliability 4\ tolérants
: ——0.9999 o

® e B T \ \ - Développer de
é o § B0 000 \ nouvelles techniques
[I,_'_’ o = N plluiadaptées que la
= 20 ‘réplication
= 2 \\:\—‘_‘ \\

e e, B T‘T‘Tt$:;l_ - Augmenter la

Q O O O O O Q O O O 1 113116
LS LSS fiabilite des
Capteurs ET des
- logiciels qui
s’exécutent dessus.

System Size

Hardware

Telos B : matériel

Embedded Antenna

802.15.4
Radio

Logger || Serial
Flash ID

! !

MSP430
p controller
Analog I/O

Digital I/O

10}08UU0D Ul4-QL pue 9

b

USB
Connector

TPR2400CA Block Diagram

512 Octets
SRAM
(données)

3V

8KB flash (code)
non modifiable
(co-processeur
pour effectuer
cela)

32 registres
généraux

Y
INSTRUCTION
REGISTER

INSTRUCTION
DECODER

CONTROL
LINES

STACK
POINTER

SRAM

PROGRAM
COUNTER

PROGRAM
FLASH

GENERAL
PURPOSE
REGISTERS

8-BIT DATABUS

AN

STATUS
REGISTER

CALIBRATED
INTERNAL
WATCHDOG
OSCILLATOR OSClLi.ATOR

TIMING AND
CONTROL

MCU CONTROL
REGISTER
MCU STATUS
REGISTER
TIMER/

COUNTERO

INTERRUPT ™~
UNIT <\

PROGRAMMING

LOGIC

DATA
EEPROM

A A A

/4

{

!

!

ADC/
ANALOG COMPARATOR

DATA REGISTER
PORT B

DATA DIR.
REG.PORT B

Wi

liiiiii

PORT B DRIVERS

KL A A A A A

)

YVY vy Yy
PBO-PBS5

Architecture
8 bits
(@ sur 16 bits)

4MHz

compteurs et
chronometres

pour créer des
interruptions

3 modes de sommeil:
- Idle (processeur off)
- power down (tout off
sauf watchdog)

- power save (= power
down + chronométre
asynchrone)

Processeur : MSP 430

MSP430x20x1 BLOCK DIAGRAM P2 &
VCE VS Plag JTAG XINKOUT

AN fxouT
' e ACLK

Basic clock

Stemd | eELK

MCLK

: ob capability,
'

Emulation (2BP)

| | Watchdog WOT+ | Timer_ %2

© L JTAG interface 15 1E-hit 2 CC reglsters

e U

CC420 RF Radio

® matériel Entrées/Sorties Asynchrone avec contraintes de
temps réel.

® ON-OFF key jusqu’a 19.2Kbps
® Transmition XOR Réception XOR'power-off.
® Pas de buffer: disponible!

° Les valeurs transmises ne sont pas normalisées, et les
effets de perturbation eléctromagnétiques sont transmis
dans le signal.

Capteurs
et port série

® Capteurs analogiques reliés da un
nhumériseur

® Capteurs I2C

® UART série avec mode de transmission par:

octet

® Coprocesseur pour programmer le code du
processeur, et pour stocker de la donnée
supplémentaire.

Caractéristiques de
consommation €énergetique

Component

Active

(mA)

Idle
(mA)

Inactive

LY

MCU core

5

MCU pins

1.5

LED

1 4.0 each

Photocell|

0.3

Radio TX

12

Radio RX

4.5

Temp®

1

Co-proc

il

EEPROM

3

575mAh ->

Peak load =
30h

Idle = 200h

Inactive = >
1 year

Exemple de consommation
énergétique

® La radio doit émettre toutes les 52us
S -> ~ 1pJ pour émettre 1 bif
S > ~ 0.5u] pour.recevoir 1 bit.
® Pendant ce temps, le CPU peut -exécuter 208 éycles (~100 inst.)
S -> Conéommer_jusqu’d 0.8ul
® -> dont une partie est dévolue au traitement de la comm.
® Le temps inutilisé est passé en Idle ou power-off
2 —> entre 8.8ul] et 14.4pJ pour émettre un octet

% —> entre 4.8uJ et 10.4pJ] pour recevoir un octet

Software:'TinyOS

Microthreading
Operating System

$ Environment Requirements S Material

% Concurrency-intensive <8

Small physical size
operation .

% modest dctivepower'load
& efficient modularity and

robustness - ® tiny inactive load

Similar to building efficient network interfaces
- large number of concurrent flows
- juggle numerous outstanding events

-> Extremely efficient multithreading engine

The problem of scheduling
multiple threads seen from the
- memory point of view

What needs to be saved when scheduling
(classical) multiple threads?

- The program counter :

- The value of the CPU registers

- The memory map in case of VM

- The Stack!

Each Thread Needs its own STACK

Stack usage for
function calls

int f(int a) Ha.“;i‘lj: la, oo
e .

ko i (et

LG =—"1)
return 1;

if(a == 2) Adresse de
return 1; retour e

1 = f(a-1); e

r = f(a-2); Varlables<<::i

return l+r; Locales
Parametres ——

Base de la
pile

PC séheduling:
preemptive

Sleeping

SIGCONT SIGKILL

/ SIGSTOP

Scheduler

Exit

Creation
or SIGKILL

Scheduler

Blocking System Call
(I/O typical)
SIGKILL Parent process
wait()

Blocked

SIGKILL

. PC schedullng |
- preemptlve quantum- based
| schedullng of threads

! Thread 2

Thread 1 i

OS

Limitations of preemptive
quantum based schedullng for
tlnyOS

®* No or few control parallelism => core CPU must be
scheduled at the frequency of the devices (RF: 1/50us)

S Not-enough memory to assign a variable stack per “thread”
& -> Event-Based Scheduling. Helps to save power.

® Hardware events activate CPU preemptively

® When CPU is not activated by a hardware event 1t may do
computation for TASKS.

COMPONENT

Command Handlers

Event Handlers

Fixed Frame

Bundle of Tasks

OO

\ J

COMPONENT

Command Handlers
Event Handlers

COMPONENT 9

d COMPONENT
f

Command Handlers
Event Handlers

COMPONENT

COMPONENT

(o) |
e) |
(ooeorwe) |

i COMPONENT L
Command Handlers 1
Event Handlers

Bundle of Tasks

o~
(O

Tiny
Scheduler

Components

® Command Handlers: provides the functionalities of the Component
® Event Handlers: defines to which events the Component can react

® Fixed Frame: defines the memory environment of the Component; is
of fixed size (permits statical memory allocation)

® Bundle of tasks: Command and Event handlers should only do low-
latency operations (see later). Complex computation must be
delayed to tasks.

LAYER n+1

R Ly EEEER TR

COMPONENT

Issue Commands

COMPONENT

Bundle of Tasks

_Event Handlers

LAYER n == | ===
A (S5S) (.

' Signal Events :r(1
|

COMPONENT

I
COMPONENT ¥ q ,‘
| e '
] !
!]
E ! i
|
\

LAYER n-1

Physical Hardware

Commands

® NON Blocking requests made to Lower Level components

2 Typically deposit requests barameters into the frame of the
components and conditionnaly posts a task for LATER
execution

® May invoke LOWER commands
® but must NOT wait for long or indeterminate latency actions

® Must provide feedback to its caller by returning status

Events

¢ Invoked to deal with hardware events
(possibly indirectly)

® Lowest level are the'representafibn of
the hardware events (external 1interrupt,
~timer or counter event)

® Typically deposits information
concerning the event into the frame,
posts tasks, signal higher events or
call LOWER level commands

Events / Commands :
preventing'cycles

Hardware Event
trigger fountain of
Software events

and commands
Commands cannot

Signal events

Events can call
commands of LOWER
layers only

Tasks

® Tasks perform the hrimary work

® Tasks are ATOMIC with respect to other Tasks

® Tasks RUN TO COMPLETION with respect to other Tasks
® Tasks can be preempted by Events Handlers only.

3 Tasks can call LOWER level command or signal HIGHER Level
events and post other Tasks of the same component.

® Tasks must NEVER block ‘or spin-wait

® Events and commands ~ instantaneous state transition

® Tasks provide a way to incorporate arbitrary computation
into the event driven model

u-Scheduler

® The event and command handler has no use of stack since they
work inside the fixed-size frame

® Tasks are run to complefion

® Thus, we need a single stack!

® The scheduler is a simple FIFO scheduler
® Tasks are run one after the other, in the order of posts

® ‘more sophisticated schedulers could be used (priority/
deadline based)

® The scheduler is power-aware: when the task queue is empty,
the CPU 1s put to sleep; only peripherals are left operating

(erep ‘edAy “ppe)
Bswpuss

(epow)iamod

t
C
@
Cc
e}
o
S
[}

| O
o

£
(o)
©
3
0
o}
=

g_thread:
compute the next packet to send

send_ms

Frame: Internal State

CurrentMsgToSend

NbPackets
NbPacletsSent

(sse29ns)

auop 1oxoed XY

(ss@29ns)

m auop 19x)o0ed X1

(spow)iamod

(Ing)iexoed x|

Components Types

® Hardware Abstractions (e.g. RFM radio
component): | e

% Synthetic Hardware Components (e.g. Radio
- Byte Transmitter)

® High-Level Software Components (e.g.
Messaging Module)

Hardware Abstractions

power(mode)

pin_io(pin, onoff)
(bit)
(bit)

RX_Dbit_evt(bi
TX bit_evt

AA L

RFM Radio Component

Frame: Internal State

Sending
Receiving
bitRate

Hardware: RFM

Interrupt: RFM

g

(ng)me g X1

(Na)ne Hg XY

data_decodin

(4ayng19M0ed)19N0ed XY |

g

Hardware

data_encodin

(1oyng1ex0ed)19M0Rd pUSS |

1C

RFM Radio Component

, AmUoEro\soaV

V)
)
C
(D)
C
@)
@
=
@)
O

>

(apow)somod nul

bitNumber
PacketBuffer

Receiving

>
(youo ‘uid)or uid

Frame: Internal State
Sending

Synthét

(erep ‘edAy)nos Bsw

(erep ‘edAy “ppe)
Bswpuss

(epow)iamod

(D)
o
O
=
i
U
o)
V)
I
Q
>
(D)
il
|
e

Hig

Messaging Component

g_thread:
compute the next packet to send

send_ms

Frame: Internal State

CurrentMsgToSend

NbPackets
NbPacletsSent

(sse29ns)

auop 1oxoed XY

(ss@29ns)

m auop 19x)o0ed X1

(spow)iamod

(Ing)iexoed x|

 Whole-System

application Ad Hoc Routing Application

Active Messages

Radio Packet | SerialPacket | | Temperature

Radio Byte

A note on the
Network Layer

. Message Abstraction.is the Active Messages
® Each message holds a 8-bit integer

® This integer defines which function- should
~ handle the message itself at the receiver.

® Messages hold a signal strength field filled-in
by the receiver

® When the sender has sent a message, a sendDone
event 1s signaled, with a “ackowledged” parameter

% a non-acknowledged message is not necessarily
non-received

® an acknowledged message is not necessarily
delivered to the destination

TinyOS Networking

Start Symbol TX
Preamble TX . Timing Bits TX Phase Shift
L

k: "

Strength Pulse TX

Mac Delay Packet Transmission

Packet Reception

il [il
Preamble RX GetTiming Strength Pulse RX

¥

Start Symbol RX

9

x 104 clock ticks (on a 4MHz clock

Evaluation
1- Size

Goders1ze Datasstze

Multihop router

AM_d1ispatch-

AM_temperature

AM_l1ight

AM

Packet

Radio_Byte

- RFM

Photo

Temperature

UART

UART _packet

I12C_bus

Processor_init

TinyOS Scheduler

C-Runtime

Total

Evaluation
2- Concurrency

Operations Normalized
to byte copy
Byte copy 1
Post an Event . 125
Call a Command 1.25
Post a task to scheduler 6
Context switch overhead 6
Interrupt (hardware cost) 1
Interrupt (software cost) 9

o e Evaluatlon' .
2863 - Concurrency & Modularlty

AM
send_msg

Application

AM send_msg_thread

Packet

Radio byte

RFM \ |_| ﬂ

e sampling for packet start
TX pin i symbol every 50us

Evaluatlon

4 L1m1ted physical parallellsm
andlcontroller-hlerarch

Components Packet Percent Energy
reception CPU | (nJ/bit)
breakdown | Utilization
AM 0.05% 0.02% 0.33
Packet 1.12% 0.51% 7.58
Radio handler 26.87% 12.16% 182.38
Radio decode task 5.48% 2.48% 37.2
RFM 66.48% 30.08% 451.17
Radio Reception - - 1350
Idle - 54.75% -
Total 100.00% 100.00% 2028.66
Components Packet Percent Energy
transmission CPU | (nJ/bit)
breakdown | Utilization

AM 0.03% 0.01% 0.18
Packet 3.33% 1.59% 23.89
Radio handler 35.32% 16.90% 253.55
Radio encode task 4.53% 2.17% 3252
RFM 56.80% 27.18% 407.17
Radio Transmission - - 1800
Idle - 52.14% -
Total 100.00% 100.00% 4317.89

nesC

Programming Language of TinyOS

Overview

® nesC is an extension of C

* whole-program analysis

S safety

* performance (modularity through code)
® nesC is a static language

® no dynamic memory allocation

® call-graph fullly known at compile-time

® nesC supports and reflects TinyOS’s design
& Components

¢ event-based concurrency

Example Component

module TimerM { v v

o L [hem 1}

interface StdControl;

interface Timer; —— HWClock

}
uses interface Clock as Clk;'

interface Timer {
command result_t start(char type, uint32_t interval);
command result_t stop();

interface StdControl { event result_t firedQ);

command’ result_t init();

¥

}

interface Clock {
command result_t setRate(char interval, char scale);
event result_t fire();

}

Types of Components

® Modules
S provide application code
® implement one or more interface
3 ConfigUthions |
¢ connect (“wire”) components together

€ interfaces used by components are connected to interfaces
provided by others

® Every nesC apblication 1s described by a toplevel configuration

Nomenclature

® A command or event f in an interface i is named i.f

® A command call is like a regular function call prefixed.
with the keyword call

® An event signal is like a regular function call prefixed-
with the keyword signal

® A command definition is prefixed with the keyword command

® An event definition is prefixed With the keyword event

Building over TimerM:
- TimerC

‘_-_Im_l configuration TimerC {
StdCoIntroI , Tir,nerl pr'OV'l_deS { : . ;
StdControl | Timer ; }

1interface StdControl;
interface Timer;

Component TimerM . }

Clock

implementation {
~components TimerM, HWClock;

StdCohtrol = TimerM.StdControl;

Clock Timer = TimerM.Timer;

Component HWClock

TimerM.Clk -> HWClock.Clock;

Configuration TimerC ‘ }

More complete Example:
- The Surge Application

configuration SurgeC

Main

StdControl

StdControl

SurgeM

ADC Timer SendMsg Leds

StdControl ADC

StdControl

Timer

StdControl | SendMsg

Photo

TimerC

Multihop

A Simple Example: the
Blink Application

® Tiny0S/nesC Tutorial.

® Blink application: The red LED is alternatively turned on and
off every seconds.

® Events model: the only event we react to is the Clock (LEDs are
simple enough to provide no events in response to commands)

® We use existing components:

® ledsC (a configuration implementing the leds interface)

® SingleTimer (a component to have a single timer firing at a
fixed frequency) '

Higher level
configuration

® Every application is described by a configuration
® Blink is composed by tWo components:
® a module called “BlinkM.nc”

® a configuration called “Blink.nc”

® The configuration wires the different components
together

® while the module implements the actual behavior of the
application

® Blink.nc is used to wire BlinkM.nc to the other modules.

The configuration
BlinkC at a glance

configuration Blink

Main

StdControl

StdControl

BlinkM

StdControl Timer

SingleTimer

Blink: the code

configuration Blink {

¥

implementation {
configuaton Bink components Main, BlinkM,

T e - SingleTimer, Leds(C;
| swoowa

StdControl

Stdcomml Main.StdControl ->

BlinkM. StdControl;
Main.StdControl ->
YWY/ . SingleTimer.StdControl;
. BlinkM.Timer ->
SingleTimer.Timer;
BlinkM.Leds ->
LedsC;

conFigurationIBlink {}

® A configuration can provide and use
1nterfaces.

® If so, they are declared inside-the il

® This:provides the developper with the
ability to compose configurations.

® Example: LedsC is a configuration.

implementation {
components ...,
=

® components specifies the set of components that this
configuration references.

® The rest wires the components together, connecting their
respective interfaces.

® Main is a special component, the ‘first to be executed in a
TinyOS application. It uses only the StdControl interface.

StdControl 1interface

interface StdControl {
command result_t init(Q);
command result_t start();

command result_t stop();

¥

® init() is called when the component is initialized

® start() when it is started (executed for the first time)
® stop() when it is stopped (e.g. to power-off)
® init, start and stop may be called more than once

® all inits before any start or stop

€ all stops follow a start

1nitialization

*All three of these commands have “deep” semantics.

® Calling init() on a component must make it call init() on
all of 1its sub-components.

® SingleTimer and BlinkM init()- function is called because
they provide the - StdControl interface and the
Main.StdControl interface is linked to the corresponding
interfaces of the components.

® However, LedsC does not provide the StdControl interface,
thus the init() function of the .BlinkM module MUST call
explicitely the init() function of the Leds interface.

® The same rule apply for start() and stop().

Binding

® nesC uses arrows to determine relationships between
interfaces.

® > is like “binds to”.

® The left side of the arrow binds an intérface to an
implementation on the right. side. |

® nesC supports multiple implementations of the same
interface. Timer 1s an example.

® Wiring can be implicit: BlinkM.Leds -> LedsC; is a
shorthand for BlinkM.Leds -> LedsC.lLeds;

The BlinkM.nc module

. it This module providés StdControl
module BlinkM { ; ,
Thus, 1t must implement all the
StdControl commands and can
S e signal all the StdControl
- Events (none 1in this case)

provides {

}

uses ' \ o
t It also uses the interface Timer

interface Timer; ‘and Leds, thus it can call Timer
s riterface Leds: and Leds commands (and sometimes
must; like init), and MUST
implement Timer and Leds Events
1 | (none for Leds, but some for Timer)

// continued

Leds interface

® The Leds interface 1s really simple, and
provides only commands

® some like init(Q)

® others like redOn(), redoff(), etc... to
control the Leds.

Timer Interface

interface Timer { .
command result_t start(char type, uint32_t interval);
command result_t stop();
command result_t fired();

}

start(...) 1s not related to Thﬁrzn;glﬁfsézzﬁgYal
start() of StdControl. It is e e ey Jre
used to specify the type of b

: : - TIMER_REPEAT and
timer and the 1interval TIMER ONE_SHOT
The fired event 1is called by

the lower-level component BlinkM MUST implement
(here SingleTimer) when the - this event
timer expires.

BlinkM.nc, continued

implementation {

command result_t StdControl.init() {
call Leds.init();
return SUCCESS;

¥

command result_t StdControl.start() {
return call Timer.start(TIMER_REPEAT, 1000);

}

command result_t StdControl.stop() {
return call Timer.stop();

¥

" BlinkM.nc, continued

event result_t Timer.fired()
{ .
call Leds.redToggle();
return SUCCESS;

¥

Compiling

® See’later. Use Makefile -provided by TyniOS.
® make will eventually call ncc, the nesC compiler

% ncc -o main.exe -target=pc Blink.nc

® Makefile provides simpler interface, and self-
documentation : make pc docs builds the

% docs/nesdoc/pc/

® web pages to visualize the compiled dependency graph.

Exercise

® Leds provides the following commands:

% (redlgreenlblue)(0nl0FF

'. ® Toggle(redlgreenlblue)()

5 Modify the blinkM implementation to
display the lower three bits of a counter
that 1s incremented every second.

//Configuration is unchanged

//Module (BlinkM.nc)
module BlinkM {
provides {
“interface StdControl;
5
uses {
interface Timer;
interface Leds;

£
¥ |
implementation {
1ht counter;

command result_t
StdControl.init() {
counter = 0;
return call Leds.init();

¥

command result_t
StdControl.start() {

return call Timer.start(
TIMER_REPEAT, 1000);

¥

command result_t
StdControl.stop() {
return call Timer.stop(Q);

o

event result_t
Timer.fired() {
counter++;
if(counter & 1)
call Leds.redOn();
else
call Leds.redOff();

o}

Interface Instances

“module SenseM {
~provides { ... }
uses {
interface StdControl as ADCControl;
interface ADC;

¥
i

® Gives the ability to use multiple times the interface in the same
module by renaming it.

® ADCControl is used for wiring to a StdControl interface

® In fact, interface StdControl is just a shorthand for
interface StdControl as StdControl

® Beware to wiring: SenseM.ADC -> Sensor is just a shorthand for
SenseM.ADC -> Sensor.ADC; BUT SenseM.ADCControl -> Sensor 1is NOT
A SHORTHAND FOR SenseM.ADCControl -> Sensor.ADCControl. IT IS A
SHORTHAND FOR SenseM.ADCControl -> Sensor.StdControl !

Parameterized
Interfaces

provides interface Timer[uint8_t 1d];

SenseM.Timer -> TimerC.Timer[B];

® A parameterized interface allows a component to provide -
multiple instances of an interface that are parameterized by a
runtime or compile-time value.

® TimerC declare providing this interface, thus it provides 256
different instances of the Timer interface.

® By wiring the Timer interface in each component to a separate
instance of the Timer 1interface provided by TimerC, each
component can run its own “private” timer.

Parameterized
- Interfaces and unique

provides interface Timer[uint8_t 1d];
SenseM.Timer -> TimerC.Timer[unique(“Timer”)];

® To avoid identifier'overlappings, nesC includes the unique and
uniqueCount routines.

S unique(char *string) is.resolved AT COMPILE TIME as a number
different in each call, for the same string

® uniqueCount(char *string) is resolved AT COMPILE TIME as the
number of counters for this string.

® Developpers have to use the same string to denote the same
component. To avolid confusion, we use the name of the
parameterized interface as an argument to the unique()
function.

Tasks

® A Task 1is detlared in the implementation part of a
module using the syntax

2 task void taskname() {...}
® Tasks must return void and take no arguments.

* To dispatch (schedule) a task for (later)
execution; use the syntax

® post taskname();

Posting a task is authorized within any context
(command, event or even another task).

Tasks & Concurrency

async event result_t ADC.dataReady(uint16_t'data) {
putdata(data);

post processData();
return SUCCESS;

3

task void processData() {
intle_t 1, sum=0;

for (1=0; 1 < size; 1++)
sum += (rdata[1] >> 7);

display(sum >> log2size);

¥

Concurrency &
Atomicity

® Asynchronous Code (AC): code that is reachable from at least
one interrupt handler '

* Synchronous Code (SC) code that is only reachable from
tasks. e e '

& Synchronous Code is atomic with respect to other
Synchronous Code.

® Any update to shared state from AC is a potential Race

* Any update to shared state from SC that 1s also updated from
AC 1s a potential Race.

Exemple: SurgeM (non-concurrent)

module SurgeM { event result_t
provides interface Timer.fired() {
StdControl; | - call ADC.getData();
uses 1interface ADC; ' return SUCCESS;
uses interface Timer; }
uses interface Send; |
} implementation { event result_t |
uintl6_t sensor; ~ ADC.dataReady(uint16_t-
data) {
command result_t sensor = -data;
StdControl.i1nit() { ... send message ...
return call Timer.start return SUCCESS;
(TIMER_REPEAT, 1000); }

}

How to avoid RC
Example: SurgeM

task void sendData() {

o adcPacket.data = sensor;

} implementation { call Send.send(&adcPacket,
bool busy; ' - sizeof(CadcPacket.data));
norace uintl6_t sensor; ' return SUCCESS;

¥

module SurgeM {

event result_t , _ e
Timer.fired() { event result_t
bool localBusy; - ADC.dataReady(uintl6_t d)
atomic { { '
localBusy = busy; S sensor = d;
busy = TRUE; post sendData();
} return SUCCESS;
1fC !'localBusy) }
call ADC.getData();
return SUCCESS; event result_t Send.sent(...)
} | e
atomic busy=FALSE;
2

Concurrency &
Atomicity

® Race Free Invariant: Any update to shared-state is
either not a potential race condition (SC only), or
occurs within an atomic section

$ The compiler'enforces this conditioh:through'the .
following rule:

® If a variable x is accessed by AC, then any access of
x outside of an atomic statement is a compile-time
error.

® To remove the error, the progrdmmer must either add an
atomic section, or move the offending code in a task.

® Optionnaly, the programmer may hint to the compiler that
“some variable will not provoke a race condition
(Dangerous).

Exercise

async event result_t ADC.dataReady(uint16_t'data) {
putdata(data);

post processData();
return SUCCESS;

3

task void processData() { Remove the RC
intle_t 1, sum=0;

for (1=0; 1 < size; 1++)
sum += (rdata[1] >> 7);

display(sum >> log2size);

¥

Communication:
Radio & UART

interface ReceiveMsg {
event TOS_MsgPtr receive(TOS_MsgPtr m);

¥

interface SendMsg {

command result_t send(
uintl6_t address,
uint8_t length,
TOS_MsgPtr msg);

event result_t sendDone(
TOS_MsgPtr m,
result_t success);

Communication:
Radio & UART

configuration GenericComm

{

provides { -
interface StdControl as Control;

// The interface are as parameterlsed)Y, the active message 1d

interface SendMsg[uint8_t 1id];
interface ReceiveMsg[uint8_t 1id];

// How many packets were received in the past second
command uintl6_t activity();
¥

uses {
// signaled after every send completion for components which
// wish to retry failed sends
event result_t sendDone();
¥
ks

Active Messages

® Each message type is identified by a unique id.

® This id defines whichlfunction should be called at
message reception.

® In nesC, this is easily done through barameterized
interfaces:

% you just have to wire the component which pﬁovides
the implementation® of the function with the correct
interface number.

% Here, we seldom use the unique(“”) function, since
sender AND receiver must agree on the unique 1id.

® We use C enumerated values defined in .h files

bool pending;
struct TOS_Msg data;

command result_t
SomeComponent . SomeCommand
(uintle_t value) {
IntMsg *message = '
(IntMsg *)data.data;

ifC !'pending) {
pending = TRUE;

atomic {
message->val = value;
message->src =
TOS_LOCAL_ADDRESS;

¥

¥

Example (emission)

if(call
Send.send(TOS_BCAST_ADDR,
sizeof(IntMsg), &data))
return SUCCESS;

pending = FALSE;

¥
return FAIL;

Example (reception)

RfmToIntM.ReceivelIntMsg -> GenericComm.ReceiveMsg[AM_INTMSG];

T | |
event TOS_MsgPtr RecelveIntMsg receive(TOS_ MsgPtr m) {

IntMsg *message = (IntMsg *)m->data;

call IntOutput.output(message- >va1),

return m;

¥

Exercise

® Write two TinyOS Applications:

% One which sends a éounter on the
network

® The other which receives this counter
and displays the lowest three bits on
its LEDs.

Simulation

tossim

TOSSIM

® TinyOS Simulator.
® Compilation is similar to a mote architecture (make pc)
® TOSSIM can simulate 1000s nodes simultaneously

® Every mote runs the SAME TinyOS program

* TOSSIM provides debugging output

8 ASCII (default)
® GUI (TinyViz), a Java-Based GUI.

TOSSIM and Compilation
e

Sources

e

build/pc/main.exe

make telosb i

Fichier Edition Fenétre

H

docs/nesdoc/
pc/
Doc html

Four key requirements

® Scalability.
® The-largest Tiny0S sensor netwrok deployed was 850 nodes wide
% The simulator should handle 10’000s |
S Completeness.
% Cover as many interactions das possible
5 Fidelity.
* behavior of the network at fine grain
® subtle timing interactions
® must reveal unanticipated interactions
® Bridging.

® fill the gap between algorithms and implementation on real HW

Discrete Event
Simulation

® Discrete Event Simulation:
® the simulator handles a list of events totally ordered (date)

® the first event is poped and its actions on the current state
produces a new state and potentially a set of new events that
are injected in the sorted list

$ and so on

® Tiny0S is event driven
® Event driven executions maps well on discrete events simulation

® -
% very simple simulation engine

Abstractions

® TOSSIM captures the behavior and
interactions at network bit granularity.

® Tasks are run “instantly”: the virtual
time does not progress during task
~_completions

S allowing real preemption and
interleaving would reduce-scalability a
lot (interpretation of the code instead
of execution) '

® TOSSIM will not help checking the data
RCs, but the compiler should do that.

TOSSIM Architecture

Event Queue

| "__.,___1":%._\“_ Component Graphs

Communicatio
Services

| [
[TEMP|| PHOTO |

TOSSIM ADC | [cLock]|[RFm |
Implementations

TinyOS Tool Chain

5 TOSSIM is “just another mote target”

® the transistion between simulated and
real networks is easy

® the simulator runs-native code, thus
user can use debuggers in TOSSIM

® It also provide mechanisms for other
programs to interact and monitor a
running simulation

Example TOSSIM
compilation

nesC TinyOS Code

Mote C CQde

| _TOSSIM C Code

result_t
StdControl.init() {
state = 0;
return SUCCESS;
|

result_t Counter

$StdControl$init

(void) {
Counter$state=0;
return SUCCESS;

¥

reéult_t_Counter
$StdControl$init
(void) {
Counter$state
[tos_state.current_
node] = 0;
return SUCCESS;
1

Execution Model

5 Core of TOSSIM: a simulator event queue

® Interrupts are modeled through simulator events ('— Tiny0S
events) |

® A simulator event calls an interrupt handler in HW abstraction
component : ;

5 TOSSIM keeps time at mote instruction clock cycle granularlty
(4MHZz)

® At start, mote dre given random times

® Every TOSSIM events happens at a given time and takes a delta
time to run (non zero time to have total order of events, but
sum of delta = @)

* After running a simulation event, TOSSIM executes all the tasks
on this mote

Hardware Emulation

® TinyOS abstracts each HW resource as a component.
% ADC (Analog to Digital Converter)
® Clock
® Transmit strength variable pofentiometef
S EEPROM |
® boot sequence
® several of the radio stack
® low level components abstracting sensors (specidl case)

S E.G. getData() of the ADC will produce a dataReady() event
later (depending on the duration of the getData operation)

Sample Execution

® SenseToleds

¢ at 1Hz, getData();

® when dataReady(); do
ledsToggle();

® timer events are 4

Million ticks appart
® ADC takes 50Qus -> 200

Time
(4MHZz)

Action

3987340

Simulator event 1is dequeued
Clock interrupt handler call
Timer event signaled

command getData();
ADC comp. puts a sim. event on
the queue at 3987540
Clock puts a sim. event on the
queue at 7987340 '

3987540

Sim. ADC event 1is dequeued

ADC interrupt handler call

ADC ready event signaled
call ledsToggle();

7987340

Simulator event is dequeued
Clock interrupt handler call

Network:
- Communication Service

5 TOSSIM provides mechanisms that allow PC applicattons to
drive, monitor and actuate simulation through TCP/PI

® TOSSIM signals events with data to applications
® e.g. debug messages
S radio and UART packets sent
® actuators (leds) and sensor readings
* Application can
® change radio link probabilities
® change sensor reading values TinyViz 1s built
on this interface

® turn motes on and off

® inject radio and UART packets

Data Link Layer

® Most Complex System of TOSSIM

® Provides the networking stack of TinyOS

% Must simulate the networking stack at
“high fidelity but keeping scalability

® Choice: bit-level simulation.

® The user provides a single probability
per link: the probability that a bit is
flip.

TinyOS Networking

Start Symbol TX
Preamble TX . Timing Bits TX Phase Shift
L

k: "

Strength Pulse TX

Mac Delay Packet Transmission

Packet Reception

il [il
Preamble RX GetTiming Strength Pulse RX

¥

Start Symbol RX

9

x 104 clock ticks (on a 4MHz clock

TOSSIM
network simulation

® TinyOS uses three network sampling rates

S 4QKBps for data, 20 Kbps for receiving a start symbol,'1®
Kbps for sending a start symbol

® in TOSSIM, adjustments to radio bit—rateé are made by
changing the period between radio clock events.

% Handled by simulation events

® Exception: spin-loops to synchrohize sender signal
% first loop (@) is ignored

% second loop (1): when a mote send it, it checks if any
mote 1s in the listening state. If so, 1t enqueues a radio
event for the receiver

Evaluation
1 - Fidelity/radio noise

Empirical Data Simulated Data

h

*

.

Loss Rate
Loss Rate
» POIOOIN ¢ WMo *

® O S MO WM e ew e

e BN 400000 4 o

30
Distance (feet) Distance (feet)

N
o

(a) Empirical & (b) Simulated

Fidelity: Packet-
level interaction

-t

o

S
\

—— 10 feet
-2 15 feet ||
—A— 20 feet

&)
oc
(&)
()]
IE
‘©
L
N
el
Q
=
o
©
o

8 7 6 5 4 3 2
Time Between Sensor Readings (seconds)

- Practical

tinyos

TinyOS WebSite

S www.tinyos.hnet

S or “tinyos I’m feeling lucky in'google”
2 Tutorial:

& www.tinyos.net/tinyos-1.x/doc/tutorial

Installation

$ Simplest: use the Windows installation.
® (Sadly, 'the simplest way of dOan 1t)
2 (Sadly, because it will install Cygwin)

® (So, a linux-native installation should
be better)

% Install under Linux: follow the website.

What you need
to simulate

® Java 1.5 JDK
® Cygwin (under windows)
S Nativé.Compilers
® AVR toolchain for mica family
® MSP430 toolchain for telos family
% One of them CAVR is simpler) for Simulation
® nesC compiler (which uses native compiler, so expect one)
® Tiny0S source tree from CVS or stable tarball

® Graphviz if you want to make docs of your codes

Recommandations

® Use Tiny0S 1.x, Tiny0OS 2.x is not.
compatible with 1.x

5 Install the TinyOS 1.1.0 with wizard

® Then optionally, upgrade Cygwin and
install Tiny0S 1.1.15 from CVS

Try

S After (windows) installation:
® Launch a terminal (Cygwin icon)
® TOS is in /opt/tinyos-1.x
® The GUI of TOSSIM is located into

5-/opt/tinyos—l.x/tools/java/net/tinyos/sim/

® it 'is the (java) program called tinyviz
% Go into the Blink application:
® cd /opt/tinyos-1.x/apps/Blink:
® build the application: make pc
® run it: ./build/pc/main.exe 1

% Stop with Control-C (AC)

Try (2)

® By default, TOSSIM displays ALL the events. Most of them are
with the radio, that is not important for. this test.

® You can configure TOSSIM to select which events you want to
display through the environment variable DBG. The expected
format is a comma separated list of strings (e.g. “am,led” to
display Active-Messages and Leds events). Find the complete
list in the article “TOSSIM: A Simulator for T1nyOS Networks”
or ./build/pc/main.exe --help for other options.

® Set DBG to led to display only Leds related events.
% type export DBG=led
® relaunch ./build/pc/main.exe 1

® Stop with AC again. The trace present leds blinking.

Try (3)

® Enable tinyviz: go into the /opt/tinyos-1.x/tools/java/net/
tinyos/sim directory and copy the tinyviz script into /bin
(or anywhere in your PATH)

* edit the /bin/tinyviz file and change the BASE variable to
equal “/opt/tinyos-1.x/tools/java/net/tinyos/sim” .

® return to the application directory (/opt/tinyos-1.x/apps)
and try to launch tinyviz. If it doesn’t:- work, the copy or
editing failed.

® Look at the TestTinyViZ application into apps. It does
random neighbour communication. build it with make pc

® set the DBG variable to usrl,am (to have the debug messages
+ the Active-Messages events) (export DBG=usrl,am)

® And launch the application inside tinyviz:

€ tinyviz -run build/pc/main.exe 30

Try (4)

® You need first to enable some Tinyviz
Plugins (Radio Links, Sent Radio Packets
and Debug Messages for this test)-

® Then launch or stop/launch (Sim Time
. should progress)

® Have a look at lesson5 of inline tutorial
to know more options of TinyViz

TinyOS Directory

 apps/
8 Applicatibns you can find in the tutorial.
® doc/
‘2 docs, including the tutofial
S régression/
S tests
5 tools/
® tools, including tinyviz
° tos/

S ¢

operating system”

the tos/ directory

® interfaces/
S ALl the prédefined interfaces. Take a look.
® 1lib/

S Platform independant usefuli modules, like Counters,
LedsIntensity...

> platform/
S low—leVel components (hw abstractions depending on the mote)
® sensorboards/
% low-level components (hw abstractions depending on the sensor)
5 system/ |
§ synthetic hardware components
5 types/

® some .h files

Tiny0S 2.0

5 Still Beta
4 But will replace Tiny0S 1.x soon.

® Code is not backward compatible with
Tiny0S 1.x

Platform/HW
abstraction

® a platform is a collection of chips and some-glue code
that connect them together

% e.g. mica2 = CC1000 radio chip + ATmegal29 pcontroller +
AVR compiler

® Hardware Abstracfion Architecture
€ Hardware Presentation Layer
S IOIpins or registers as components
€ Hardware Abstraction Layer

S built on top of HAA, presents the same
functionalities with simpler interfaces

% Hardware Independant Layer

® Generalization (-> not all the functionalities)

Scheduler

® Tasks are slightly different:

® Single TQ in 1.x could be full when
posting completion of a split-phase
operation

® So, in 2.x, every task has its own
reserved slot in TQ, and each task can
only posted ONCE. A post fails iff the
task has already been posted.

® Applications can replace the scheduler.

® It is still important to maintain non-
preemptiveness.

Booting/Initializing

® The 1.x interface StdControl has been
split into two interfaces:

® Init with only the init() command

~® StdControl with only the start() and
stop() commands.

® The boot sequence does not signal start()
automatically, it signals Boot.booted()
event. The top-level application must
wire this interface and call the
corresponding start() commands

Virtualization

® Tiny0S 2.0 is written in nesC 1.2 which introduce the
concept of a ‘generic’ or instantiable component .

% This provides reusable dataé structures like queues
and bits of vectors

® Many TinyOS 1.x parameterized components are now
virtualized:

® the virtualization does all of the wiring underneath
(with a unique instantiator if necessary)
automatically

Timers

S Timer interface has been improved.

 Three types of
high-precision

S Components can
remains before

& Components can

times: millisecond, 32KHz or one or. two
timers that fire asynchronously

query the timer for how much time
firing

start timers in the future

Communication

® message buffer type is now message_t. It is opaqUe_and
components cannot reference its fields.

® Instead, all buffer access go through interfaces

S e.g. instead of looking the msg->dest field, one call
AMchket.destination(msg)

® Send interfaces distinguish between the addressing modes

% e.g. AM communication has the AMSend interface, to
provide the AM destination address; broadcast has the
Send (without address) interface

* No TOS_UART_ADDRESS. The component should wire to
SerialActiveMessageC

Error Codes

® SUCCESS has been redefined from 1 (1.x) to 0 (2.0).

® This means that tests like

ifCcall X yO) g 5}
will now do the contrary of what is expécted.

* Programmers must change to
1fC call X.y() == SUCCESS) { ... }

® The result_t type is replaced by the error_t type.

Arbitration

® Some resource cannot be virtualized easily.
* For example, a shared bus on a pcontroller.

S many different systems (senSorS, storage, radio) might
need to use the bus at the same time

® TinyOS 2.0 introduces the Resource interface which
components use to request and acquire shared resources, and
arbiters, which provide a policy of arbitrating access
between multiple clients.

® For some abstractions, the arbiter also provides a power
management policy

Power Management

® Divided into two parts
® power state of the pcontroller
& chip-specific
2 power state of devices
* arbiters

® Radio has low-power stacks for some chips

Network Protocols

S Components for
- % reliable dissemination

& reliable collection

Bibliography

® Tinyos:

@ “System Architecture Directions for Networked Sensors”, Jason Hill, Rober t
Szewczyk, Alec Woo, Seth Hollar, David Culler, Kristofer Pister, ASPLOS,

2000

hesC:

& "The nesC Language: A Holistic Approach to Networked Embedded Systems",
David Gay, Phil Levis, . Rob von Behren, Matt Welsh, Eric Brewer and David
Culler. Proceedings of Programming Language Design and Implementation
(PLDI), 2003 '

8 “nesC Lahguage Reference Manual”, David Gay, Philip Levis, David Culler and
Eric Brewer, 2003, http://waww.tinyos.net/tinyos-1.x/doc/nesc/ref.pdf

€. TOSSIM:

& “TOSSIM: Accurate and Scalable Simulation of Entire TinyOS Applications",
Philip Levis and Nelson Lee and Matt Welsh and David Culler, Proceedings of
the First ACM Conference on Embedded Networked Sensor Systems, 2003

® ~TOSSIM: A Simulator for TinyOS Networks, Philip Levis and Nelso Lee, 2003
http://www.tinvos.net/tinvos-1.x/doc/nido.pdf

