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Petite taille et faible consommation 
électrique

Fonctionnement à fort parallélisme

Parallélisme matériel et hiérarchie de 
contrôle limités

Diversité de l’utilisation et de la 
conception

Robustesse des opérations et de la 
conception d’applications

Caractéristiques des 
Réseaux de Senseurs



Petite taille et 
faible consommation
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Figure 1: Photograph and schematic for representative network sensor platform

MCU Berkeley
(version XP.) Pièce de 1 cents

La taille contraint (ou finira par contraindre)
- la capacité de calcul
- la quantité de mémoire
- les fonctionnalités de réseaux

Le système d’exploitation se doit
- d’économiser la consommation énergétique
- de tenir dans le minimum d’espace
- de tirer le meilleur parti possible du matériel

La loi de Moore n’est pas une porte de sortie à ces 
contraintes.



Fonctionnement à fort 
parallélisme

! Parallélisme des capteurs, certes, mais ce n’est pas celui 
qui nous intéresse ici !

Parallélisme des opérations menées par chaque capteur 
Capteur
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Lum.
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Un unique CPU 
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Un réseaux très 
actif
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(p.e. calcul de 
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Interruptions 
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Parallélisme matériel et 
hiérarchie de contrôle limités

http://www.kreatives-chaos.com/images/127.jpg

Typical Pentium-Based 
Architecture AT90S1200 (AVR) CPU



Diversité de l’utilisation et 
de la conception

Applications
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Robustesse des opérations et 
de la conception 

Petascale Reliability

• Facing the issues

– ASCI Q boot time is ~8 hours

• not far from the system MTTF 

– application checkpoint frequency

– MTTF 1/! = 1-!

• A few assumptions

– assume independent component failures

• an optimistic and not realistic assumption

– " is the number of processors

– ! is probability a component operates for 1 hour

– # is probability the system operates for 1 hour

• Then              or               for large !"
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ASCI Q

- Augmenter la 
fiabilité du système 
via des protocoles 
tolérants

- Développer de 
nouvelles techniques 
plus adaptées que la 
réplication

- Augmenter la 
fiabilité des 
Capteurs ET des 
logiciels qui 
s’exécutent dessus.



Hardware



Telos B : matériel



Processeur : 
 ex. ATMEL ATtiny13

3

ATtiny13

2535E–AVR–10/04

Block Diagram Figure 2.  Block Diagram
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Architecture
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(@ sur 16 bits)
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- Idle (processeur off)
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Processeur : MSP 430



matériel Entrées/Sorties Asynchrone avec contraintes de 
temps réel.

ON-OFF key jusqu’à 19.2Kbps

Transmition XOR Réception XOR power-off.

Pas de buffer disponible!

Les valeurs transmises ne sont pas normalisées, et les 
effets de perturbation eléctromagnétiques sont transmis 
dans le signal.

CC420 RF Radio



Capteurs 
et port série

Capteurs analogiques reliés à un 
numériseur

Capteurs I2C

UART série avec mode de transmission par 
octet

Coprocesseur pour programmer le code du 
processeur, et pour stocker de la donnée 
supplémentaire.



Caractéristiques de 
consommation énergétique

Component Active
(mA)

Idle
(mA)

Inactive
(µA)

MCU core 5 2 1
MCU pins 1.5 - -

LED 4.6 each - -
Photocell 0.3 - -
Radio TX 12 - 5
Radio RX 4.5 - 5
Temp° 1 0.6 1.5

Co-proc 1 0.6 1
EEPROM 3 - 1

575mAh ->

Peak load = 
30h

Idle = 200h

Inactive = > 
1 year



Exemple de consommation 
énergétique

La radio doit émettre toutes les 52µs

-> ~ 1µJ pour émettre 1 bit

-> ~ 0.5µJ pour recevoir 1 bit.

Pendant ce temps, le CPU peut exécuter 208 cycles (~100 inst.)

-> Consommer jusqu’à 0.8µJ

-> dont une partie est dévolue au traitement de la comm.

Le temps inutilisé est passé en Idle ou power-off

-> entre 8.8µJ et 14.4µJ pour émettre un octet

-> entre 4.8µJ et 10.4µJ pour recevoir un octet



Software: TinyOS



Microthreading 
Operating System

Material

Small physical size

modest active power load

tiny inactive load

Environment Requirements

Concurrency-intensive 
operation

efficient modularity and 
robustness

Similar to building efficient network interfaces :
- large number of concurrent flows

- juggle numerous outstanding events

-> Extremely efficient multithreading engine



The problem of scheduling 
multiple threads seen from the 

memory point of view

What needs to be saved when scheduling 
(classical) multiple threads?
- The program counter
- The value of the CPU registers
- The memory map in case of VM
- The Stack!

Each Thread Needs its own STACK



Stack usage for 
function calls

int f(int a)
{
int l, r;
if(a == 1)
return 1;

if(a == 2)
return 1;

l = f(a-1);
r = f(a-2);
return l+r;

}

0xa1:
0xa2:
0xa3:
0xa4:
0xa5:
0xa6:
0xa7:

0x02

3

1

0

0xa7

1

0

0

Haut de la 
pile

Adresse de 
retour

Paramètres

Variables 
Locales

Base de la 
pile



PC scheduling:
preemptive 

scheduling of threads
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Blocked

ZombieCreation

Blocking System Call
(I/O typical)

End of
BSC

Sleeping

SIGSTOP
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Scheduler

Exit
or SIGKILL

SIGKILL

SIGKILL

SIGKILL Parent process
wait()



PC scheduling:
preemptive, quantum-based 

scheduling of threads
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Limitations of preemptive 
quantum based scheduling for 

tinyOS
No or few control parallelism => core CPU must be 
scheduled at the frequency of the devices (RF: 1/50µs)

Not enough memory to assign a variable stack per “thread”

-> Event-Based Scheduling. Helps to save power.

Hardware events activate CPU preemptively

When CPU is not activated by a hardware event it may do 
computation for TASKS.



TinyOS Design
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Components

Command Handlers: provides the functionalities of the Component

Event Handlers: defines to which events the Component can react

Fixed Frame: defines the memory environment of the Component; is 
of fixed size (permits statical memory allocation)

Bundle of tasks: Command and Event handlers should only do low-
latency operations (see later). Complex computation must be 
delayed to tasks.



Components Composition
COMPONENT

Command Handlers

Event Handlers

Fixed Frame

Bundle of Tasks

COMPONENT

Command Handlers

Event Handlers

Fixed Frame

Bundle of Tasks

COMPONENT

Command Handlers

Event Handlers

Fixed Frame

Bundle of Tasks

COMPONENT

Command Handlers

Event Handlers

Fixed Frame

Bundle of Tasks

COMPONENT

Command Handlers

Event Handlers

Fixed Frame

Bundle of Tasks

COMPONENT

Command Handlers

Event Handlers

Fixed Frame

Bundle of Tasks

COMPONENT

Command Handlers

Event Handlers

Fixed Frame

Bundle of Tasks

LAYER n

LAYER n+1

LAYER n-1

Issue Commands

Signal Events

Physical Hardware



Commands

NON Blocking requests made to Lower Level components

Typically deposit requests parameters into the frame of the 
components and conditionnaly posts a task for LATER 
execution

May invoke LOWER commands

but must NOT wait for long or indeterminate latency actions

Must provide feedback to its caller by returning status 



Events

Invoked to deal with hardware events 
(possibly indirectly)

Lowest level are the representation of 
the hardware events (external interrupt, 
timer or counter event)

Typically deposits information 
concerning the event into the frame, 
posts tasks, signal higher events or 
call LOWER level commands



Events / Commands : 
preventing cycles
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Tasks
Tasks perform the primary work

Tasks are ATOMIC with respect to other Tasks

Tasks RUN TO COMPLETION with respect to other Tasks

Tasks can be preempted by Events Handlers only.

Tasks can call LOWER level command or signal HIGHER Level 
events and post other Tasks of the same component.

Tasks must NEVER block or spin-wait

Events and commands ~ instantaneous state transition

Tasks provide a way to incorporate arbitrary computation 
into the event driven model



µ-Scheduler
The event and command handler has no use of stack since they 
work inside the fixed-size frame

Tasks are run to completion

Thus, we need a single stack!

The scheduler is a simple FIFO scheduler

Tasks are run one after the other, in the order of posts

more sophisticated schedulers could be used (priority/
deadline based)

The scheduler is power-aware: when the task queue is empty, 
the CPU is put to sleep; only peripherals are left operating



A Component example

Messaging Component

Frame: Internal State

CurrentMsgToSend
NbPackets

NbPacletsSent
...

send_msg_thread:
compute the next packet to send
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Components Types

Hardware Abstractions (e.g. RFM radio 
component)

Synthetic Hardware Components (e.g. Radio 
Byte Transmitter)

High-Level Software Components (e.g. 
Messaging Module)



Hardware Abstractions

RFM Radio Component

Frame: Internal State
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Synthetic Hardware 
Components

RFM Radio Component

Frame: Internal State

Sending
Receiving
bitNumber

PacketBuffer
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High-Level software 

Messaging Component

Frame: Internal State

CurrentMsgToSend
NbPackets

NbPacletsSent
...

send_msg_thread:
compute the next packet to send
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A note on the 
Network Layer

Message Abstraction is the Active Messages

Each message holds a 8-bit integer

This integer defines which function should 
handle the message itself at the receiver.

Messages hold a signal strength field filled-in 
by the receiver

When the sender has sent a message, a sendDone 
event is signaled, with a “ackowledged” parameter

a non-acknowledged message is not necessarily 
non-received

an acknowledged message is not necessarily 
delivered to the destination



TinyOS NetworkingFigure 6: TinyViz connected to TOSSIM running an object tracking application. The right panel shows sent radio packets, the left

panel exhibits radio connectivity for mote 15 and network traffic. The arrows represent link quality and packet transmissions.

3.7.1 TinyOS Networking: AM and Below

The TinyOS packet abstraction is an Active Message [25]. AM

packets are an unreliable data link protocol, and the TinyOS

network stack handles media access control and single hop packet

transmission. Active Messages provide precise timestamps as well

as synchronous data-link acknowledgments. TinyOS provides a

namespace of up to 256 AM message types, each of which can

be associated with a separate software handler.

Figure 7 shows the different phases of packet transmission and

reception. The sender first enters a CSMA delay period, listening

for an idle channel. The sender then transmits a packet start

symbol at 10Kbps, which a receiver samples for at 20Kbps. As

the following data is transmitted at 40Kbps, after the start symbol

the receiver must synchronize to the sender at a finer granularity.

The sender pauses for a few bit times after the start symbol, then

transmits a one bit. The receiver, after the start symbol, polls

the channel to identify the falling edge denoting the sender pause.

Once it has done so, it polls again, this time for the next rising edge,

using an input capture register to take a precise timestamp. These

two spin loops take roughly 400-600 µs. The receiver adjusts its
radio clock so that its 40Kbps data sample rate is synchronized with

the sender’s signal. The sender starts transmitting encoded packet

data, which the receiver decodes into a packet buffer.

Once the packet data has been read in, the sender transmits a

pulse of ones for the receiver to use for measuring signal strength.

After this strength pulse, the sender transitions into receive mode

and the receiver transitions into send mode. The sender introduces

a short pause in its timing as part of this phase shift; as the receiver

was sampling after the sender actually transmitted a bit, the sender

must shift its sampling point to be after the receiver. The receiver

then transmits a short bit pattern indicating acknowledgment; if the

sender hears it, it marks the sent packet as acknowledged before

passing it back in a send done event. The receiver checks the packet

CRC, discarding corrupted packets. If the packet is addressed for

Figure 7: TinyOS Packet Sending/Reception

the receiver or the broadcast address, the networking stack signals

a reception event of the proper AM type.

3.7.2 Network Simulation

The TinyOS stack uses three network sampling rates at different

phases of packet reception and transmission: 40Kbps for data,

20Kbps for receiving a start symbol, and 10Kbps for sending a start

symbol. In TOSSIM, adjustments to radio bit-rates are made by

changing the period between radio clock events. The combination

of bit sampling and bit-rate changes nearly captures the entire stack.

There is one exception: the pair of spin loops to synchronize a

sender signal, the one place where TinyOS breaks its event-driven

methodology.

Under simulation, we maintain the event-driven concept by

ignoring the first spin loop (for the zero) and handling the second

(for the one) with additional state. Whenever a mote transmits the

synchronization bit, it checks if any of the motes that can hear it

are in the synchronization listening state. If it finds such a mote, it

enqueues a radio event for the receiver representing the occurrence

of the input capture.



Evaluation
1- Size

Name Code Size Data Size
Multihop router 88 0

AM_dispatch 40 0
AM_temperature 78 32

AM_light 146 8
AM 356 40

Packet 334 40
Radio_Byte 810 8

RFM 310 1
Photo 84 1

Temperature 64 1
UART 196 1

UART_packet 314 40
I2C_bus 198 8

Processor_init 172 30
TinyOS Scheduler 178 16

C-Runtime 82 0
Total 3450 226



Evaluation
2- Concurrency

Operations Cost Time Normalized
(cycles) (µs) to byte copy

Byte copy 8 2 1
Post an Event 10 2.5 1.25
Call a Command 10 2.5 1.25
Post a task to scheduler 46 11.5 6
Context switch overhead 51 12.75 6
Interrupt (hardware cost) 9 2.25 1
Interrupt (software cost) 71 17.75 9

Table 3: Overhead of primitive operations in
TinyOS

Our most expensive operation involves the low-level aspects
of interrupt handling. Though the hardware operations for
handling interrupts are fast, the software operations that
save and restore registers in memory impose a significant
overhead. Several techniques can be used to reduce that
overhead: partitioning the register set [22] or use of register
windows [14].

Efficient modularity: One of the key characteristics of our
systems is that events and commands can propagate through
components quickly. Projects such as paths, in Scout [35],
and stackable systems [29, 25, 24] have had similar goals in
other regimes. Table 3 gives the cost of individual compo-
nent crossing, while Figure 4 shows the dynamic composition
of these crossings. It contains a timing diagram from a logic
analyzer of an event chain that flows through the system
at the completion of a radio transmission. The events fire
up through our component stack eventually causing a com-
mand to transmit a second message. The total propagation
delay up the five layer radio communication stack is 40 µs
or about 80 instructions. This is discussed in detail in Fig-
ure 4; steps 0 through 4 show the event crossing these layers.
The entire event propagation delay plus the cost of posting
a command to schedule a task to send the next packet (step
0 through 6) is about 90 µs.

Limited physical parallelism and controller hierarchy: We
have successfully demonstrated a system managing multi-
ple flows of data through a single microcontroller. Table 4
shows the work and energy distribution among each of our
software components while engaged in active data transmis-
sion. Even during this highly active period, the processor
is idle approximately 50% of the time. The remaining time
can be used to access other sensors, like the photo sensor,
or the I2C temperature controller. Even if other I/O de-
vices provide an interface as primitive as our radio, a single
controller can support flows of data at rates up to 40 µs
per bit or 25Kbps. Furthermore, this data can be used to
make design choices about the amount of physical paral-
lelism necessary. For example, while the low level bit and
byte processing utilize significant CPU resources, the CPU
is not the system bottleneck. If bit level functions were
implemented on a separate microcontroller, we would not
realize a performance gain because of the radio bandwidth
limitations. We would also incur additional power and time
expense in transferring data between microcontrollers. How-
ever, if these components were implemented by dedicated
hardware, we would be able to make several power saving
design choices including sleeping, which would save 690 µJ
per bit, or lowering the frequency of the processor 20-fold.

RFM 

 

Radio byte 

 

Packet 

 

TX pin 
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2 

 

3 

 

4 

 

5 

 

6 

 

interrupt 

 

timer 

 

Application 

 

0 

 

AM send_msg_thread

sampling for packet start 

symbol every 50us

AM 

send_msg

Figure 4: A timing diagram from a logic analyzer
capturing event propagation across networking com-
ponents at a granularity of 50 µs per division. The
graph shows the send message scenario described in
Section 4.4 focusing on transmission of the last bit
of the packet. Starting from the hardware timer in-
terrupt of step 0, events propagate up through the
TX bit evt in step 1, into byte-level processing. The
handler issues a command to transmit the final bit
and then fires the TX byte ready event in step 2 to sig-
nal the end of the byte. This triggers TX packet done
in step 3. Step 4 signals the application that the
send msg command has finished. The application
then issues another asynchronous send msg command
in step 5 which post a task at step 6 to send the
packet. While send msg task prepares the message,
the RFM component is periodically scheduled to lis-
ten for incoming packets. The event propagation de-
lay from step 0 to step 4 is about 40 µs while for the
entire event and command fountain starting from
step 0 to step 6 to be completed, the total elapsed
time is about 95 µs.

Diversity in usage and robust operation: Finally, we have
been able to test the versatility of this architecture by creat-
ing sample applications that exploit the modular structure
of our system. These include source based multi-hop routing
applications, active-badge-like [43] location detection appli-
cations and sensor network monitoring applications. Addi-
tionally by developing our system in C, we have the ability
to target multiple CPU architectures in future systems. Fur-
thermore, our multi-hop routing application automatically
reconfigures itself to withstand individual node failure so
that the sensor network as a whole is robust.

6. RELATEDWORK

There is a large amount of work on developing micro-
electromechanical sensors and new communication devices
[38, 37]. The development of these new devices make a
strong case for the development of a software platform to
support and connect them. TinyOS is designed to fill this
role. We believe that current real-time operating systems
do not meet the needs of this emerging integrated regime.
Many of them have followed the performance growth of the
wallet size device.

Traditional real time embedded operating systems include
VxWorks [13], WinCE [19], PalmOS [4], and QNX [26] and
many others [8, 32, 34]. Table 5 shows the characteris-
tics for a handful of these systems. Many are based on
microkernels that allow for capabilities to be added or re-
moved based on system needs. They provide an execution
environment that is similar to traditional desktop systems.



Evaluation
2&3 - Concurrency & Modularity

Operations Cost Time Normalized
(cycles) (µs) to byte copy

Byte copy 8 2 1
Post an Event 10 2.5 1.25
Call a Command 10 2.5 1.25
Post a task to scheduler 46 11.5 6
Context switch overhead 51 12.75 6
Interrupt (hardware cost) 9 2.25 1
Interrupt (software cost) 71 17.75 9

Table 3: Overhead of primitive operations in
TinyOS

Our most expensive operation involves the low-level aspects
of interrupt handling. Though the hardware operations for
handling interrupts are fast, the software operations that
save and restore registers in memory impose a significant
overhead. Several techniques can be used to reduce that
overhead: partitioning the register set [22] or use of register
windows [14].

Efficient modularity: One of the key characteristics of our
systems is that events and commands can propagate through
components quickly. Projects such as paths, in Scout [35],
and stackable systems [29, 25, 24] have had similar goals in
other regimes. Table 3 gives the cost of individual compo-
nent crossing, while Figure 4 shows the dynamic composition
of these crossings. It contains a timing diagram from a logic
analyzer of an event chain that flows through the system
at the completion of a radio transmission. The events fire
up through our component stack eventually causing a com-
mand to transmit a second message. The total propagation
delay up the five layer radio communication stack is 40 µs
or about 80 instructions. This is discussed in detail in Fig-
ure 4; steps 0 through 4 show the event crossing these layers.
The entire event propagation delay plus the cost of posting
a command to schedule a task to send the next packet (step
0 through 6) is about 90 µs.

Limited physical parallelism and controller hierarchy: We
have successfully demonstrated a system managing multi-
ple flows of data through a single microcontroller. Table 4
shows the work and energy distribution among each of our
software components while engaged in active data transmis-
sion. Even during this highly active period, the processor
is idle approximately 50% of the time. The remaining time
can be used to access other sensors, like the photo sensor,
or the I2C temperature controller. Even if other I/O de-
vices provide an interface as primitive as our radio, a single
controller can support flows of data at rates up to 40 µs
per bit or 25Kbps. Furthermore, this data can be used to
make design choices about the amount of physical paral-
lelism necessary. For example, while the low level bit and
byte processing utilize significant CPU resources, the CPU
is not the system bottleneck. If bit level functions were
implemented on a separate microcontroller, we would not
realize a performance gain because of the radio bandwidth
limitations. We would also incur additional power and time
expense in transferring data between microcontrollers. How-
ever, if these components were implemented by dedicated
hardware, we would be able to make several power saving
design choices including sleeping, which would save 690 µJ
per bit, or lowering the frequency of the processor 20-fold.
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Figure 4: A timing diagram from a logic analyzer
capturing event propagation across networking com-
ponents at a granularity of 50 µs per division. The
graph shows the send message scenario described in
Section 4.4 focusing on transmission of the last bit
of the packet. Starting from the hardware timer in-
terrupt of step 0, events propagate up through the
TX bit evt in step 1, into byte-level processing. The
handler issues a command to transmit the final bit
and then fires the TX byte ready event in step 2 to sig-
nal the end of the byte. This triggers TX packet done
in step 3. Step 4 signals the application that the
send msg command has finished. The application
then issues another asynchronous send msg command
in step 5 which post a task at step 6 to send the
packet. While send msg task prepares the message,
the RFM component is periodically scheduled to lis-
ten for incoming packets. The event propagation de-
lay from step 0 to step 4 is about 40 µs while for the
entire event and command fountain starting from
step 0 to step 6 to be completed, the total elapsed
time is about 95 µs.

Diversity in usage and robust operation: Finally, we have
been able to test the versatility of this architecture by creat-
ing sample applications that exploit the modular structure
of our system. These include source based multi-hop routing
applications, active-badge-like [43] location detection appli-
cations and sensor network monitoring applications. Addi-
tionally by developing our system in C, we have the ability
to target multiple CPU architectures in future systems. Fur-
thermore, our multi-hop routing application automatically
reconfigures itself to withstand individual node failure so
that the sensor network as a whole is robust.

6. RELATEDWORK

There is a large amount of work on developing micro-
electromechanical sensors and new communication devices
[38, 37]. The development of these new devices make a
strong case for the development of a software platform to
support and connect them. TinyOS is designed to fill this
role. We believe that current real-time operating systems
do not meet the needs of this emerging integrated regime.
Many of them have followed the performance growth of the
wallet size device.

Traditional real time embedded operating systems include
VxWorks [13], WinCE [19], PalmOS [4], and QNX [26] and
many others [8, 32, 34]. Table 5 shows the characteris-
tics for a handful of these systems. Many are based on
microkernels that allow for capabilities to be added or re-
moved based on system needs. They provide an execution
environment that is similar to traditional desktop systems.



Evaluation
4- Limited physical parallelism 

and controller hierarchy

Name Preemption Protection ROM Size Configurable Targets

pOSEK Tasks No 2K Static Microcontrollers
pSOSystem POSIX Optional Dynamic PII → ARM Thumb
VxWorks POSIX Yes ≈ 286K Dynamic Pentium → Strong ARM
QNX Neutrino POSIX Yes > 100K Dynamic Pentium II → NEC chips
QNX Realtime POSIX Yes 100K Dynamic Pentium II → 386’s
OS-9 Process Yes Dynamic Pentium → SH4
Chorus OS POSIX Optional 10K Dynamic Pentium → Strong ARM
Ariel Tasks No 19K Static SH2, ARM Thumb
CREEM data-flow No 560 bytes Static ATMEL 8051

Table 5: A comparison of selected architecture features of several embedded OSes.

Components Packet Percent Energy
reception CPU (nJ/bit)

breakdown Utilization
AM 0.05% 0.02% 0.33
Packet 1.12% 0.51% 7.58
Radio handler 26.87% 12.16% 182.38
Radio decode task 5.48% 2.48% 37.2
RFM 66.48% 30.08% 451.17
Radio Reception - - 1350
Idle - 54.75% -
Total 100.00% 100.00% 2028.66

Components Packet Percent Energy
transmission CPU (nJ/bit)

breakdown Utilization
AM 0.03% 0.01% 0.18
Packet 3.33% 1.59% 23.89
Radio handler 35.32% 16.90% 253.55
Radio encode task 4.53% 2.17% 32.52
RFM 56.80% 27.18% 407.17
Radio Transmission - - 1800
Idle - 52.14% -
Total 100.00% 100.00% 4317.89

Table 4: Details breakdown of work distribution
and energy consumption across each layer for packet
transmission and reception. For example, 66.48% of
the work in receiving packets is done in the RFM
bit-level component and it utilizes 30.08% of the
CPU time during the entire period of receiving the
packet. It also consumes 451.17nJ per bit it pro-
cesses. Note that these measurements are done with
respect to raw bits at the physical layer with the bit
rate of the radio set to 100 µs/bit using DC-balanced
ON-OFF keying.

Their POSIX [40] compatible thread packages allow system
programmers to reuse existing code and multiprogramming
techniques. The largest RTOSs provide memory protection
given the appropriate hardware support. This becomes in-
creasingly important as the size of the embedded applica-
tions grow. In addition to providing fault isolation, memory
protection prevents corrupt pointers from causing seemingly
unrelated errors in other parts of the program allowing for
easier software development. These systems are a popular
choice for PDAs, cell phones and set-top-boxes. However,
they do not come close to meeting our requirements; they
are more suited to the world of embedded PCs. For example,
a QNX context switch requires over 2400 cycles on a 33MHz
386EX processor, and the memory footprint of VxWorks is

in the hundreds of kilobytes. 3 Both of these statistics are
more than an order of magnitude beyond our required limits.

There is also a collection of smaller real time executives in-
cluding Creem [30], pOSEK [7], and Ariel [3], which are min-
imal operating systems designed for deeply embedded sys-
tems, such as motor controllers or microwave ovens. While
providing support for preemptive tasks, they have severely
constrained execution and storage models. pOSEK, for ex-
ample, provides a task-based execution model that is stat-
ically configured to meet the requirements of a specific ap-
plication. Generally, these systems approach the space re-
quirements and represent designs closest to ours. However,
they tend to be control centric – controlling access to hard-
ware resources – as opposed to dataflow-centric. Even the
pOSEK, which meets our memory requirements, exceeds the
limitations we have on context switch time. At its optimal
performance level and with the assumption that the CPI and
instructions per program of the PowerPC are equivalent to
that of the 8-bit ATMEL the context switch time would be
over 40 µs.

Other related work includes [17] where a finite state ma-
chine (FSM) description language is used to express compo-
nent designs that are compiled down to software. However,
they assume that this software will then operate on top of
a real-time OS that will give them the necessary concur-
rency. This work is complementary to our own in that the
requirements of an FSM based design maps well onto our
event/command structure. We also have the ability to sup-
port the high levels of concurrency inherent in many finite
state machines.

On the device side, [6] is developing a cubic millimeter
integrated network sensors. Additionally, [38, 15] has de-
veloped low power hardware to support the streaming of
sensor readings over wireless communication channels. In
their work, they explicitly mention the need for the inclusion
of a microcontroller and the support of multi-hop routing.
Both of these systems require the support of an efficient soft-
ware architecture that allows high levels of concurrency to
manage communication and data collection. Our system is
designed to scale down to the types of devices they envision.

A final class of related work is that of applications that
will be enabled by networked sensors. Piconet [16] and
The Active Badge Location System [43] have explored the
utility of networked sensors. Their applications include per-

3It is troubling to note that while there is a large amount of
information on code size of embedded OSes, there are very
few hard performance numbers published. [9] has started a
program to test various real-time operating systems yet they
are keeping the results confidential - you can view them for
a fee.



nesC
Programming Language of TinyOS



Overview
nesC is an extension of C

whole-program analysis

safety

performance (modularity through code)

nesC is a static language

no dynamic memory allocation

call-graph fullly known at compile-time

nesC supports and reflects TinyOS’s design

Components

event-based concurrency



Example Component

module TimerM {

provides {

interface StdControl;

interface Timer;

}

uses interface Clock as Clk;

} ...

TimerM

StdControl Timer

HWClock

interface Timer {
command result_t start(char type, uint32_t interval);
command result_t stop();
event result_t fired();

}

interface Clock {
command result_t setRate(char interval, char scale);
event result_t fire();

}

interface StdControl {
command result_t init();

}



Types of Components

Modules

provide application code

implement one or more interface

Configurations

connect (“wire”) components together

interfaces used by components are connected to interfaces 
provided by others

Every nesC application is described by a toplevel configuration



Nomenclature

A command or event f in an interface i is named i.f

A command call is like a regular function call prefixed 
with the keyword call

An event signal is like a regular function call prefixed 
with the keyword signal

A command definition is prefixed with the keyword command

An event definition is prefixed with the keyword event



Building over TimerM: 
TimerC

Configuration TimerC

Component TimerM

StdControl Timer

Clock

Component HWClock

Clock

StdControl Timer

configuration TimerC {
provides {
interface StdControl;
interface Timer;

}
}

implementation {
components TimerM, HWClock;

StdControl = TimerM.StdControl;
Timer = TimerM.Timer;

TimerM.Clk -> HWClock.Clock;
}



More complete Example: 
The Surge Application

configuration SurgeC

Main

StdControl

SurgeM

StdControl

ADC Timer SendMsg Leds

Photo

StdControl ADC

TimerC

StdControl Timer

Multihop

StdControl SendMsg

LedsC

Leds



A Simple Example: the 
Blink Application

TinyOS/nesC Tutorial.

Blink application: The red LED is alternatively turned on and 
off every seconds.

Events model: the only event we react to is the Clock (LEDs are 
simple enough to provide no events in response to commands)

We use existing components: 

ledsC (a configuration implementing the leds interface)

SingleTimer (a component to have a single timer firing at a 
fixed frequency)



Higher level 
configuration

Every application is described by a configuration

Blink is composed by two components:

a module called “BlinkM.nc”

a configuration called “Blink.nc”

The configuration wires the different components 
together

while the module implements the actual behavior of the 
application

Blink.nc is used to wire BlinkM.nc to the other modules.



The configuration 
BlinkC at a glance

configuration Blink

Main

StdControl

BlinkM

Timer Leds

SingleTimer

StdControl Timer

LedsC

Leds

StdControl



Blink: the code

configuration Blink

Main

StdControl

BlinkM

Timer Leds

SingleTimer

StdControl Timer

LedsC

Leds

StdControl

configuration Blink {
}
implementation {
components Main, BlinkM,

SingleTimer, LedsC;

Main.StdControl ->
BlinkM.StdControl;

Main.StdControl ->
SingleTimer.StdControl;

BlinkM.Timer ->
SingleTimer.Timer;

BlinkM.Leds ->
LedsC;

}



A configuration can provide and use 
interfaces.

If so, they are declared inside the { }

This provides the developper with the 
ability to compose configurations.

Example: LedsC is a configuration.

configuration Blink { }



components specifies the set of components that this 
configuration references.

The rest wires the components together, connecting their 
respective interfaces.

Main is a special component, the first to be executed in a 
TinyOS application. It uses only the StdControl interface.

implementation {
components ...;
... -> ...

}



StdControl interface
interface StdControl {

command result_t init();

command result_t start();

command result_t stop();

}

init() is called when the component is initialized

start() when it is started (executed for the first time)

stop() when it is stopped (e.g. to power-off)

init, start and stop may be called more than once

all inits before any start or stop

all stops follow a start



initialization

All three of these commands have “deep” semantics.

Calling init() on a component must make it call init() on 
all of its sub-components.

SingleTimer and BlinkM init() function is called because 
they provide the StdControl interface and the 
Main.StdControl interface is linked to the corresponding 
interfaces of the components.

However, LedsC does not provide the StdControl interface, 
thus the init() function of the BlinkM module MUST call 
explicitely the init() function of the Leds interface.

The same rule apply for start() and stop().



Binding

nesC uses arrows to determine relationships between 
interfaces.

-> is like “binds to”.

The left side of the arrow binds an interface to an 
implementation on the right side.

nesC supports multiple implementations of the same 
interface. Timer is an example.

Wiring can be implicit: BlinkM.Leds -> LedsC; is a 
shorthand for BlinkM.Leds -> LedsC.Leds;



The BlinkM.nc module

module BlinkM {

provides {

interface StdControl;

}

uses {

interface Timer;

interface Leds;

}

}

// continued

This module provides StdControl
Thus, it must implement all the 
StdControl commands and can 
signal all the StdControl 
Events (none in this case)

It also uses the interface Timer 
and Leds, thus it can call Timer 
and Leds commands (and sometimes 

must, like init), and MUST 
implement Timer and Leds Events 

(none for Leds, but some for Timer)



Leds interface

The Leds interface is really simple, and 
provides only commands

some like init()

others like redOn(), redOff(), etc... to 
control the Leds.



Timer Interface

interface Timer {
command result_t start(char type, uint32_t interval);
command result_t stop();
command result_t fired();

}

start(...) is not related to 
start() of StdControl. It is 
used to specify the type of 

timer and the interval

The unit of interval 
are millisecond;

the valid types are 
TIMER_REPEAT and 
TIMER_ONE_SHOT

The fired event is called by 
the lower-level component 

(here SingleTimer) when the 
timer expires.

BlinkM MUST implement 
this event



BlinkM.nc, continued

implementation {

command result_t StdControl.init() {
call Leds.init();
return SUCCESS;

}

command result_t StdControl.start() {
return call Timer.start(TIMER_REPEAT, 1000);

}

command result_t StdControl.stop() {
return call Timer.stop();

}



BlinkM.nc, continued

event result_t Timer.fired()
{
call Leds.redToggle();
return SUCCESS;

}
}



Compiling

See later. Use Makefile provided by TyniOS.

make will eventually call ncc, the nesC compiler

ncc -o main.exe -target=pc Blink.nc

Makefile provides simpler interface, and self-
documentation : make pc docs builds the

docs/nesdoc/pc/

web pages to visualize the compiled dependency graph.



Exercise

Leds provides the following commands:

(red|green|blue)(On|Off)()

Toggle(red|green|blue)()

Modify the blinkM implementation to 
display the lower three bits of a counter 
that is incremented every second.



//Configuration is unchanged
//Module (BlinkM.nc)
module BlinkM {
provides {
interface StdControl;

}
uses {
interface Timer;
interface Leds;

}
}
implementation {
int counter;

command result_t
StdControl.init() {

counter = 0;
return call Leds.init();

}

command result_t
StdControl.start() {

return call Timer.start(
TIMER_REPEAT, 1000);

}

command result_t
StdControl.stop() {

return call Timer.stop();
}

event result_t
Timer.fired() {

counter++;
if(counter & 1)
call Leds.redOn();

else
call Leds.redOff();

.... }



Interface Instances

Gives the ability to use multiple times the interface in the same 
module by renaming it.

ADCControl is used for wiring to a StdControl interface

In fact, interface StdControl is just a shorthand for 
interface StdControl as StdControl

Beware to wiring: SenseM.ADC -> Sensor is just a shorthand for 
SenseM.ADC -> Sensor.ADC; BUT SenseM.ADCControl -> Sensor is NOT 
A SHORTHAND FOR SenseM.ADCControl -> Sensor.ADCControl. IT IS A 
SHORTHAND FOR SenseM.ADCControl -> Sensor.StdControl !

module SenseM {
provides { ... }
uses {
interface StdControl as ADCControl;
interface ADC;

}
}



Parameterized 
Interfaces

A parameterized interface allows a component to provide 
multiple instances of an interface that are parameterized by a 
runtime or compile-time value.

TimerC declare providing this interface, thus it provides 256 
different instances of the Timer interface.

By wiring the Timer interface in each component to a separate 
instance of the Timer interface provided by TimerC, each 
component can run its own “private” timer.

provides interface Timer[uint8_t id];
...
SenseM.Timer -> TimerC.Timer[3];



Parameterized 
Interfaces and unique

To avoid identifier overlappings, nesC includes the unique and 
uniqueCount routines.

unique(char *string) is resolved AT COMPILE TIME as a number 
different in each call, for the same string

uniqueCount(char *string) is resolved AT COMPILE TIME as the 
number of counters for this string.

Developpers have to use the same string to denote the same 
component. To avoid confusion, we use the name of the 
parameterized interface as an argument to the unique() 
function.

provides interface Timer[uint8_t id];
...
SenseM.Timer -> TimerC.Timer[unique(“Timer”)];



Tasks

A Task is declared in the implementation part of a 
module using the syntax

task void taskname() {...}

Tasks must return void and take no arguments.

To dispatch (schedule) a task for (later) 
execution, use the syntax

post taskname();

Posting a task is authorized within any context 
(command, event or even another task).



Tasks & Concurrency

async event result_t ADC.dataReady(uint16_t data) {
    putdata(data);
    post processData();
    return SUCCESS;
  }

task void processData() {
    int16_t i, sum=0;

    for (i=0; i < size; i++)
      sum += (rdata[i] >> 7);

    display(sum >> log2size);
  }



Concurrency & 
Atomicity

Asynchronous Code (AC): code that is reachable from at least 
one interrupt handler

Synchronous Code (SC): code that is only reachable from 
tasks.

Synchronous Code is atomic with respect to other 
Synchronous Code.

Any update to shared state from AC is a potential Race

Any update to shared state from SC that is also updated from 
AC is a potential Race.



Exemple: SurgeM (non-concurrent)

module SurgeM {
provides interface 
StdControl;
uses interface ADC;
uses interface Timer;
uses interface Send;

} implementation {
uint16_t sensor;

command result_t 
StdControl.init() {
return call Timer.start
(TIMER_REPEAT, 1000);

}

event result_t 
Timer.fired() {
call ADC.getData();
return SUCCESS;

}

event result_t 
ADC.dataReady(uint16_t 
data) {
sensor = data;
... send message ...
return SUCCESS;

}
...

}



How to avoid RC
Example: SurgeM

module SurgeM {
...

} implementation {
bool busy;
norace uint16_t sensor;

event result_t 
Timer.fired() {

bool localBusy;
atomic {
localBusy = busy;
busy = TRUE;

}
if( !localBusy )
call ADC.getData();

return SUCCESS;
}

...

task void sendData() {
adcPacket.data = sensor;
call Send.send(&adcPacket,
  sizeof(adcPacket.data));
return SUCCESS;

}

event result_t
  ADC.dataReady(uint16_t d)
{
sensor = d;
post sendData();
return SUCCESS;

}

event result_t Send.sent(...) 
{ ... 
atomic busy=FALSE; 
... }



Concurrency & 
Atomicity

Race Free Invariant: Any update to shared state is 
either not a potential race condition (SC only), or 
occurs within an atomic section

The compiler enforces this condition through the 
following rule:

If a variable x is accessed by AC, then any access of 
x outside of an atomic statement is a compile-time 
error.

To remove the error, the programmer must either add an 
atomic section, or move the offending code in a task.

Optionnaly, the programmer may hint to the compiler that 
some variable will not provoke a race condition 
(Dangerous).



Exercise

async event result_t ADC.dataReady(uint16_t data) {
    putdata(data);
    post processData();
    return SUCCESS;
  }

task void processData() {
    int16_t i, sum=0;

    for (i=0; i < size; i++)
      sum += (rdata[i] >> 7);

    display(sum >> log2size);
  }

Remove the RC



Communication: 
Radio & UART

interface ReceiveMsg {
event TOS_MsgPtr receive(TOS_MsgPtr m);

}

interface SendMsg {
command result_t send(

uint16_t address, 
uint8_t length,
TOS_MsgPtr msg);

event result_t sendDone(
TOS_MsgPtr m, 
result_t success);

}



configuration GenericComm
{
  provides {
    interface StdControl as Control;

    // The interface are as parameterised by the active message id
    interface SendMsg[uint8_t id];
    interface ReceiveMsg[uint8_t id];

    // How many packets were received in the past second
    command uint16_t activity();
  }
  uses {
    // signaled after every send completion for components which
    // wish to retry failed sends
    event result_t sendDone();
  }
}

Communication: 
Radio & UART



Active Messages

Each message type is identified by a unique id.

This id defines which function should be called at 
message reception.

In nesC, this is easily done through parameterized 
interfaces:

 you just have to wire the component which provides 
the implementation of the function with the correct 
interface number.

Here, we seldom use the unique(“”) function, since 
sender AND receiver must agree on the unique id.

We use C enumerated values defined in .h files



Example (emission)
bool pending;
struct TOS_Msg data;

...

command result_t
 SomeComponent.SomeCommand

(uint16_t value) {
IntMsg *message = 

(IntMsg *)data.data;

if( !pending ) {
pending = TRUE;

atomic {
message->val = value;
message->src = 
TOS_LOCAL_ADDRESS;

}

if(call 
Send.send(TOS_BCAST_ADDR,
 sizeof(IntMsg), &data))
return SUCCESS;

pending = FALSE;
}
return FAIL;

}



Example (reception)
RfmToIntM.ReceiveIntMsg -> GenericComm.ReceiveMsg[AM_INTMSG];

/* ... */
  event TOS_MsgPtr ReceiveIntMsg.receive(TOS_MsgPtr m) {
    IntMsg *message = (IntMsg *)m->data;
    call IntOutput.output(message->val);

    return m;
  }



Exercise

Write two TinyOS Applications:

One which sends a counter on the 
network

The other which receives this counter 
and displays the lowest three bits on 
its LEDs.



Simulation
tossim



TOSSIM

TinyOS Simulator.

Compilation is similar to a mote architecture (make pc)

TOSSIM can simulate 1000s nodes simultaneously

Every mote runs the SAME TinyOS program

TOSSIM provides debugging output

ASCII (default)

GUI (TinyViz), a Java-Based GUI.



TOSSIM and Compilation

Sources

.nc

Coprocessor

AT90L2313
EEPROM
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Serial
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Decoder

PC

SRAM
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SP

EEPROM
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I2C
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32.768 MHz

clock
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Figure 1: Photograph and schematic for representative network sensor platform

make telosb install

make mica install

build/pc/main.exe

make pc

0: LEDS: Yellow off.
0: LEDS: Green off.
0: LEDS: Red off.
0: Sending message: ffff, 4
!!! ff ff 04 7d 08 20 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 3b 
f3 00 00 01 00 00 00
0: LEDS: Yellow off.
0: LEDS: Green off.
0: LEDS: Red on.
0: Sending message: ffff, 4
!!! ff ff 04 7d 08 21 00 00 00 00 00 
00 00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00 00 00 ac 
e6 00 00 01 00 00 00

Fichier Édition Fenêtre

exec

Fichier Édition Fenêtre

TinyVizTinyViz

docs/nesdoc/

pc/

Doc html

make pc doc



Four key requirements
Scalability.

The largest TinyOS sensor netwrok deployed was 850 nodes wide

The simulator should handle 10’000s

Completeness.

Cover as many interactions as possible

Fidelity.

behavior of the network at fine grain

subtle timing interactions

must reveal unanticipated interactions

Bridging.

fill the gap between algorithms and implementation on real HW



Discrete Event 
Simulation

Discrete Event Simulation: 

the simulator handles a list of events totally ordered (date)

the first event is poped and its actions on the current state 
produces a new state and potentially a set of new events that 
are injected in the sorted list

and so on

TinyOS is event driven

Event driven executions maps well on discrete events simulation

very simple simulation engine



Abstractions

TOSSIM captures the behavior and 
interactions at network bit granularity.

Tasks are run “instantly”: the virtual 
time does not progress during task 
completions

allowing real preemption and 
interleaving would reduce scalability a 
lot (interpretation of the code instead 
of execution)

TOSSIM will not help checking the data 
RCs, but the compiler should do that.



TOSSIM Architecture
task void packetReceived(){
TOS MsgPtr tmp;

state = IDLE STATE;

tmp = signal Receive.receive((TOS Msg*)rec ptr);

if(tmp != 0) rec ptr = tmp;

call ChannelMon.startSymbolSearch();

}

Figure 2: TinyOS MicaHighSpeedRadioM Receive Task Code

SpiByteFifo are example hardware abstraction components.

Upward arrows represent event flow, downward arrows represent

command flow, and large triangles represent interrupts.

Figure 2 shows sample nesC code for a packet reception task,

taken from MicaHighSpeedRadioM. The task signals the re-

ceive event on the Receive interface, calls the startSym-

bolSearch command on the ChannelMon interface, and uses

two frame variables, rec ptr and state. It uses the return value

of the receive event to perform a buffer swap for its next receive

buffer.

TinyOS commands and events are very short, due to limited

code space and a finite state machine style of decomposition.

The rich event processing model means an event or command

call path can traverse several components. Understanding all of

the possible control flows can be difficult, especially when many

executions are asynchronous. Our experience with TinyOS has

shown that while failure bugs are usually quickly found, bugs that

produce operational but aberrant behavior, such as low channel

utilization, are far more difficult to discover; on the surface they are

indistinguishable from transient network conditions. Additionally,

while individual components are usually sound, they are written

as separate entities; this ignores the possible interactions that can

result from complex compositions.

The TinyOS component model allows us to easily change the

target platform frommote hardware to simulation by only replacing

a small number of low-level components. The event-driven execu-

tion model can be exploited for efficient event-driven simulation,

and the whole program compilation process can be re-targeted

for the simulator’s storage model and native instruction set. As

individual mote resources are very small, we can simulate many of

them within the simulator’s address space. The static component

memory model of TinyOS simplifies state management for these

large collections. Setting the right level of simulation abstraction

can accurately capture the behavior and interactions of TinyOS

applications; the challenge is to remain scalable and efficient. In the

next section, we present TOSSIM, our solution to this challenge.

3. TOSSIM
TOSSIM captures the behavior and interactions of networks of

thousands of TinyOS motes at network bit granularity. Figure

3 shows a graphical overview of TOSSIM. The TOSSIM archi-

tecture is composed of five parts: support for compiling TinyOS

component graphs into the simulation infrastructure, a discrete

event queue, a small number of re-implemented TinyOS hardware

abstraction components, mechanisms for extensible radio and ADC

models, and communication services for external programs to

interact with a simulation.

TOSSIM takes advantage of TinyOS’s structure and whole

system compilation to generate discrete-event simulations directly

from TinyOS component graphs. It runs the same code that

runs on sensor network hardware. By replacing a few low-level

components (e.g., those shaded in Figure 3), TOSSIM translates

hardware interrupts into discrete simulator events; the simulator

event queue delivers the interrupts that drive the execution of

Figure 3: TOSSIM Architecture: Frames, Events, Models,

Components, and Services

a TinyOS application. The remainder of TinyOS code runs

unchanged.

TOSSIM uses a very simple but surprisingly powerful abstrac-

tion for its wireless network. The network is a directed graph,

in which each vertex is a node, and each edge has a bit error

probability. Each node has a private piece of state representing

what it hears on the radio channel. This abstraction allows testing

under perfect transmission conditions (bit error rate is zero), can

capture the hidden terminal problem (for nodes a,b,c, there are
edges (a, b) and (b, c) but no edge (a, c)), and can capture many of
the different problems that can occur in packet transmission (start

symbol detection failure, data corruption, etc.).

The simulator engine provides a set of communication services

for interacting with external applications. These services allow

programs to connect to TOSSIM over a TCP socket to monitor

or actuate a running simulation. Details of the ADC and radio

models, such as readings and loss rates, can be both queried and

set. Programs can also receive higher level information, such as

packet transmissions and receptions or application-level events.

TOSSIM supports the TinyOS tool-chain, making the transitions

between simulated and real networks easy. Compiling to native

code allows developers to use traditional tools such as debuggers in

TOSSIM. As it is a discrete event simulation, users can set debug-

ger breakpoints and step through what is normally real-time code

(such as packet reception) without disrupting operation. It also

provides mechanisms for other programs to interact and monitor a

running simulation; by keeping monitoring and interaction external

to TOSSIM, the core simulator engine remains very simple and

efficient.

3.1 Compiler Support
Closing the gap between simulation and deployment, we modi-

fied the nesC compiler (ncc) to support compilation from TinyOS

component graphs into the simulator framework. With the change

of a compiler option, an application can be compiled for simu-

lation instead of mote hardware, and vice versa. This compiler

integration is also a key element to providing scalability and fidelity

simultaneously. In the TinyOS memory model, component frames



TinyOS Tool Chain
TOSSIM is “just another mote target”

the transistion between simulated and 
real networks is easy

the simulator runs native code, thus 
user can use debuggers in TOSSIM

It also provide mechanisms for other 
programs to interact and monitor a 
running simulation



Example TOSSIM 
compilation

nesC TinyOS Code Mote C Code TOSSIM C Code

result_t 
StdControl.init() {
  state = 0;
  return SUCCESS;
}

result_t Counter
$StdControl$init
(void) {
  Counter$state=0;
  return SUCCESS;
}

result_t Counter
$StdControl$init
(void) {
  Counter$state
[tos_state.current_
node] = 0;
  return SUCCESS;
}



Execution Model
Core of TOSSIM: a simulator event queue

Interrupts are modeled through simulator events (!= TinyOS 
events)

A simulator event calls an interrupt handler in HW abstraction 
component

TOSSIM keeps time at mote instruction clock cycle granularity 
(4MHz)

At start, mote are given random times

Every TOSSIM events happens at a given time and takes a delta 
time to run (non zero time to have total order of events, but 
sum of delta = 0)

After running a simulation event, TOSSIM executes all the tasks 
on this mote



Hardware Emulation

TinyOS abstracts each HW resource as a component.

ADC (Analog to Digital Converter)

Clock

Transmit strength variable potentiometer

EEPROM

boot sequence

several of the radio stack

low level components abstracting sensors (special case)

E.G. getData() of the ADC will produce a dataReady() event 
later (depending on the duration of the getData operation)



Sample Execution

SenseToLeds

at 1Hz, getData();

when dataReady(); do 
ledsToggle();

timer events are 4 
Million ticks appart

ADC takes 50µs -> 200 

Time 
(4MHz) Action

3987340

Simulator event is dequeued
Clock interrupt handler call
Timer event signaled
  command getData();
ADC comp. puts a sim. event on 
the queue at 3987540
Clock puts a sim. event on the 
queue at 7987340

3987540

Sim. ADC event is dequeued
ADC interrupt handler call
ADC ready event signaled
  call ledsToggle();

7987340
Simulator event is dequeued
Clock interrupt handler call
...



Network: 
Communication Service

TOSSIM provides mechanisms that allow PC applications to 
drive, monitor and actuate simulation through TCP/PI

TOSSIM signals events with data to applications

e.g. debug messages

radio and UART packets sent

actuators (leds) and sensor readings

Application can

change radio link probabilities

change sensor reading values

turn motes on and off

inject radio and UART packets

TinyViz is built 
on this interface



Data Link Layer

Most Complex System of TOSSIM

Provides the networking stack of TinyOS

Must simulate the networking stack at 
high fidelity but keeping scalability

Choice: bit-level simulation.

The user provides a single probability 
per link: the probability that a bit is 
flip.



TinyOS NetworkingFigure 6: TinyViz connected to TOSSIM running an object tracking application. The right panel shows sent radio packets, the left

panel exhibits radio connectivity for mote 15 and network traffic. The arrows represent link quality and packet transmissions.

3.7.1 TinyOS Networking: AM and Below

The TinyOS packet abstraction is an Active Message [25]. AM

packets are an unreliable data link protocol, and the TinyOS

network stack handles media access control and single hop packet

transmission. Active Messages provide precise timestamps as well

as synchronous data-link acknowledgments. TinyOS provides a

namespace of up to 256 AM message types, each of which can

be associated with a separate software handler.

Figure 7 shows the different phases of packet transmission and

reception. The sender first enters a CSMA delay period, listening

for an idle channel. The sender then transmits a packet start

symbol at 10Kbps, which a receiver samples for at 20Kbps. As

the following data is transmitted at 40Kbps, after the start symbol

the receiver must synchronize to the sender at a finer granularity.

The sender pauses for a few bit times after the start symbol, then

transmits a one bit. The receiver, after the start symbol, polls

the channel to identify the falling edge denoting the sender pause.

Once it has done so, it polls again, this time for the next rising edge,

using an input capture register to take a precise timestamp. These

two spin loops take roughly 400-600 µs. The receiver adjusts its
radio clock so that its 40Kbps data sample rate is synchronized with

the sender’s signal. The sender starts transmitting encoded packet

data, which the receiver decodes into a packet buffer.

Once the packet data has been read in, the sender transmits a

pulse of ones for the receiver to use for measuring signal strength.

After this strength pulse, the sender transitions into receive mode

and the receiver transitions into send mode. The sender introduces

a short pause in its timing as part of this phase shift; as the receiver

was sampling after the sender actually transmitted a bit, the sender

must shift its sampling point to be after the receiver. The receiver

then transmits a short bit pattern indicating acknowledgment; if the

sender hears it, it marks the sent packet as acknowledged before

passing it back in a send done event. The receiver checks the packet

CRC, discarding corrupted packets. If the packet is addressed for

Figure 7: TinyOS Packet Sending/Reception

the receiver or the broadcast address, the networking stack signals

a reception event of the proper AM type.

3.7.2 Network Simulation

The TinyOS stack uses three network sampling rates at different

phases of packet reception and transmission: 40Kbps for data,

20Kbps for receiving a start symbol, and 10Kbps for sending a start

symbol. In TOSSIM, adjustments to radio bit-rates are made by

changing the period between radio clock events. The combination

of bit sampling and bit-rate changes nearly captures the entire stack.

There is one exception: the pair of spin loops to synchronize a

sender signal, the one place where TinyOS breaks its event-driven

methodology.

Under simulation, we maintain the event-driven concept by

ignoring the first spin loop (for the zero) and handling the second

(for the one) with additional state. Whenever a mote transmits the

synchronization bit, it checks if any of the motes that can hear it

are in the synchronization listening state. If it finds such a mote, it

enqueues a radio event for the receiver representing the occurrence

of the input capture.



TOSSIM 
network simulation

TinyOS uses three network sampling rates

40KBps for data, 20 Kbps for receiving a start symbol, 10 
Kbps for sending a start symbol

in TOSSIM, adjustments to radio bit-rates are made by 
changing the period between radio clock events.

Handled by simulation events

Exception: spin-loops to synchronize sender signal

first loop (0) is ignored

second loop (1): when a mote send it, it checks if any 
mote is in the listening state. If so, it enqueues a radio 
event for the receiver
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1 - Fidelity/radio noise
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Figure 8: Empirical and Corresponding Simulated Packet Loss

Data

This implementation results in an almost perfect simulation of

the TinyOS networking stack at a bit level; TOSSIM accurately

simulates the hidden node problem and can simulate errors at all

phases of packet reception. When two nodes have interfering

transmissions, a third listening node will just see the union of

the two sender’s bits, leading to both signals being corrupted.

Additionally, delay arises when motes repeatedly enter CSMA

wait because they continue to hear a signal on the channel.

A single bit error during the data phase can be handled with

the data encoding, but a single bit error during start symbol

detection will prevent reception and a single bit error during

acknowledgment transmission will cause it to fail. This granularity

changes the methodology with which one normally approaches

network simulation. For example, instead of modeling latency,

by modeling the network itself TOSSIM simulates contention and

backoff, which are causes of latency.

4. EVALUATION
We evaluate how well TOSSIM meets the four core needs of

a sensor network simulator: fidelity, completeness, bridging, and

scalability. To evaluate its fidelity and completeness, we used

Surge, a sample application that comes packaged with TinyOS.

Surge is a simple send/report program; nodes periodically collect

sensor readings and route them to a base station, which collects

and graphically displays them for the user. We discuss the Surge

protocol in greater depth in Section 4.4.1.

4.1 Fidelity: Radio Noise
We have developed a tool that generates radio loss graphs from

physical topologies, based on empirical loss data gathered from

a real-world network. The empirical data is from a network of

twenty-six motes, placed in a line, spaced at regular two foot

intervals, with the TinyOS radio set at a medium power setting

(50 out of 100). Each mote transmitted two hundred packets, with

each other mote keeping track of the number of packets heard.

Figure 8(a) shows a plot of this empirical data as loss rates over

distance.

To generate lossy models, we took this empirical data and

generated Gaussian packet loss probability distributions for each

distance. Given a physical mote topology, the tool generates packet

loss rates for each mote pair by sampling these distributions. The

tool translates packet error rates into independent bit error rates.

Figure 8(b) shows the results of the experiment used to gather loss

data when run in TOSSIM.

This model is by no means perfect. Instead, it demonstrates

that the simple bit-error mechanism provided by TOSSIM allows

the implementation of complex models. For example, instead of
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Figure 9: Packet CRC Failure Rates in Surge for Three

Network Densities and Varying Sensing Frequencies. Each

line shows a different network density, specified by the spacing

between nodes in a 5x5 grid.

sampling from these distributions, loss rates could be generated

by functions of distance, set to be constant, or derived from other

experimental data. TOSSIM remains uncommitted to a specific

model, allowing developers to choose one that fits their needs.

Protocols can be tested for correctness with error-free models, and

also tested in the presence of packet loss.

4.2 Fidelity: Packet-level Interactions
Simulating network contention, the hidden terminal problem,

and packet corruption are important requirements for TOSSIM. To

evaluate whether the very simple networking model of TOSSIM

can capture all of these complex interactions, we simulated Surge

running at a range of sampling frequencies, from once per second

to once every nine seconds. We simulated each frequency in a 5x5

grid network, at three network densities. The densest network had

the 25 motes spaced 10 feet apart (a 40’ by 40’ area), while the

sparsest had them spaced at 20 feet (an 80’ by 80’ area). For each

simulation, we calculated the percentage of packets that were lost

due to CRC failures. Figure 9 shows the results.

Two factors are at play in this study. The first is transmission

rate. As the network send rate increases, so does the probability of

collision. The second is network density. While the densest (single

cell) networks do not suffer from the hidden terminal problem,

neither do the sparsest (in which nodes have no neighbors). Real

networks, of course, are more complex than this: cells are not

simple and discrete. These two factors can be seen in the simulation

results; the densest network (10 foot spacing) has the highest packet

loss due to CRC failures, and that loss is most acute at the highest

transmission rate.

If one thinks of a sensor network as a graph, then the hidden

terminal problem occurs when there are three vertices a, b, and c,
with edges (a, b) and (b, c) (but no (a, c)). Both a and c transmit at
the same time, corrupting each other’s signals at b. If, for a vertex
v, one assumes each neighbor has an independent probability
of transmitting, then as the degree of v increases, so does the

probability that two neighbors will transmit concurrently. In other

words, the more neighbors a node has (that cannot hear each other),

the greater the chance they will interfere with one another. Of

course, in the real world it is more complex: neighbors can often

hear each other. Also, as a network becomes sparser, there will
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This implementation results in an almost perfect simulation of

the TinyOS networking stack at a bit level; TOSSIM accurately

simulates the hidden node problem and can simulate errors at all

phases of packet reception. When two nodes have interfering

transmissions, a third listening node will just see the union of

the two sender’s bits, leading to both signals being corrupted.

Additionally, delay arises when motes repeatedly enter CSMA

wait because they continue to hear a signal on the channel.

A single bit error during the data phase can be handled with

the data encoding, but a single bit error during start symbol

detection will prevent reception and a single bit error during

acknowledgment transmission will cause it to fail. This granularity

changes the methodology with which one normally approaches

network simulation. For example, instead of modeling latency,

by modeling the network itself TOSSIM simulates contention and

backoff, which are causes of latency.

4. EVALUATION
We evaluate how well TOSSIM meets the four core needs of

a sensor network simulator: fidelity, completeness, bridging, and

scalability. To evaluate its fidelity and completeness, we used

Surge, a sample application that comes packaged with TinyOS.

Surge is a simple send/report program; nodes periodically collect

sensor readings and route them to a base station, which collects

and graphically displays them for the user. We discuss the Surge

protocol in greater depth in Section 4.4.1.

4.1 Fidelity: Radio Noise
We have developed a tool that generates radio loss graphs from

physical topologies, based on empirical loss data gathered from

a real-world network. The empirical data is from a network of

twenty-six motes, placed in a line, spaced at regular two foot

intervals, with the TinyOS radio set at a medium power setting

(50 out of 100). Each mote transmitted two hundred packets, with

each other mote keeping track of the number of packets heard.

Figure 8(a) shows a plot of this empirical data as loss rates over

distance.

To generate lossy models, we took this empirical data and

generated Gaussian packet loss probability distributions for each

distance. Given a physical mote topology, the tool generates packet

loss rates for each mote pair by sampling these distributions. The

tool translates packet error rates into independent bit error rates.

Figure 8(b) shows the results of the experiment used to gather loss

data when run in TOSSIM.

This model is by no means perfect. Instead, it demonstrates

that the simple bit-error mechanism provided by TOSSIM allows

the implementation of complex models. For example, instead of
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Network Densities and Varying Sensing Frequencies. Each

line shows a different network density, specified by the spacing

between nodes in a 5x5 grid.

sampling from these distributions, loss rates could be generated

by functions of distance, set to be constant, or derived from other

experimental data. TOSSIM remains uncommitted to a specific

model, allowing developers to choose one that fits their needs.

Protocols can be tested for correctness with error-free models, and

also tested in the presence of packet loss.

4.2 Fidelity: Packet-level Interactions
Simulating network contention, the hidden terminal problem,

and packet corruption are important requirements for TOSSIM. To

evaluate whether the very simple networking model of TOSSIM

can capture all of these complex interactions, we simulated Surge

running at a range of sampling frequencies, from once per second

to once every nine seconds. We simulated each frequency in a 5x5

grid network, at three network densities. The densest network had

the 25 motes spaced 10 feet apart (a 40’ by 40’ area), while the

sparsest had them spaced at 20 feet (an 80’ by 80’ area). For each

simulation, we calculated the percentage of packets that were lost

due to CRC failures. Figure 9 shows the results.

Two factors are at play in this study. The first is transmission

rate. As the network send rate increases, so does the probability of

collision. The second is network density. While the densest (single

cell) networks do not suffer from the hidden terminal problem,

neither do the sparsest (in which nodes have no neighbors). Real

networks, of course, are more complex than this: cells are not

simple and discrete. These two factors can be seen in the simulation

results; the densest network (10 foot spacing) has the highest packet

loss due to CRC failures, and that loss is most acute at the highest

transmission rate.

If one thinks of a sensor network as a graph, then the hidden

terminal problem occurs when there are three vertices a, b, and c,
with edges (a, b) and (b, c) (but no (a, c)). Both a and c transmit at
the same time, corrupting each other’s signals at b. If, for a vertex
v, one assumes each neighbor has an independent probability
of transmitting, then as the degree of v increases, so does the

probability that two neighbors will transmit concurrently. In other

words, the more neighbors a node has (that cannot hear each other),

the greater the chance they will interfere with one another. Of

course, in the real world it is more complex: neighbors can often

hear each other. Also, as a network becomes sparser, there will



Practical
tinyos



TinyOS WebSite

www.tinyos.net

or “tinyos I’m feeling lucky in google”

Tutorial:

www.tinyos.net/tinyos-1.x/doc/tutorial



Installation

Simplest: use the Windows installation.

(Sadly, the simplest way of doing it)

(Sadly, because it will install Cygwin)

(So, a linux-native installation should 
be better)

Install under Linux: follow the website.



What you need 
to simulate

Java 1.5 JDK

Cygwin (under windows)

Native Compilers

AVR toolchain for mica family

MSP430 toolchain for telos family

One of them (AVR is simpler) for Simulation

nesC compiler (which uses native compiler, so expect one)

TinyOS source tree from CVS or stable tarball

Graphviz if you want to make docs of your codes



Recommandations

Use TinyOS 1.x, TinyOS 2.x is not 
compatible with 1.x

Install the TinyOS 1.1.0 with wizard

Then optionally, upgrade Cygwin and 
install TinyOS 1.1.15 from CVS



Try
After (windows) installation:

Launch a terminal (Cygwin icon)

TOS is in /opt/tinyos-1.x

The GUI of TOSSIM is located into

/opt/tinyos-1.x/tools/java/net/tinyos/sim/

it is the (java) program called tinyviz

Go into the Blink application:

cd /opt/tinyos-1.x/apps/Blink

build the application: make pc

run it: ./build/pc/main.exe 1

Stop with Control-C (^C)



Try (2)

By default, TOSSIM displays ALL the events. Most of them are 
with the radio, that is not important for this test.

You can configure TOSSIM to select which events you want to 
display through the environment variable DBG. The expected 
format is a comma separated list of strings (e.g. “am,led” to 
display Active-Messages and Leds events). Find the complete 
list in the article “TOSSIM: A Simulator for TinyOS Networks” 
or ./build/pc/main.exe --help for other options.

Set DBG to led to display only Leds related events.

type export DBG=led

relaunch ./build/pc/main.exe 1

Stop with ^C again. The trace present leds blinking.



Try (3)
Enable tinyviz: go into the /opt/tinyos-1.x/tools/java/net/
tinyos/sim directory and copy the tinyviz script into /bin 
(or anywhere in your PATH)

edit the /bin/tinyviz file and change the BASE variable to 
equal “/opt/tinyos-1.x/tools/java/net/tinyos/sim”

return to the application directory (/opt/tinyos-1.x/apps) 
and try to launch tinyviz. If it doesn’t work, the copy or 
editing failed.

Look at the TestTinyViz application into apps. It does 
random neighbour communication. build it with make pc

set the DBG variable to usr1,am (to have the debug messages 
+ the Active-Messages events) (export DBG=usr1,am)

And launch the application inside tinyviz:

tinyviz -run build/pc/main.exe 30



Try (4)
You need first to enable some Tinyviz 
Plugins (Radio Links, Sent Radio Packets 
and Debug Messages for this test)

Then launch or stop/launch (Sim Time 
should progress)

Have a look at lesson5 of inline tutorial 
to know more options of TinyViz



TinyOS Directory

apps/

Applications you can find in the tutorial.

doc/

docs, including the tutorial

regression/

tests

tools/

tools, including tinyviz

tos/

“operating system”



the tos/ directory
interfaces/

All the predefined interfaces. Take a look.

lib/

Platform independant usefull modules, like Counters, 
LedsIntensity...

platform/

low-level components (hw abstractions depending on the mote)

sensorboards/

low-level components (hw abstractions depending on the sensor)

system/

synthetic hardware components

types/

some .h files



TinyOS 2.0

Still Beta

But will replace TinyOS 1.x soon.

Code is not backward compatible with 
TinyOS 1.x



Platform/HW 
abstraction

a platform is a collection of chips and some glue code 
that connect them together

e.g. mica2 = CC1000 radio chip + ATmega129 µcontroller + 
AVR compiler

Hardware Abstraction Architecture

Hardware Presentation Layer

IO pins or registers as components

Hardware Abstraction Layer

built on top of HAA, presents the same 
functionalities with simpler interfaces

Hardware Independant Layer

Generalization (-> not all the functionalities)



Scheduler

Tasks are slightly different:

Single TQ in 1.x could be full when 
posting completion of a split-phase 
operation

So, in 2.x, every task has its own 
reserved slot in TQ, and each task can 
only posted ONCE. A post fails iff the 
task has already been posted.

Applications can replace the scheduler.

It is still important to maintain non-
preemptiveness.



Booting/Initializing

The 1.x interface StdControl has been 
split into two interfaces:

Init with only the init() command

StdControl with only the start() and 
stop() commands.

The boot sequence does not signal start() 
automatically, it signals Boot.booted() 
event. The top-level application must 
wire this interface and call the 
corresponding start() commands



Virtualization

TinyOS 2.0 is written in nesC 1.2 which introduce the 
concept of a ‘generic’ or instantiable component.

This provides reusable dataé structures, like queues 
and bits of vectors

Many TinyOS 1.x parameterized components are now 
virtualized.

the virtualization does all of the wiring underneath 
(with a unique instantiator if necessary) 
automatically



Timers

Timer interface has been improved.

Three types of times: millisecond, 32KHz or one or two 
high-precision timers that fire asynchronously

Components can query the timer for how much time 
remains before firing

Components can start timers in the future



Communication

message buffer type is now message_t. It is opaque and 
components cannot reference its fields.

Instead, all buffer access go through interfaces

e.g. instead of looking the msg->dest field, one call 
AMPacket.destination(msg)

Send interfaces distinguish between the addressing modes

e.g. AM communication has the AMSend interface, to 
provide the AM destination address; broadcast has the 
Send (without address) interface

No TOS_UART_ADDRESS. The component should wire to 
SerialActiveMessageC



Error Codes
SUCCESS has been redefined from 1 (1.x) to 0 (2.0).

This means that tests like
      if( call X.y() ) { ... }
will now do the contrary of what is expected.

Programmers must change to
       if( call X.y() == SUCCESS ) { ... }

The result_t type is replaced by the error_t type.



Arbitration

Some resource cannot be virtualized easily. 

For example, a shared bus on a µcontroller.

many different systems (sensors, storage, radio) might 
need to use the bus at the same time

TinyOS 2.0 introduces the Resource interface which 
components use to request and acquire shared resources, and 
arbiters, which provide a policy of arbitrating access 
between multiple clients.

For some abstractions, the arbiter also provides a power 
management policy



Power Management

Divided into two parts

power state of the µcontroller

chip-specific

power state of devices

arbiters

Radio has low-power stacks for some chips



Network Protocols

Components for

reliable dissemination

reliable collection
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