
Introduction to Erlang
Sébastien Tixeuil

Sebastien.Tixeuil@lip6.fr

Erlang History

• Erlang: Ericsson Language

• Designed to implement large-scale real-
time telecommunication switching systems

• Open source version

•http://www.erlang.org

Main Characteristics
• Declarative

• Concurrent

• Real-time

• Continuous operation

• Robust

• Memory management

• Distribution

• Integration

Basics

• ‘%’ starts a comment

• ‘.’ ends a declaration

• Every function must be in a module

• source file name is module name +
“.erl”

• ‘:’ used for calling functions in other
modules

Basics

1.2: Sequential Programming

3 halt().
%

1.2.2 Modules and Functions

A programming language isn't much use if you can just run code from the shell. So here is a small
Erlang program. Enter it into a file called tut.erl (the file name tut.erl is important, also make sure
that it is in the same directory as the one where you started erl (*manual*) using a suitable text editor.
If you are lucky your editor will have an Erlang mode which will make it easier for you to enter and
format your code nicely (*manual*), but you can manage perfectly well without. Here's the code to
enter:

-module(tut).
-export([double/1]).

double(X) ->
2 * X.

It's not hard to guess that this “program” doubles the value of numbers. I'll get back to the first two
lines later. Let's compile the program. This can be done in your Erlang shell as shown below:

3 c(tut).
ok,tut

The ok,tut tells you that the compilation was OK. If it said “error” instead, you have made some
mistake in the text you entered and there will also be error messages to give you some idea as to what
has gone wrong so you can change what you have written and try again.

Now lets run the program.

4 tut:double(10).
20

As expected double of 10 is 20.

Now let's get back to the first two lines. Erlang programs are written in files. Each file contains what we
call an Erlang module. The first line of code in the module tells us the name of the module (*manual*).

-module(tut).

This tells us that the module is called tut. Note the “.” at the end of the line. The files which are used to
store the module must have the same name as the module but with the extension “.erl”. In our case the
file name is tut.erl. When we use a function in another module, we use the syntax,
module name:function name(arguments). So

4 tut:double(10).

means call function double in module tut with argument “10”.

The second line:

3Getting Started with Erlang

The Erlang Shell

Chapter 1: Getting Started With Erlang

1.2 Sequential Programming

1.2.1 The Erlang Shell

Most operating systems have a command interpreter or shell, Unix and Linux have many, Windows has
the Command Prompt. Erlang has its own shell where you can directly write bits of Erlang code and
evaluate (run) them to see what happens (*manual*). Start the Erlang shell (in Linux or UNIX) by
starting a shell or command interpreter in your operating system and typing erl, you will see something
like this.

% erl
Erlang (BEAM) emulator version 5.2 [source] [hipe]

Eshell V5.2 (abort with ^G)
1

Now type in “2 + 5.” as shown below.

1 2 + 5.
7
2

In Windows, the shell is started by double-clicking on the Erlang shell icon.

You'll notice that the Erlang shell has numbered the lines that can be entered, (as 1 2) and that it
has correctly told you that 2 + 5 is 7! Also notice that you have to tell it you are done entering code by
finishing with a full stop “.” and a carriage return. If you make mistakes writing things in the shell, you
can delete things by using the backspace key as in most shells. There are many more editing commands
in the shell (*manual*).

(Note: you will find a lot of line numbers given by the shell out of sequence in this tutorial as it was
written and the code tested in several sessions).

Now let's try a more complex calculation.

2 (42 + 77) * 66 / 3.
2618.00

Here you can see the use of brackets and the multiplication operator “*” and division operator “/”, just
as in normal arithmetic (*manual*).

To shutdown the Erlang system and the Erlang shell type Control-C. You will see the following output:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

a
%

Type “a” to leave the Erlang system.

Another way to shutdown the Erlang system is by entering halt():

2 Getting Started with Erlang

Chapter 1: Getting Started With Erlang

1.2 Sequential Programming

1.2.1 The Erlang Shell

Most operating systems have a command interpreter or shell, Unix and Linux have many, Windows has
the Command Prompt. Erlang has its own shell where you can directly write bits of Erlang code and
evaluate (run) them to see what happens (*manual*). Start the Erlang shell (in Linux or UNIX) by
starting a shell or command interpreter in your operating system and typing erl, you will see something
like this.

% erl
Erlang (BEAM) emulator version 5.2 [source] [hipe]

Eshell V5.2 (abort with ^G)
1

Now type in “2 + 5.” as shown below.

1 2 + 5.
7
2

In Windows, the shell is started by double-clicking on the Erlang shell icon.

You'll notice that the Erlang shell has numbered the lines that can be entered, (as 1 2) and that it
has correctly told you that 2 + 5 is 7! Also notice that you have to tell it you are done entering code by
finishing with a full stop “.” and a carriage return. If you make mistakes writing things in the shell, you
can delete things by using the backspace key as in most shells. There are many more editing commands
in the shell (*manual*).

(Note: you will find a lot of line numbers given by the shell out of sequence in this tutorial as it was
written and the code tested in several sessions).

Now let's try a more complex calculation.

2 (42 + 77) * 66 / 3.
2618.00

Here you can see the use of brackets and the multiplication operator “*” and division operator “/”, just
as in normal arithmetic (*manual*).

To shutdown the Erlang system and the Erlang shell type Control-C. You will see the following output:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

a
%

Type “a” to leave the Erlang system.

Another way to shutdown the Erlang system is by entering halt():

2 Getting Started with Erlang

Chapter 1: Getting Started With Erlang

1.2 Sequential Programming

1.2.1 The Erlang Shell

Most operating systems have a command interpreter or shell, Unix and Linux have many, Windows has
the Command Prompt. Erlang has its own shell where you can directly write bits of Erlang code and
evaluate (run) them to see what happens (*manual*). Start the Erlang shell (in Linux or UNIX) by
starting a shell or command interpreter in your operating system and typing erl, you will see something
like this.

% erl
Erlang (BEAM) emulator version 5.2 [source] [hipe]

Eshell V5.2 (abort with ^G)
1

Now type in “2 + 5.” as shown below.

1 2 + 5.
7
2

In Windows, the shell is started by double-clicking on the Erlang shell icon.

You'll notice that the Erlang shell has numbered the lines that can be entered, (as 1 2) and that it
has correctly told you that 2 + 5 is 7! Also notice that you have to tell it you are done entering code by
finishing with a full stop “.” and a carriage return. If you make mistakes writing things in the shell, you
can delete things by using the backspace key as in most shells. There are many more editing commands
in the shell (*manual*).

(Note: you will find a lot of line numbers given by the shell out of sequence in this tutorial as it was
written and the code tested in several sessions).

Now let's try a more complex calculation.

2 (42 + 77) * 66 / 3.
2618.00

Here you can see the use of brackets and the multiplication operator “*” and division operator “/”, just
as in normal arithmetic (*manual*).

To shutdown the Erlang system and the Erlang shell type Control-C. You will see the following output:

BREAK: (a)bort (c)ontinue (p)roc info (i)nfo (l)oaded
(v)ersion (k)ill (D)b-tables (d)istribution

a
%

Type “a” to leave the Erlang system.

Another way to shutdown the Erlang system is by entering halt():

2 Getting Started with Erlang

io:format
Chapter 1: Getting Started With Erlang

1.2.7 Writing Output to a Terminal

It's nice to be able to do formatted output in these example, so the next example shows a simple way to
use to use the io:format function. Of course, just like all other exported functions, you can test the
io:format function in the shell:

32 io:format("hello world~n", []).
hello world
ok
33 io:format("this outputs one Erlang term: ~w~n", [hello]).
this outputs one Erlang term: hello
ok
34 io:format("this outputs two Erlang terms: ~w~w~n", [hello, world]).
this outputs two Erlang terms: helloworld
ok
35 io:format("this outputs two Erlang terms: ~w ~w~n", [hello, world]).
this outputs two Erlang terms: hello world
ok

The function format/2 (i.e. format with two arguments) takes two lists. The first one is nearly always a
list written between “ ”. This list is printed out as it stands, except that each ~w is replaced by a term
taken in order from the second list. Each ~n is replaced by a new line. The io:format/2 function itself
returns the atom ok if everything goes as planned. Like other functions in Erlang, it crashes if an error
occurs. This is not a fault in Erlang, it is a deliberate policy. Erlang has sophisticated mechanisms to
handle errors which we will show later. As an exercise, try to make io:format crash, it shouldn't be
difficult. But notice that although io:format crashes, the Erlang shell itself does not crash.

1.2.8 A Larger Example

Now for a larger example to consolidate what we have learnt so far. Assume we have a list of
temperature readings from a number of cities in the world. Some of them are in Celsius (Centigrade)
and some in Fahrenheit (as in the previous list). First let's convert them all to Celsius, then let's print
out the data neatly.

%% This module is in file tut5.erl

-module(tut5).
-export([format_temps/1]).

%% Only this function is exported
format_temps([])-> % No output for an empty list

ok;
format_temps([City | Rest]) ->

print_temp(convert_to_celsius(City)),
format_temps(Rest).

convert_to_celsius({Name, {c, Temp}}) -> % No conversion needed
{Name, {c, Temp}};

convert_to_celsius({Name, {f, Temp}}) -> % Do the conversion
{Name, {c, (Temp - 32) * 5 / 9}}.

10 Getting Started with Erlang

Manual

1.2: Sequential Programming

list_length([]) ->
0;

The length of an empty list is obviously 0.

list_length([First | Rest]) ->
1 + list_length(Rest).

The length of a list with the first element First and the remaining elements Rest is 1 + the length of
Rest.

(Advanced readers only: This is not tail recursive, there is a better way to write this function).

In general we can say we use tuples where we would use “records” or “structs” in other languages and
we use lists when we want to represent things which have varying sizes, (i.e. where we would use linked
lists in other languages).

Erlang does not have a string date type, instead strings can be represented by lists of ASCII characters.
So the list [97,98,99] is equivalent to “abc”. The Erlang shell is “clever” and guesses the what sort of
list we mean and outputs it in what it thinks is the most appropriate form, for example:

31 [97,98,99].
"abc"

1.2.6 Standard Modules and Manual Pages

Erlang has a lot of standard modules to help you do things. For example, the module io contains a lot of
functions to help you do formatted input/output. To look up information about standard modules, the
command erl -man can be used at the operating shell or command prompt (i.e. at the same place as
that where you started erl). Try the operating system shell command:

% erl -man io
ERLANG MODULE DEFINITION io(3)

MODULE
io - Standard I/O Server Interface Functions

DESCRIPTION
This module provides an interface to standard Erlang IO
servers. The output functions all return ok if they are suc-
...

If this doesn't work on your system, the documentation is included as HTML in the Erlang/OTP
release, or you can read the documentation as HTML or download it as PDF from either of the sites
www.erlang.se (commercial Erlang) or www.erlang.org (open source), for example for release R9B:

http://www.erlang.org/doc/r9b/doc/index.html

9Getting Started with Erlang

Pattern Matching

• The expression “Pattern =
Expression” causes “Expression” to
be evaluated and the result matched against
“Pattern”

• If the match succeeds, “Pattern” is then
bound

Pattern Matching22 Sequential Programming

Examples:

{A, B} = {12, apple}

succeeds with the bindings A !→ 123 and, B !→ apple.

{C, [Head|Tail]} = {{222, man}, [a,b,c]}

succeeds with the bindings C !→ {222, man} , Head !→ a and, Tail !→ [b, c].

[{person, Name, Age, _}|T] =
[{person, fred, 22, male},
{person, susan, 19, female}, ...]

succeeds with the bindings T !→ [{person, susan, 19, female}, ...]},
Name !→ fred and Age !→ 22. In the last example we made use of the anonymous
variable written ‘_’ – anonymous variables are used when the syntax requires a
variable but we are not interested in its value.

If a variable occurs more than once in a pattern then the match will only suc-
ceed if the corresponding elements being matched have the same value. So, for ex-
ample, {A, foo, A} = {123, foo, 123} succeeds, binding A to 123, whereas
{A, foo, A} = {123, foo, abc} fails since we cannot simultaneously bind A to
123 and abc.

‘=’ is regarded as an infix right associative operator. Thus A = B = C = D is
parsed as A = (B = (C = D)). This is probably only useful in a construction like
{A, B} = X = ... where we want both the value of an expression and its con-
stituents. The value of the expression Lhs = Rhs is defined to be Rhs.

2.2.2 Pattern matching when calling a function

Erlang provides choice and flow of control through pattern matching. For ex-
ample, Program 2.1 defines a function classify_day/1, which returns weekEnd if
called with argument saturday or sunday, or it returns weekDay otherwise.

-module(dates).
-export([classify_day/1]).

classify_day(saturday) -> weekEnd;
classify_day(sunday) -> weekEnd;
classify_day(_) -> weekDay.

Program 2.1

3The notation Var !→ Value means that the variable Var has the value Value.

22 Sequential Programming

Examples:

{A, B} = {12, apple}

succeeds with the bindings A !→ 123 and, B !→ apple.

{C, [Head|Tail]} = {{222, man}, [a,b,c]}

succeeds with the bindings C !→ {222, man} , Head !→ a and, Tail !→ [b, c].

[{person, Name, Age, _}|T] =
[{person, fred, 22, male},
{person, susan, 19, female}, ...]

succeeds with the bindings T !→ [{person, susan, 19, female}, ...]},
Name !→ fred and Age !→ 22. In the last example we made use of the anonymous
variable written ‘_’ – anonymous variables are used when the syntax requires a
variable but we are not interested in its value.

If a variable occurs more than once in a pattern then the match will only suc-
ceed if the corresponding elements being matched have the same value. So, for ex-
ample, {A, foo, A} = {123, foo, 123} succeeds, binding A to 123, whereas
{A, foo, A} = {123, foo, abc} fails since we cannot simultaneously bind A to
123 and abc.

‘=’ is regarded as an infix right associative operator. Thus A = B = C = D is
parsed as A = (B = (C = D)). This is probably only useful in a construction like
{A, B} = X = ... where we want both the value of an expression and its con-
stituents. The value of the expression Lhs = Rhs is defined to be Rhs.

2.2.2 Pattern matching when calling a function

Erlang provides choice and flow of control through pattern matching. For ex-
ample, Program 2.1 defines a function classify_day/1, which returns weekEnd if
called with argument saturday or sunday, or it returns weekDay otherwise.

-module(dates).
-export([classify_day/1]).

classify_day(saturday) -> weekEnd;
classify_day(sunday) -> weekEnd;
classify_day(_) -> weekDay.

Program 2.1

3The notation Var !→ Value means that the variable Var has the value Value.

22 Sequential Programming

Examples:

{A, B} = {12, apple}

succeeds with the bindings A !→ 123 and, B !→ apple.

{C, [Head|Tail]} = {{222, man}, [a,b,c]}

succeeds with the bindings C !→ {222, man} , Head !→ a and, Tail !→ [b, c].

[{person, Name, Age, _}|T] =
[{person, fred, 22, male},
{person, susan, 19, female}, ...]

succeeds with the bindings T !→ [{person, susan, 19, female}, ...]},
Name !→ fred and Age !→ 22. In the last example we made use of the anonymous
variable written ‘_’ – anonymous variables are used when the syntax requires a
variable but we are not interested in its value.

If a variable occurs more than once in a pattern then the match will only suc-
ceed if the corresponding elements being matched have the same value. So, for ex-
ample, {A, foo, A} = {123, foo, 123} succeeds, binding A to 123, whereas
{A, foo, A} = {123, foo, abc} fails since we cannot simultaneously bind A to
123 and abc.

‘=’ is regarded as an infix right associative operator. Thus A = B = C = D is
parsed as A = (B = (C = D)). This is probably only useful in a construction like
{A, B} = X = ... where we want both the value of an expression and its con-
stituents. The value of the expression Lhs = Rhs is defined to be Rhs.

2.2.2 Pattern matching when calling a function

Erlang provides choice and flow of control through pattern matching. For ex-
ample, Program 2.1 defines a function classify_day/1, which returns weekEnd if
called with argument saturday or sunday, or it returns weekDay otherwise.

-module(dates).
-export([classify_day/1]).

classify_day(saturday) -> weekEnd;
classify_day(sunday) -> weekEnd;
classify_day(_) -> weekDay.

Program 2.1

3The notation Var !→ Value means that the variable Var has the value Value.

Recursive Functions

• Variables start with upper-case characters

• ‘;’ separates function clauses

• Variables are local to the function clause

• Pattern matching and guards to select
clauses

• Runtime error if no clause matches

Recursive Functions

without conscious thought - if this were not possible everyday

activities like driving a car would be impossible.

The final point, was discussed earlier. Scalability, and

fault-tolerance are often achieved by a simply moving pro-

cesses between processors - this is a consequence of the

“share nothing” philosophy of program construction.

3.3 What is Erlang/OTP?

Erlang is a concurrent programming language with a func-

tional core. By this we mean that the most important property

of the language is that it is concurrent and that secondly, the

sequential part of the language is a functional programming

language.

The sequential sub-set of the language expresses what hap-

pens from the point it time where a process receives a message

to the point in time when it emits a message. From the point

of view of an external observer two systems are indistinguish-

able if they obey the principle of observational equivalence.

From this point of view, it does not matter what family of

programming language is used to perform sequential compu-

tation.

It is interesting to note that during it’s life Erlang started off

with a logical core (Prolog[2]) which later evolved into a func-

tional core. The functional core is a dynamically typed, strict,

higher-order functional language and is, in it’s own right, a

small and powerful programming language.

One of the surprising things about Erlang is that the func-

tional core language is itself a useful programming language

- so surprisingly even purely sequential applications writ-

ten in Erlang often outperform applications in languages

which were designed for purely sequential processing. In-

deed, at the 2002 Erlang users conference Balagopalakrishnan

and Krishnamachar[4] reported work at Lucent technologies

showing that Erlang was six times faster than Perl for a num-

ber of applications.

OTP[7, 11] stands for Open Telecom Platform, OTP was

developed by Ericsson Telecom AB for programming next

generation switches and many Ericsson products are based on

OTP. OTP includes the entire Erlang development system to-

gether with a set of libraries written in Erlang and other lan-

guages. OTP was originally designed for writing Telecoms

application but has proved equally useful for a wide range of

non-Telecom fault-tolerant distributed applications.

In 1998 Ericsson released Erlang and the OTP libraries as

open source.

Since its release OTP has been used increasingly outside

Ericsson for a wide range of commercial products, we will

describe some of these later in the paper.

OTP represents the largest commercial use of a functional

programming language outside academia.

4 Erlang in 11 minutes

The next few sections proved a simple introduction to Erlang

through a number of examples, for more examples see[9].

4.1 Sequential Erlang in 5 examples

1 - Factorial

-module(math).
-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);
fac(0) -> 1.

> math:fac(25).
15511210043330985984000000

2 - Binary Tree

lookup(Key, {Key, Val, _, _}) ->
{ok, Val};

lookup(Key,{Key1,Val,S,B}) when Key<Key1->
lookup(Key, S);

lookup(Key, {Key1,Val,S,B}) ->
lookup(Key, B);

lookup(Key, nil) ->
not_found.

3 - Append

append([H|T], L) -> [H|append(T, L)];
append([], L) -> L.

4 - Sort

sort([Pivot|T]) ->
sort([X||X <- T, X < Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);

sort([]) -> [].

5 - Adder

> Add = fun(N) -> fun(X) -> X + N end end.
#Fun
> G = Add(10).
#Fun
> G(5).
15

Lists

• Pattern-matching selects components of
the data

• ‘_’ is a “don’t care” pattern (not a variable)

• ‘[]’ is the empty list

• ‘[X,Y,Z]’ is a list with exactly three
elements

• ‘[X,Y,Z|Tail]’ has three or more
elements

Lists

1.2: Sequential Programming

14 c(tut3).
ok,tut3
15 tut3:convert length(inch, 5).
centimeter,12.7000
16 tut3:convert length(tut3:convert length(inch, 5)).
inch,5.00000

Note on line 16 we convert 5 inches to centimeters and back again and reassuringly get back to the
original value. I.e the argument to a function can be the result of another function. Pause for a moment
and consider how line 16 (above) works. The argument we have given the function inch,5 is first
matched against the first head clause of convert length i.e. convert length(centimeter,X)where
it can be seen that centimeter,X does not match inch,5 (the head is the bit before the “- ”). This
having failed, we try the head of the next clause i.e. convert length(inch,Y), this matches and Y
get the value 5.

We have shown tuples with two parts above, but tuples can have as many parts as we want and contain
any valid Erlang term. For example, to represent the temperature of various cities of the world we could
write

{moscow, {c, -10}}
{cape_town, {f, 70}}
{paris, {f, 28}}

Tuples have a fixed number of things in them. We call each thing in a tuple an element. So in the tuple
moscow, c,-10 , element 1 is moscow and element 2 is c,-10 . I have chosen c meaning

Centigrade (or Celsius) and f meaning Fahrenheit.

1.2.5 Lists

Whereas tuples group things together, we also want to be able to represent lists of things. Lists in Erlang
are surrounded by “[” and “]”. For example a list of the temperatures of various cities in the world could
be:

[{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm, {c, -4}},
{paris, {f, 28}}, {london, {f, 36}}]

Note that this list was so long that it didn't fit on one line. This doesn't matter, Erlang allows line breaks
at all “sensible places” but not, for example, in the middle of atoms, integers etc.

A very useful way of looking at parts of lists, is by using “|”. This is best explained by an example using
the shell.

18 [First |TheRest] = [1,2,3,4,5].
[1,2,3,4,5]
19 First.
1
20 TheRest.
[2,3,4,5]

7Getting Started with Erlang

Lists

Chapter 1: Getting Started With Erlang

We use | to separate the first elements of the list from the rest of the list. (First has got value 1 and
TheRest value [2,3,4,5]).

Another example:

21 [E1, E2 | R] = [1,2,3,4,5,6,7].
[1,2,3,4,5,6,7]
22 E1.
1
23 E2.
2
24 R.
[3,4,5,6,7]

Here we see the use of | to get the first two elements from the list. Of course if we try to get more
elements from the list than there are elements in the list we will get an error. Note also the special case
of the list with no elements [].

25 [A, B | C] = [1, 2].
[1,2]
26 A.
1
27 B.
2
28 C.
[]

In all the examples above, I have been using new variable names, not reusing the old ones: First,
TheRest, E1, E2, R, A, B, C. The reason for this is that a variable can only be given a value once in its
context (scope). I'll get back to this later, it isn't so peculiar as it sounds!

The following example shows how we find the length of a list:

-module(tut4).

-export([list_length/1]).

list_length([]) ->
0;

list_length([First | Rest]) ->
1 + list_length(Rest).

Compile (file tut4.erl) and test:

29 c(tut4).
ok,tut4
30 tut4:list length([1,2,3,4,5,6,7]).
7

Explanation:

8 Getting Started with Erlang

Lists

Chapter 1: Getting Started With Erlang

We use | to separate the first elements of the list from the rest of the list. (First has got value 1 and
TheRest value [2,3,4,5]).

Another example:

21 [E1, E2 | R] = [1,2,3,4,5,6,7].
[1,2,3,4,5,6,7]
22 E1.
1
23 E2.
2
24 R.
[3,4,5,6,7]

Here we see the use of | to get the first two elements from the list. Of course if we try to get more
elements from the list than there are elements in the list we will get an error. Note also the special case
of the list with no elements [].

25 [A, B | C] = [1, 2].
[1,2]
26 A.
1
27 B.
2
28 C.
[]

In all the examples above, I have been using new variable names, not reusing the old ones: First,
TheRest, E1, E2, R, A, B, C. The reason for this is that a variable can only be given a value once in its
context (scope). I'll get back to this later, it isn't so peculiar as it sounds!

The following example shows how we find the length of a list:

-module(tut4).

-export([list_length/1]).

list_length([]) ->
0;

list_length([First | Rest]) ->
1 + list_length(Rest).

Compile (file tut4.erl) and test:

29 c(tut4).
ok,tut4
30 tut4:list length([1,2,3,4,5,6,7]).
7

Explanation:

8 Getting Started with Erlang

Lists

without conscious thought - if this were not possible everyday

activities like driving a car would be impossible.

The final point, was discussed earlier. Scalability, and

fault-tolerance are often achieved by a simply moving pro-

cesses between processors - this is a consequence of the

“share nothing” philosophy of program construction.

3.3 What is Erlang/OTP?

Erlang is a concurrent programming language with a func-

tional core. By this we mean that the most important property

of the language is that it is concurrent and that secondly, the

sequential part of the language is a functional programming

language.

The sequential sub-set of the language expresses what hap-

pens from the point it time where a process receives a message

to the point in time when it emits a message. From the point

of view of an external observer two systems are indistinguish-

able if they obey the principle of observational equivalence.

From this point of view, it does not matter what family of

programming language is used to perform sequential compu-

tation.

It is interesting to note that during it’s life Erlang started off

with a logical core (Prolog[2]) which later evolved into a func-

tional core. The functional core is a dynamically typed, strict,

higher-order functional language and is, in it’s own right, a

small and powerful programming language.

One of the surprising things about Erlang is that the func-

tional core language is itself a useful programming language

- so surprisingly even purely sequential applications writ-

ten in Erlang often outperform applications in languages

which were designed for purely sequential processing. In-

deed, at the 2002 Erlang users conference Balagopalakrishnan

and Krishnamachar[4] reported work at Lucent technologies

showing that Erlang was six times faster than Perl for a num-

ber of applications.

OTP[7, 11] stands for Open Telecom Platform, OTP was

developed by Ericsson Telecom AB for programming next

generation switches and many Ericsson products are based on

OTP. OTP includes the entire Erlang development system to-

gether with a set of libraries written in Erlang and other lan-

guages. OTP was originally designed for writing Telecoms

application but has proved equally useful for a wide range of

non-Telecom fault-tolerant distributed applications.

In 1998 Ericsson released Erlang and the OTP libraries as

open source.

Since its release OTP has been used increasingly outside

Ericsson for a wide range of commercial products, we will

describe some of these later in the paper.

OTP represents the largest commercial use of a functional

programming language outside academia.

4 Erlang in 11 minutes

The next few sections proved a simple introduction to Erlang

through a number of examples, for more examples see[9].

4.1 Sequential Erlang in 5 examples

1 - Factorial

-module(math).
-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);
fac(0) -> 1.

> math:fac(25).
15511210043330985984000000

2 - Binary Tree

lookup(Key, {Key, Val, _, _}) ->
{ok, Val};

lookup(Key,{Key1,Val,S,B}) when Key<Key1->
lookup(Key, S);

lookup(Key, {Key1,Val,S,B}) ->
lookup(Key, B);

lookup(Key, nil) ->
not_found.

3 - Append

append([H|T], L) -> [H|append(T, L)];
append([], L) -> L.

4 - Sort

sort([Pivot|T]) ->
sort([X||X <- T, X < Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);

sort([]) -> [].

5 - Adder

> Add = fun(N) -> fun(X) -> X + N end end.
#Fun
> G = Add(10).
#Fun
> G(5).
15

Chapter 1: Getting Started With Erlang

We use | to separate the first elements of the list from the rest of the list. (First has got value 1 and
TheRest value [2,3,4,5]).

Another example:

21 [E1, E2 | R] = [1,2,3,4,5,6,7].
[1,2,3,4,5,6,7]
22 E1.
1
23 E2.
2
24 R.
[3,4,5,6,7]

Here we see the use of | to get the first two elements from the list. Of course if we try to get more
elements from the list than there are elements in the list we will get an error. Note also the special case
of the list with no elements [].

25 [A, B | C] = [1, 2].
[1,2]
26 A.
1
27 B.
2
28 C.
[]

In all the examples above, I have been using new variable names, not reusing the old ones: First,
TheRest, E1, E2, R, A, B, C. The reason for this is that a variable can only be given a value once in its
context (scope). I'll get back to this later, it isn't so peculiar as it sounds!

The following example shows how we find the length of a list:

-module(tut4).

-export([list_length/1]).

list_length([]) ->
0;

list_length([First | Rest]) ->
1 + list_length(Rest).

Compile (file tut4.erl) and test:

29 c(tut4).
ok,tut4
30 tut4:list length([1,2,3,4,5,6,7]).
7

Explanation:

8 Getting Started with Erlang

List Comprehension
• Left of the ‘||’ is an

expression template

• ‘Pattern <- List’
is a generator

• elements are picked
from the list in order

• The other expressions
are boolean filters

• If there are multiple
generators, you get all
combinations of values

Lists

without conscious thought - if this were not possible everyday

activities like driving a car would be impossible.

The final point, was discussed earlier. Scalability, and

fault-tolerance are often achieved by a simply moving pro-

cesses between processors - this is a consequence of the

“share nothing” philosophy of program construction.

3.3 What is Erlang/OTP?

Erlang is a concurrent programming language with a func-

tional core. By this we mean that the most important property

of the language is that it is concurrent and that secondly, the

sequential part of the language is a functional programming

language.

The sequential sub-set of the language expresses what hap-

pens from the point it time where a process receives a message

to the point in time when it emits a message. From the point

of view of an external observer two systems are indistinguish-

able if they obey the principle of observational equivalence.

From this point of view, it does not matter what family of

programming language is used to perform sequential compu-

tation.

It is interesting to note that during it’s life Erlang started off

with a logical core (Prolog[2]) which later evolved into a func-

tional core. The functional core is a dynamically typed, strict,

higher-order functional language and is, in it’s own right, a

small and powerful programming language.

One of the surprising things about Erlang is that the func-

tional core language is itself a useful programming language

- so surprisingly even purely sequential applications writ-

ten in Erlang often outperform applications in languages

which were designed for purely sequential processing. In-

deed, at the 2002 Erlang users conference Balagopalakrishnan

and Krishnamachar[4] reported work at Lucent technologies

showing that Erlang was six times faster than Perl for a num-

ber of applications.

OTP[7, 11] stands for Open Telecom Platform, OTP was

developed by Ericsson Telecom AB for programming next

generation switches and many Ericsson products are based on

OTP. OTP includes the entire Erlang development system to-

gether with a set of libraries written in Erlang and other lan-

guages. OTP was originally designed for writing Telecoms

application but has proved equally useful for a wide range of

non-Telecom fault-tolerant distributed applications.

In 1998 Ericsson released Erlang and the OTP libraries as

open source.

Since its release OTP has been used increasingly outside

Ericsson for a wide range of commercial products, we will

describe some of these later in the paper.

OTP represents the largest commercial use of a functional

programming language outside academia.

4 Erlang in 11 minutes

The next few sections proved a simple introduction to Erlang

through a number of examples, for more examples see[9].

4.1 Sequential Erlang in 5 examples

1 - Factorial

-module(math).
-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);
fac(0) -> 1.

> math:fac(25).
15511210043330985984000000

2 - Binary Tree

lookup(Key, {Key, Val, _, _}) ->
{ok, Val};

lookup(Key,{Key1,Val,S,B}) when Key<Key1->
lookup(Key, S);

lookup(Key, {Key1,Val,S,B}) ->
lookup(Key, B);

lookup(Key, nil) ->
not_found.

3 - Append

append([H|T], L) -> [H|append(T, L)];
append([], L) -> L.

4 - Sort

sort([Pivot|T]) ->
sort([X||X <- T, X < Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);

sort([]) -> [].

5 - Adder

> Add = fun(N) -> fun(X) -> X + N end end.
#Fun
> G = Add(10).
#Fun
> G(5).
15

Numbers

• Arbitrary-size integers (but usually just one
word)

• #-notation for base-N integers

• $-notation for character codes
(ISO-8859-1)

• Floating-point numbers

• == vs. =:= and /= vs. =/=

Arithmetic Expressions

34 Sequential Programming

factorial(0) ->
1;

factorial(N) when N > 0 ->
N1 = N - 1,
F1 = factorial(N1),
N * F1.

All of the above definitions are correct and equivalent7 – the choice among them
is a matter of aesthetics.8

2.7 Arithmetic Expressions

Arithmetic expressions are formed from the following operators:

Operator Description Type Operands Prio
+ X + X unary mixed 1
- X - X unary mixed 1
X * Y X * Y binary mixed 2
X / Y X / Y (floating point division) binary mixed 2
X div Y integer division of X and Y binary integer 2
X rem Y integer remainder of X divided by Y binary integer 2
X band Y bitwise and of X and Y binary integer 2
X + Y X + Y binary mixed 3
X - Y X - Y binary mixed 3
X bor Y bitwise or of X and Y binary integer 3
X bxor Y arithmetic bitwise xor X and Y binary integer 3
X bsl N arithmetic bitshift left of X by N bits binary integer 3
X bsr N bitshift right of X by N bits binary integer 3

Unary operators have one argument, binary operators have two arguments.
Mixed means that the argument can be either an integer or float. Unary oper-
ators return a value of the same type as their argument.

The binary mixed operators (i.e. *, -, +) return an object of type integer if
both their arguments are integers, or float if at least one of their arguments is a
float. The floating point division operator / returns a float irrespective of its
arguments.

Binary integer operators (i.e. band, div, rem, bor, bxor, bsl, bsr) must
have integer arguments and return integers.

The order of evaluation depends upon the priority of the operator: all priority
1 operators are evaluated, then priority 2, etc. Any bracketed expressions are
evaluated first.

7Well almost – how about factorial(-1)?
8If in doubt, choose the most beautiful!

Atoms

• Must start with lower case character or be
quoted

• Single-quotes are used to create arbitrary
atoms

• Similar to hashed strings

• use only one word of data

• constant-time equality test

Quoted Atoms

Terms 19

123 -34567 12.345 -27.45e-05

The precision of integers is a local issue but at least 24-bit integer precision must
be provided by any Erlang system.

The notation $<Char> represents the ASCII value of the character Char so, for
example, $A represents the integer 65.

Integers with base other than 10 are written using the notation <Base>#<Value>
so, for example, 16#ffff represents the integer 65535 (in base 10). The value of
Base must be an integer in the range 2..16.

Floating point numbers are written in conventional notation.

2.1.2 Atoms

Atoms are constants with names; thus, for example, the atoms monday, tuesday,
... could be used to represent days of the week in some program which performs
calendar calculations. Atoms are used to enhance the legibility of programs.

Examples of atoms:

friday unquoted_atoms_cannot_contain_blanks
’A quoted atom which contains several blanks’
’hello \n my friend’

Atoms begin with a lower-case letter (a..z) and are terminated by a non-
alphanumeric character – otherwise they must be quoted.

By enclosing the atom name in single quotes any character may be included
within the atom. Atoms will always be printed in such a manner that they can be
read back by the Erlang reader. Within a quoted atom the following conventions
apply:

Characters Meaning
\b backspace
\d delete
\e escape
\f form feed
\n newline
\r carriage return
\t tab
\v vertical tab
\\ backslash
\^A .. \^Z control A to control Z (i.e. 0 .. 26)
\’ single quote
\" double quote
\OOO The character with octal representation OOO

Atoms

1.2: Sequential Programming

-module(tut1).
-export([fac/1, mult/2]).

fac(1) ->
1;

fac(N) ->
N * fac(N - 1).

mult(X, Y) ->
X * Y.

Note that we have also had to expand the -export line with the information that there is another
function mult with two arguments.

Compile:

7 c(tut1).
ok,tut1

and try it out:

8 tut1:mult(3,4).
12

In the example above the numbers are integers and the arguments in the functions in the code, N, X, Y
are called variables. Variables must start with a capital letter (*manual*). Examples of variable could be
Number, ShoeSize, Age etc.

1.2.3 Atoms

Atoms are another data type in Erlang. Atoms start with a small letter (*manual*), for example:
charles, centimeter, inch. Atoms are simply names, nothing else. They are not like variables which
can have a value.

Enter the next program (file: tut2.erl) which could be useful for converting from inches to
centimeters and vice versa:

-module(tut2).
-export([convert/2]).

convert(M, inch) ->
M / 2.54;

convert(N, centimeter) ->
N * 2.54.

Compile and test:

5Getting Started with Erlang

Chapter 1: Getting Started With Erlang

9 c(tut2).
ok,tut2
10 tut2:convert(3, inch).
1.18110
11 tut2:convert(7, centimeter).
17.7800

Notice that I have introduced decimals (floating point numbers) without any explanation, but I guess
you can cope with that.

See what happens if I enter something other than centimeter or inch in the convert function:

13 tut2:convert(3, miles).

=ERROR REPORT==== 28-May-2003::18:36:27 ===
Error in process 0.25.0 with exit value: function clause,[tut2,convert,[3,miles] , erl eval,expr,3
** exited: function clause,[tut2,convert,[3,miles] ,

erl eval,expr,3 ,
erl eval,exprs,4 ,
shell,eval loop,2] **

The two parts of the convert function are called its clauses. Here we see that “miles” is not part of
either of the clauses. The Erlang system can't match either of the clauses so we get an error message
function clause. The above output looks rather a mess, but with a little practice, you can see from it
exactly where in the code the error occurred.

1.2.4 Tuples

Now the tut2 program is hardly good programming style. Consider:

tut2:convert(3, inch).

Does this mean that 3 is in inches? or that 3 is in centimeters and we want to convert it to inches? So
Erlang has a way to group things together to make things more understandable. We call these tuples.
Tuples are surrounded by “ ” and “ ”.

So we can write inch,3 to denote 3 inches and centimeter,5 to denote 5 centimeters. Now let's
write a new program which converts centimeters to inches and vice versa. (file tut3.erl).

-module(tut3).
-export([convert_length/1]).

convert_length({centimeter, X}) ->
{inch, X / 2.54};

convert_length({inch, Y}) ->
{centimeter, Y * 2.54}.

Compile and test:

6 Getting Started with Erlang

Comparisons
30 Sequential Programming

Operator Description Type
X > Y X greater than Y coerce
X < Y X less than Y coerce
X =< Y X equal to or less than Y coerce
X >= Y X greater than or equal to Y coerce
X == Y X equal to Y coerce
X /= Y X not equal to Y coerce
X =:= Y X equal to Y exact
X =/= Y X not equal to Y exact

The comparison operators work as follows: firstly, both sides of the operator are
evaluated where possible (i.e. in the case when they are arithmetic expressions, or
contain guard function BIFs); then the comparison operator is performed.

For the purposes of comparison the following ordering is defined:
number < atom < reference < port < pid < tuple < list

Tuples are ordered first by their size then by their elements. Lists are ordered
by comparing heads, then tails.

When the arguments of the comparison operator are both numbers and the type
of the operator is coerce then if one argument is an integer and the other a float
the integer is converted to a float before performing the comparison.

The exact comparison operators perform no such conversion.
Thus 5.0 == 1 + 4 succeeds whereas 5.0 =:= 1 + 4 fails.
Examples of guarded function clause heads:

foo(X, Y, Z) when integer(X), integer(Y), integer(Z), X == Y + Z ->
foo(X, Y, Z) when list(X), hd(X) == {Y, length(Z)} ->
foo(X, Y, Z) when {X, Y, size(Z)} == {a, 12, X} ->
foo(X) when list(X), hd(X) == c1, hd(tl(X)) == c2 ->

Note that no new variables may be introduced in a guard.

2.5.7 Clause bodies

The body of a clause consists of a sequence of one or more expressions which are
separated by commas. All the expressions in a sequence are evaluated sequentially.
The value of the sequence is defined to be the value of the last expression in the
sequence. For example, the second clause of factorial could be written:

factorial(N) when N > 0 ->
N1 = N - 1,
F1 = factorial(N1),
N * F1.

Tuples

• Tuples are the main data constructor in
Erlang

• A tuple whose first element is an atom is
called a tagged tuple

• The elements of a tuple can be any values

Tuples

Chapter 1: Getting Started With Erlang

9 c(tut2).
ok,tut2
10 tut2:convert(3, inch).
1.18110
11 tut2:convert(7, centimeter).
17.7800

Notice that I have introduced decimals (floating point numbers) without any explanation, but I guess
you can cope with that.

See what happens if I enter something other than centimeter or inch in the convert function:

13 tut2:convert(3, miles).

=ERROR REPORT==== 28-May-2003::18:36:27 ===
Error in process 0.25.0 with exit value: function clause,[tut2,convert,[3,miles] , erl eval,expr,3
** exited: function clause,[tut2,convert,[3,miles] ,

erl eval,expr,3 ,
erl eval,exprs,4 ,
shell,eval loop,2] **

The two parts of the convert function are called its clauses. Here we see that “miles” is not part of
either of the clauses. The Erlang system can't match either of the clauses so we get an error message
function clause. The above output looks rather a mess, but with a little practice, you can see from it
exactly where in the code the error occurred.

1.2.4 Tuples

Now the tut2 program is hardly good programming style. Consider:

tut2:convert(3, inch).

Does this mean that 3 is in inches? or that 3 is in centimeters and we want to convert it to inches? So
Erlang has a way to group things together to make things more understandable. We call these tuples.
Tuples are surrounded by “ ” and “ ”.

So we can write inch,3 to denote 3 inches and centimeter,5 to denote 5 centimeters. Now let's
write a new program which converts centimeters to inches and vice versa. (file tut3.erl).

-module(tut3).
-export([convert_length/1]).

convert_length({centimeter, X}) ->
{inch, X / 2.54};

convert_length({inch, Y}) ->
{centimeter, Y * 2.54}.

Compile and test:

6 Getting Started with Erlang

1.2: Sequential Programming

14 c(tut3).
ok,tut3
15 tut3:convert length(inch, 5).
centimeter,12.7000
16 tut3:convert length(tut3:convert length(inch, 5)).
inch,5.00000

Note on line 16 we convert 5 inches to centimeters and back again and reassuringly get back to the
original value. I.e the argument to a function can be the result of another function. Pause for a moment
and consider how line 16 (above) works. The argument we have given the function inch,5 is first
matched against the first head clause of convert length i.e. convert length(centimeter,X)where
it can be seen that centimeter,X does not match inch,5 (the head is the bit before the “- ”). This
having failed, we try the head of the next clause i.e. convert length(inch,Y), this matches and Y
get the value 5.

We have shown tuples with two parts above, but tuples can have as many parts as we want and contain
any valid Erlang term. For example, to represent the temperature of various cities of the world we could
write

{moscow, {c, -10}}
{cape_town, {f, 70}}
{paris, {f, 28}}

Tuples have a fixed number of things in them. We call each thing in a tuple an element. So in the tuple
moscow, c,-10 , element 1 is moscow and element 2 is c,-10 . I have chosen c meaning

Centigrade (or Celsius) and f meaning Fahrenheit.

1.2.5 Lists

Whereas tuples group things together, we also want to be able to represent lists of things. Lists in Erlang
are surrounded by “[” and “]”. For example a list of the temperatures of various cities in the world could
be:

[{moscow, {c, -10}}, {cape_town, {f, 70}}, {stockholm, {c, -4}},
{paris, {f, 28}}, {london, {f, 36}}]

Note that this list was so long that it didn't fit on one line. This doesn't matter, Erlang allows line breaks
at all “sensible places” but not, for example, in the middle of atoms, integers etc.

A very useful way of looking at parts of lists, is by using “|”. This is best explained by an example using
the shell.

18 [First |TheRest] = [1,2,3,4,5].
[1,2,3,4,5]
19 First.
1
20 TheRest.
[2,3,4,5]

7Getting Started with Erlang

Tuples

without conscious thought - if this were not possible everyday

activities like driving a car would be impossible.

The final point, was discussed earlier. Scalability, and

fault-tolerance are often achieved by a simply moving pro-

cesses between processors - this is a consequence of the

“share nothing” philosophy of program construction.

3.3 What is Erlang/OTP?

Erlang is a concurrent programming language with a func-

tional core. By this we mean that the most important property

of the language is that it is concurrent and that secondly, the

sequential part of the language is a functional programming

language.

The sequential sub-set of the language expresses what hap-

pens from the point it time where a process receives a message

to the point in time when it emits a message. From the point

of view of an external observer two systems are indistinguish-

able if they obey the principle of observational equivalence.

From this point of view, it does not matter what family of

programming language is used to perform sequential compu-

tation.

It is interesting to note that during it’s life Erlang started off

with a logical core (Prolog[2]) which later evolved into a func-

tional core. The functional core is a dynamically typed, strict,

higher-order functional language and is, in it’s own right, a

small and powerful programming language.

One of the surprising things about Erlang is that the func-

tional core language is itself a useful programming language

- so surprisingly even purely sequential applications writ-

ten in Erlang often outperform applications in languages

which were designed for purely sequential processing. In-

deed, at the 2002 Erlang users conference Balagopalakrishnan

and Krishnamachar[4] reported work at Lucent technologies

showing that Erlang was six times faster than Perl for a num-

ber of applications.

OTP[7, 11] stands for Open Telecom Platform, OTP was

developed by Ericsson Telecom AB for programming next

generation switches and many Ericsson products are based on

OTP. OTP includes the entire Erlang development system to-

gether with a set of libraries written in Erlang and other lan-

guages. OTP was originally designed for writing Telecoms

application but has proved equally useful for a wide range of

non-Telecom fault-tolerant distributed applications.

In 1998 Ericsson released Erlang and the OTP libraries as

open source.

Since its release OTP has been used increasingly outside

Ericsson for a wide range of commercial products, we will

describe some of these later in the paper.

OTP represents the largest commercial use of a functional

programming language outside academia.

4 Erlang in 11 minutes

The next few sections proved a simple introduction to Erlang

through a number of examples, for more examples see[9].

4.1 Sequential Erlang in 5 examples

1 - Factorial

-module(math).
-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);
fac(0) -> 1.

> math:fac(25).
15511210043330985984000000

2 - Binary Tree

lookup(Key, {Key, Val, _, _}) ->
{ok, Val};

lookup(Key,{Key1,Val,S,B}) when Key<Key1->
lookup(Key, S);

lookup(Key, {Key1,Val,S,B}) ->
lookup(Key, B);

lookup(Key, nil) ->
not_found.

3 - Append

append([H|T], L) -> [H|append(T, L)];
append([], L) -> L.

4 - Sort

sort([Pivot|T]) ->
sort([X||X <- T, X < Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);

sort([]) -> [].

5 - Adder

> Add = fun(N) -> fun(X) -> X + N end end.
#Fun
> G = Add(10).
#Fun
> G(5).
15

Record Syntax
• Records are just a

syntax for working with
tagged tuples

• You don’t have to
remember element
order and tuple size

• Good for internal work
within a module

• Not so good in public
interfaces (users must
have same definition)

Built-in Functions
• Implemented in C

• All the type tests and
conversions are BIFs

• Most BIFs (not all) are in
the module “erlang”

• Many common BIFs are
auto-imported
(recognized without
writing “erlang:...”)

• Operators
(‘+’,’-’,’*’,’/’,...) are also
really BIFs

Fun Expressions
• Anonymous functions

(lambda expressions)

• Can have several clauses

• All variables in the
pattern are new

• All variable bindings in
the fun are local

• Variables bound in the
environment can be
used in the fun-body

Fun Expressions

Chapter 1: Getting Started With Erlang

1.2.13 Higher Order Functions (Funs)

Erlang, like most modern functional programing languages, has higher order functions. We start with an
example using the shell:

90 Xf = fun(X) - X * 2 end.
#Fun erl eval.5.123085357
91 Xf(5).
10

What we have done here is to define a function which doubles the value of number and assign this
function to a variable. Thus Xf(5) returned the value 10. Two useful functions when working with lists
are foreach and map, which are defined as follows:

foreach(Fun, [First|Rest]) ->
Fun(First),
foreach(Fun, Rest);

foreach(Fun, []) ->
ok.

map(Fun, [First|Rest]) ->
[Fun(First)|map(Fun,Rest)];

map(Fun, []) ->
[].

These two functions are provided in the standard module lists. foreach takes a list and applies a fun
to every element in the list, map creates a new list by applying a fun to every element in a list. Going
back to the shell, we start by using map and a fun to add 3 to every element of a list:

92 Add 3 = fun(X) - X + 3 end.
#Fun erl eval.5.123085357
93 lists:map(Add 3, [1,2,3]).
[4,5,6]

Now lets print out the temperatures in a list of cities (yet again):

95 Print City = fun(City, X, Temp) - io:format("~-15w ~w ~w~n",
[City, X, Temp]) end.

#Fun erl eval.5.123085357
96 lists:foreach(Print City, [moscow, c, -10 , cape town, f, 70 ,
stockholm, c, -4 , paris, f, 28 , london, f, 36]).

moscow c -10
cape town f 70
stockholm c -4
paris f 28
london f 36
ok

We will now define a fun which can be used to go through a list of cities and temperatures and
transform them all to Celsius.

22 Getting Started with Erlang

Fun Expressions

Chapter 1: Getting Started With Erlang

1.2.13 Higher Order Functions (Funs)

Erlang, like most modern functional programing languages, has higher order functions. We start with an
example using the shell:

90 Xf = fun(X) - X * 2 end.
#Fun erl eval.5.123085357
91 Xf(5).
10

What we have done here is to define a function which doubles the value of number and assign this
function to a variable. Thus Xf(5) returned the value 10. Two useful functions when working with lists
are foreach and map, which are defined as follows:

foreach(Fun, [First|Rest]) ->
Fun(First),
foreach(Fun, Rest);

foreach(Fun, []) ->
ok.

map(Fun, [First|Rest]) ->
[Fun(First)|map(Fun,Rest)];

map(Fun, []) ->
[].

These two functions are provided in the standard module lists. foreach takes a list and applies a fun
to every element in the list, map creates a new list by applying a fun to every element in a list. Going
back to the shell, we start by using map and a fun to add 3 to every element of a list:

92 Add 3 = fun(X) - X + 3 end.
#Fun erl eval.5.123085357
93 lists:map(Add 3, [1,2,3]).
[4,5,6]

Now lets print out the temperatures in a list of cities (yet again):

95 Print City = fun(City, X, Temp) - io:format("~-15w ~w ~w~n",
[City, X, Temp]) end.

#Fun erl eval.5.123085357
96 lists:foreach(Print City, [moscow, c, -10 , cape town, f, 70 ,
stockholm, c, -4 , paris, f, 28 , london, f, 36]).

moscow c -10
cape town f 70
stockholm c -4
paris f 28
london f 36
ok

We will now define a fun which can be used to go through a list of cities and temperatures and
transform them all to Celsius.

22 Getting Started with Erlang

Chapter 1: Getting Started With Erlang

1.2.13 Higher Order Functions (Funs)

Erlang, like most modern functional programing languages, has higher order functions. We start with an
example using the shell:

90 Xf = fun(X) - X * 2 end.
#Fun erl eval.5.123085357
91 Xf(5).
10

What we have done here is to define a function which doubles the value of number and assign this
function to a variable. Thus Xf(5) returned the value 10. Two useful functions when working with lists
are foreach and map, which are defined as follows:

foreach(Fun, [First|Rest]) ->
Fun(First),
foreach(Fun, Rest);

foreach(Fun, []) ->
ok.

map(Fun, [First|Rest]) ->
[Fun(First)|map(Fun,Rest)];

map(Fun, []) ->
[].

These two functions are provided in the standard module lists. foreach takes a list and applies a fun
to every element in the list, map creates a new list by applying a fun to every element in a list. Going
back to the shell, we start by using map and a fun to add 3 to every element of a list:

92 Add 3 = fun(X) - X + 3 end.
#Fun erl eval.5.123085357
93 lists:map(Add 3, [1,2,3]).
[4,5,6]

Now lets print out the temperatures in a list of cities (yet again):

95 Print City = fun(City, X, Temp) - io:format("~-15w ~w ~w~n",
[City, X, Temp]) end.

#Fun erl eval.5.123085357
96 lists:foreach(Print City, [moscow, c, -10 , cape town, f, 70 ,
stockholm, c, -4 , paris, f, 28 , london, f, 36]).

moscow c -10
cape town f 70
stockholm c -4
paris f 28
london f 36
ok

We will now define a fun which can be used to go through a list of cities and temperatures and
transform them all to Celsius.

22 Getting Started with Erlang

Case-switches

• Choice between alternatives within the
body of a clause

Primitives 31

During the evaluation of a sequence, each expression is evaluated and the result
is either matched against a pattern or discarded.

There are several reasons for splitting the body of a function into a sequence of
calls:

• To ensure sequential execution of code – each expression in a function body
is evaluated sequentially, while functions occurring in a nested function call
could be executed in any order.

• To increase clarity – it may be clearer to write the function as a sequence of
expressions.

• To unpack return values from a function.
• To reuse the results of a function call.

Multiple reuse of a function value can be illustrated as follows:

good(X) ->
Temp = lic(X),
{cos(Temp), sin(Temp)}.

would be preferable to:

bad(X) ->
{cos(lic(X)), sin(lic(X))}.

which means the same thing. lic is some long and involved calculation, i.e. some
function whose value is expensive to compute.

2.6 Primitives

Erlang provides the primitives case and if which can be used for conditional
evaluation in the body of a clause without having to use an additional function.

2.6.1 Case

The case expression allows choice between alternatives within the body of a clause
and has the following syntax:

case Expr of
Pattern1 [when Guard1] -> Seq1;
Pattern2 [when Guard2] -> Seq2;
...
PatternN [when GuardN] -> SeqN

end

If-switches
• Like a case-switch

without the patterns and
the ‘when’ keyword

• Use ‘true’ as catch-all

• Guards are special

• comma-separated list

• only specific built-in
functions (and all
operators)

• no side effects

If-switches

Chapter 1: Getting Started With Erlang

Note there is no “;” before end! Conditions are the same as guards, tests which succeed or fail. Erlang
starts at the top until it finds a condition which succeeds and then it evaluates (performs) the action
following the condition and ignores all other conditions and action before the end. If no condition
matches, there will be a run-time failure. A condition which always is succeeds is the atom, true and
this is often used last in an if meaning do the action following the true if all other conditions have
failed.

The following is a short program to show the workings of if.

-module(tut9).
-export([test_if/2]).

test_if(A, B) ->
if

A == 5 ->
io:format("A = 5~n", []),
a_equals_5;

B == 6 ->
io:format("B = 6~n", []),
b_equals_6;

A == 2, B == 3 -> %i.e. A equals 2 and B equals 3
io:format("A == 2, B == 3~n", []),
a_equals_2_b_equals_3;

A == 1 ; B == 7 -> %i.e. A equals 1 or B equals 7
io:format("A == 1 ; B == 7~n", []),
a_equals_1_or_b_equals_7

end.

Testing this program gives:

64 c(tut9).
ok,tut9
65 tut9:test if(5,33).
A = 5
a equals 5
66 tut9:test if(33,6).
B = 6
b equals 6
67 tut9:test if(2, 3).
A == 2, B == 3
a equals 2 b equals 3
68 tut9:test if(1, 33).
A == 1 ; B == 7
a equals 1 or b equals 7
69 tut9:test if(33, 7).
A == 1 ; B == 7
a equals 1 or b equals 7
70 tut9:test if(33, 33).

=ERROR REPORT==== 11-Jun-2003::14:03:43 ===
Error in process 0.85.0 with exit value:
if clause,[tut9,test if,2 , erl eval,exprs,4 , shell,eval loop,2]
** exited: if clause,[tut9,test if,2 ,

18 Getting Started with Erlang

Catching Exceptions
• Three classes of

exceptions

• throw: user-defined

• error: runtime
errors

• exit: end process

• only catch throw
exceptions normally

• Re-thrown if no catch-
clause matches

• ‘after’ part is always
run (side effects only)

Preprocessor
• C-style token-level

preprocessor

• Record definitions often
put in header files, to be
included

• Use macros mainly for
constants

• Use functions instead of
macros if you can
(compiler can inline)

Processes

• Code is executed by a process

• A process keeps track of the program
pointer, the stack, the variables values, etc.

• Every process has a unique process identifier

• Processes are concurrent

• Processes do not share data

Processes:
Implementation

• Virtual machine layer processes

• Preemptive multitasking

• Little overhead (e.g. 100.000 processes)

• Can use multiple CPUs on multiprocessor
machines

Starting Processes

• The “spawn” function creates a new
process

• The new process will run the specified
function

• The spawn operation always returns
immediately

• The return value is the Pid of the “child”

Concurrency

• Several processes may use the same
program code at the same time

• each has own program counter, stack, and
variables

• programmer need not think about other
processes updating the variables

Processes

Chapter 1: Getting Started With Erlang

paris, c,-2 ,
london, c,2 ,
cape town, c,21]

In sort we use the fun:

fun({_, {c, Temp1}}, {_, {c, Temp2}}) -> Temp1 < Temp2 end,

Here we introduce the concept of an anonymous variable “ ”. This is simply shorthand for a variable
which is going to get a value, but we will ignore the value. This can be used anywhere suitable, not just
in fun's. Temp1 Temp2 returns true if Temp1 is less than Temp2.

1.3 Concurrent Programming

1.3.1 Processes

One of the main reasons for using Erlang instead of other functional languages is Erlang's ability to
handle concurrency and distributed programming. By concurrency we mean programs which can
handle several threads of execution at the same time. For example, modern operating systems would
allow you to use a word processor, a spreadsheet, a mail client and a print job all running at the same
time. Of course each processor (CPU) in the system is probably only handling one thread (or job) at a
time, but it swaps between the jobs a such a rate that it gives the illusion of running them all at the
same time. It is easy to create parallel threads of execution in an Erlang program and it is easy to allow
these threads to communicate with each other. In Erlang we call each thread of execution a process.

(Aside: the term “process” is usually used when the threads of execution share no data with each other
and the term “thread” when they share data in some way. Threads of execution in Erlang share no data,
that's why we call them processes).

The Erlang BIF spawn is used to create a new process: spawn(Module, Exported Function, List of
Arguments). Consider the following module:

-module(tut14).

-export([start/1, say_something/2]).

say_something(What, 0) ->
done;

say_something(What, Times) ->
io:format("~p~n", [What]),
say_something(What, Times - 1).

start() ->
spawn(tut14, say_something, [hello, 3]),
spawn(tut14, say_something, [goodbye, 3]).

24 Getting Started with Erlang

1.3: Concurrent Programming

5 c(tut14).
ok,tut14
6 tut14:say something(hello, 3).
hello
hello
hello
done

We can see that function say something writes its first argument the number of times specified by
second argument. Now look at the function start. It starts two Erlang processes, one which writes
“hello” three times and one which writes “goodbye” three times. Both of these processes use the
function say something. Note that a function used in this way by spawn to start a process must be
exported from the module (i.e. in the -export at the start of the module).

9 tut14:start().
hello
goodbye
0.63.0

hello
goodbye
hello
goodbye

Notice that it didn't write “hello” three times and then “goodbye” three times, but the first process
wrote a “hello”, the second a “goodbye”, the first another “hello” and so forth. But where did the

0.63.0 come from? The return value of a function is of course the return value of the last “thing” in
the function. The last thing in the function start is

spawn(tut14, say_something, [goodbye, 3]).

spawn returns a process identifier, or pid, which uniquely identifies the process. So 0.63.0 is the pid
of the spawn function call above. We will see how to use pids in the next example.

Note as well that we have used ~p instead of ~w in io:format. To quote the manual: “~p Writes the
data with standard syntax in the same way as ~w, but breaks terms whose printed representation is
longer than one line into many lines and indents each line sensibly. It also tries to detect lists of
printable characters and to output these as strings”.

1.3.2 Message Passing

In the following example we create two processes which send messages to each other a number of times.

-module(tut15).

-export([start/0, ping/2, pong/0]).

ping(0, Pong_PID) ->
Pong_PID ! finished,
io:format("ping finished~n", []);

25Getting Started with Erlang

Message Passing

• “!” is the send operator

• Pid of the receiver is used as the address

• Messages are sent asynchronously

• Any value can be sent as a message

4.2 Concurrent Erlang in 2 examples

1 - Spawn

Pid = spawn(fun() -> loop(0) end)

2 - Send and receive

Pid ! Message,

.....

receive

Message1 ->

Actions1;

Message2 ->

Actions2;

...

after Time ->

TimeOutActions

end

4.3 Distributed Erlang in 1 example

1 - Distribution

...

Pid = spawn(Fun@Node)

...

alive(Node)

...

not_alive(Node)

4.4 Fault tolerant Erlang in 2 examples

1 - Catch/throw

...

case (catch foo(A, B)) of

{abnormal_case1, Y} ->

...

{’EXIT’, Opps} ->

...

Val ->

...

end,

..

foo(A, B) ->

...

throw({abnormal_case1, ...})

2 - Monitor a process

...

process_flag(trap_exit, true),

Pid = spawn_link(fun() -> ... end),

receive

{’EXIT’, Pid, Why} ->

...

end

4.5 Bit syntax in 1 example

Erlang has a “bit syntax” for parsing bit aligned data fields in

packet data. As an example we show how to parse the header

of an IPv4 datagram:

Dgram is bound to the consecutive bytes of an IP datagram

of IP protocol version 4. We can extract the header and the

data of the datagram with the following code:

-define(IP_VERSION, 4).

-define(IP_MIN_HDR_LEN,5).

DgramSize = size(Dgram),

case Dgram of

<<?IP_VERSION:4, HLen:4,

SrvcType:8,TotLen:16,ID:16,Flgs:3,

FragOff:13,TTL:8,Proto:8,HdrChkSum:16,

SrcIP:32,DestIP:32,Body/binary>> when

HLen >= 5,4*HLen =< DgramSize ->

OptsLen = 4*(HLen-?IP_MIN_HDR_LEN),

<<Opts:OptsLen/binary,Data/binary>>

= Body,

...

end.

4.6 Behaviors

Many common programming patterns5 in Erlang can be cap-

tured in the form of higher-order functions.

For example, a universal Client - Serverwith dynamic code

update can be written as follows:

server(Fun, Data) ->

receive

{new_fun, Fun1} ->

server(Fun1, Data);

{rpc, From, ReplyAs, Q} ->

{Reply, Data1} = Fun(Q, Data),

From ! {ReplyAs, Reply},

server(Fun, Data1)

end.

Here, the semantics of the server is completely determined

by the function Fun. By sending a message of the form

{new_fun, Fun’} the semantics of the server will change

without having to stop the system.

The server is accessed by calling the routine rpc which is

as follows:

5Called behaviors in Erlang.

Message Queues

• Each process has a message queue (mailbox)

• incoming messages are placed in the
queue (no size limit)

• A process receives a message when it
extracts it from the mailbox

• need not take the first message in the
queue

Receiving a Message

• receive-expressions are similar to case
switches

• patterns are used to match messages in
the mailbox

• messages in the queue are tested in
order

• only one message can be extracted each
time

Receiving a Message

4.2 Concurrent Erlang in 2 examples

1 - Spawn

Pid = spawn(fun() -> loop(0) end)

2 - Send and receive

Pid ! Message,

.....

receive

Message1 ->

Actions1;

Message2 ->

Actions2;

...

after Time ->

TimeOutActions

end

4.3 Distributed Erlang in 1 example

1 - Distribution

...

Pid = spawn(Fun@Node)

...

alive(Node)

...

not_alive(Node)

4.4 Fault tolerant Erlang in 2 examples

1 - Catch/throw

...

case (catch foo(A, B)) of

{abnormal_case1, Y} ->

...

{’EXIT’, Opps} ->

...

Val ->

...

end,

..

foo(A, B) ->

...

throw({abnormal_case1, ...})

2 - Monitor a process

...

process_flag(trap_exit, true),

Pid = spawn_link(fun() -> ... end),

receive

{’EXIT’, Pid, Why} ->

...

end

4.5 Bit syntax in 1 example

Erlang has a “bit syntax” for parsing bit aligned data fields in

packet data. As an example we show how to parse the header

of an IPv4 datagram:

Dgram is bound to the consecutive bytes of an IP datagram

of IP protocol version 4. We can extract the header and the

data of the datagram with the following code:

-define(IP_VERSION, 4).

-define(IP_MIN_HDR_LEN,5).

DgramSize = size(Dgram),

case Dgram of

<<?IP_VERSION:4, HLen:4,

SrvcType:8,TotLen:16,ID:16,Flgs:3,

FragOff:13,TTL:8,Proto:8,HdrChkSum:16,

SrcIP:32,DestIP:32,Body/binary>> when

HLen >= 5,4*HLen =< DgramSize ->

OptsLen = 4*(HLen-?IP_MIN_HDR_LEN),

<<Opts:OptsLen/binary,Data/binary>>

= Body,

...

end.

4.6 Behaviors

Many common programming patterns5 in Erlang can be cap-

tured in the form of higher-order functions.

For example, a universal Client - Serverwith dynamic code

update can be written as follows:

server(Fun, Data) ->

receive

{new_fun, Fun1} ->

server(Fun1, Data);

{rpc, From, ReplyAs, Q} ->

{Reply, Data1} = Fun(Q, Data),

From ! {ReplyAs, Reply},

server(Fun, Data1)

end.

Here, the semantics of the server is completely determined

by the function Fun. By sending a message of the form

{new_fun, Fun’} the semantics of the server will change

without having to stop the system.

The server is accessed by calling the routine rpc which is

as follows:

5Called behaviors in Erlang.

Selective Receive

• Patterns and guards permit message
selection

• receive-clauses are tried in order

• If no message matches, the process suspends
and waits for a new message

Send and Reply

• Pids are often included in messages
(self()), so that the receiver can reply to
the sender

• If the reply includes the Pid of the
second process, it is easier for the first
process to recognize the reply

Send and Reply

rpc(A, B) ->
Tag = new_ref(),
A ! {rpc, self(), Tag, B},
receive
{Tag, Val} -> Val

end

4.7 Programming Simple Concurrency

Patterns

How can we program common concurrency patterns? The

following diagram shows the four most common concurrency

patterns:

Reading from the left, these can be programmed as follows:

Cast
A ! B

Event
receive A -> A end

Call (RPC)
A ! {self(), B},
receive
{A, Reply} ->

Reply
end

Callback
receive
{From, A} ->

From ! F(A)
end

These four concurrency patterns account for a large pro-

portion of all programming.

Entire industries are built around the remote procedure call

(the first of our patterns with two messages) - well known

protocols like HTTP and SOAP are just disguised remote pro-

cedure calls with bizarre and difficult to parse syntaxes.

The callback model (the second pattern with two messages)

leads to entire school of “callback” programming - commonly

found in windowing systems.

4.8 Programming Complex Concurrency

Patterns

The last section dealt with the four simplest concurrency pat-

terns, it is tempting to ask how we should program complex

concurrency patterns.

The following diagram illustrates two slightly more com-

plex concurrency patterns.

The figure to the left shows a callback occurring within a

remote procedure call, to the right is a parallel set of remote

procedure calls (here we dispatch three queries and wait for

the return values which might come back in any order.

These are simply programmed in Erlang. Callback within

a PRC can be written:

A ! {Tag, X}, g(A, Tag).
g(A, Tag) ->
receive

{Tag, Val} -> Val;
{A, X} ->
A ! F(X),
go(A, Tag)

end.

and parallel RPC:

par_rpc(Ps, M) ->
Self = self(),
Tags = map(

fun(I) ->
Tag = make_ref(),
spawn(
fun() ->

Val = rpc(I, M),
Self ! {Tag, Val}
end),

Tag
end, Ps),

yield(Tags).

yield([]) ->
[];

yield([H|T]) ->
Val1 = receive

{H, Val} -> Val
end,
[Val1|yield(T)].

4.9 Commercial application of Erlang

In 1998 Erlang and the OTP system was released into the

public domain subject to an Open Source license. Since that

time a number of different companies have adopted Erlang

and used it to build commercial products.

The following major products are discussed:

Registered Processes

• A process can be registered under a name

• Any process can send a message to a
registered process, or look up the Pid

• The Pid might change (if the process is
restarted and re-registered), but the name
stays the same

Ping-pong

1.3: Concurrent Programming

1.3.3 Registered Process Names

In the above example, we first created “pong” so as to be able to give the identity of “pong” when we
started “ping”. I.e. in some way “ping” must be able to know the identity of “pong” in order to be able to
send a message to it. Sometimes processes which need to know each others identities are started
completely independently of each other. Erlang thus provides a mechanism for processes to be given
names so that these names can be used as identities instead of pids. This is done by using the register
BIF:

register(some_atom, Pid)

We will now re-write the ping pong example using this and giving the name pong to the “pong” process:

-module(tut16).

-export([start/0, ping/1, pong/0]).

ping(0) ->
pong ! finished,
io:format("ping finished~n", []);

ping(N) ->
pong ! {ping, self()},
receive

pong ->
io:format("Ping received pong~n", [])

end,
ping(N - 1).

pong() ->
receive

finished ->
io:format("Pong finished~n", []);

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

end.

start() ->
register(pong, spawn(tut16, pong, [])),
spawn(tut16, ping, [3]).

2 c(tut16).
ok, tut16
3 tut16:start().
0.38.0

Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong

29Getting Started with Erlang

1.3: Concurrent Programming

1.3.3 Registered Process Names

In the above example, we first created “pong” so as to be able to give the identity of “pong” when we
started “ping”. I.e. in some way “ping” must be able to know the identity of “pong” in order to be able to
send a message to it. Sometimes processes which need to know each others identities are started
completely independently of each other. Erlang thus provides a mechanism for processes to be given
names so that these names can be used as identities instead of pids. This is done by using the register
BIF:

register(some_atom, Pid)

We will now re-write the ping pong example using this and giving the name pong to the “pong” process:

-module(tut16).

-export([start/0, ping/1, pong/0]).

ping(0) ->
pong ! finished,
io:format("ping finished~n", []);

ping(N) ->
pong ! {ping, self()},
receive

pong ->
io:format("Ping received pong~n", [])

end,
ping(N - 1).

pong() ->
receive

finished ->
io:format("Pong finished~n", []);

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

end.

start() ->
register(pong, spawn(tut16, pong, [])),
spawn(tut16, ping, [3]).

2 c(tut16).
ok, tut16
3 tut16:start().
0.38.0

Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong

29Getting Started with Erlang

Ping-pong

1.3: Concurrent Programming

1.3.3 Registered Process Names

In the above example, we first created “pong” so as to be able to give the identity of “pong” when we
started “ping”. I.e. in some way “ping” must be able to know the identity of “pong” in order to be able to
send a message to it. Sometimes processes which need to know each others identities are started
completely independently of each other. Erlang thus provides a mechanism for processes to be given
names so that these names can be used as identities instead of pids. This is done by using the register
BIF:

register(some_atom, Pid)

We will now re-write the ping pong example using this and giving the name pong to the “pong” process:

-module(tut16).

-export([start/0, ping/1, pong/0]).

ping(0) ->
pong ! finished,
io:format("ping finished~n", []);

ping(N) ->
pong ! {ping, self()},
receive

pong ->
io:format("Ping received pong~n", [])

end,
ping(N - 1).

pong() ->
receive

finished ->
io:format("Pong finished~n", []);

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

end.

start() ->
register(pong, spawn(tut16, pong, [])),
spawn(tut16, ping, [3]).

2 c(tut16).
ok, tut16
3 tut16:start().
0.38.0

Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong

29Getting Started with Erlang

Ping-pong

1.3: Concurrent Programming

1.3.3 Registered Process Names

In the above example, we first created “pong” so as to be able to give the identity of “pong” when we
started “ping”. I.e. in some way “ping” must be able to know the identity of “pong” in order to be able to
send a message to it. Sometimes processes which need to know each others identities are started
completely independently of each other. Erlang thus provides a mechanism for processes to be given
names so that these names can be used as identities instead of pids. This is done by using the register
BIF:

register(some_atom, Pid)

We will now re-write the ping pong example using this and giving the name pong to the “pong” process:

-module(tut16).

-export([start/0, ping/1, pong/0]).

ping(0) ->
pong ! finished,
io:format("ping finished~n", []);

ping(N) ->
pong ! {ping, self()},
receive

pong ->
io:format("Ping received pong~n", [])

end,
ping(N - 1).

pong() ->
receive

finished ->
io:format("Pong finished~n", []);

{ping, Ping_PID} ->
io:format("Pong received ping~n", []),
Ping_PID ! pong,
pong()

end.

start() ->
register(pong, spawn(tut16, pong, [])),
spawn(tut16, ping, [3]).

2 c(tut16).
ok, tut16
3 tut16:start().
0.38.0

Pong received ping
Ping received pong
Pong received ping
Ping received pong
Pong received ping
Ping received pong

29Getting Started with Erlang

Receive with Timeout

• A receive-expression can have an after-
part

• can be an integer (milliseconds) or
“infinity”

• The process waits until a matching message
arrives, or the timeout limit is exceeded

• soft real-time: no guarantees

Receive with Timeout

Timeouts 75

in the receive after a message has arrived but before the call to the new state
function.

5.3 Timeouts

The basic receive primitive in Erlang can be augmented with an optional time-
out. The full syntax then becomes:

receive
Message1 [when Guard1] ->

Actions1 ;
Message2 [when Guard2] ->

Actions2 ;
...

after
TimeOutExpr ->

ActionsT
end

TimeOutExpr is an expression which evaluates to an integer which is interpreted
as a time given in milliseconds. The accuracy of the time will be limited by the
operating system or hardware on which Erlang is implemented – it is a local
issue. If no message has been selected within this time then the timeout occurs and
ActionsT is scheduled for evaluation. When they are actually evaluated depends,
of course, on the current load of the system.

For example, consider a windowing system. Code similar to the following could
occur in a process which is processing events:

get_event() ->
receive

{mouse, click} ->
receive

{mouse, click} ->
double_click

after double_click_interval() ->
single_click

end
...

end.

In this model events are represented as messages. The function get_event will
wait for a message, and then return an atom representing the event which occurred.
We want to be able to detect double mouse clicks, i.e. two mouse clicks within a

Message Order

• The only guaranteed message order is
when both the sender and the receiver are
the same for both messages (first-in, first-
out)

• Using selective receive, it is possible to
choose which messages to accept, even if
they arrive in a different order

Process Termination

• A process terminates when:

• it finishes the function call that it started
with

• there is an exception that is not caught

• All messages sent to a terminated process
will be thrown away

• Same Pid will not be used before long

Implementing Automata

Inter-process Communication 73

values and also stop them.
As in the previous example, a new counter process is started by evaluating

counter:start() which returns the Pid of the new counter. To hide the message
protocol we provide the interface functions increment, value and stop which
operate on the counters.

The counter process uses the selective receive mechanism to process the incoming
requests. It also presents a solution to the problem of handling unknown messages.
The last clause in the receive has the unbound variable Other as its message
pattern; this will match any message which is not matched by the other clauses.
Here we ignore the message and continue by waiting for the next message. This is
the standard technique for dealing with unknown messages: receive them to get
them out of the mailbox.

When we access the value of a counter, we must send our Pid as part of the
message to enable the counter process to send back a reply. This reply also contains
the identifier of the sending process, in this case the counter, to enable the receiving
process specifically to wait for the message containing the reply. It is unsafe just
to wait for a message containing an unknown value, in this case a number, as any
other message which happens to be sent to the process will be matched. Messages
sent between processes, therefore, usually contain some way of identifying them,
either by their contents, as in the request messages to the counter process, or by
including some ‘unique’ and easily recognisable identifier, as in the reply to the
value request.

msg_a

msg_i

msg_c msg_h

msg_x

msg_y

msg_b

S4S3

S2S1

Figure 5.3 Finite state machine

We now consider modelling a finite state machine (FSM). Figure 5.3 shows a
simple FSM with four states, the possible transitions and the events which cause

Implementing Automata74 Concurrent Programming

s1() ->
receive

msg_a ->
s2();

msg_c ->
s3()

end.

s2() ->
receive

msg_x ->
s3();

msg_h ->
s4()

end.

s3() ->
receive

msg_b ->
s1();

msg_y ->
s2()

end.

s4() ->
receive

msg_i ->
s3()

end.

Program 5.3

them. One easy way to program such a state×event machine is shown in Pro-
gram 5.3. In this code we are only interested in how to represent the states and
manage the transitions between them. Each state is represented by a separate
function and events are represented by messages.

The state functions wait in a receive for an event message. When a message
has been received the FSM makes a transition to the new state by calling the
function for that state. By making sure that each call to a new state is a last call
(see Section ??) the FSM process will evaluate in constant space.

State data can be handled by adding arguments to the state functions. With
this model actions that are to be performed on entering a state are done before the
receive and any actions that are to be performed on leaving the state are done

74 Concurrent Programming

s1() ->
receive

msg_a ->
s2();

msg_c ->
s3()

end.

s2() ->
receive

msg_x ->
s3();

msg_h ->
s4()

end.

s3() ->
receive

msg_b ->
s1();

msg_y ->
s2()

end.

s4() ->
receive

msg_i ->
s3()

end.

Program 5.3

them. One easy way to program such a state×event machine is shown in Pro-
gram 5.3. In this code we are only interested in how to represent the states and
manage the transitions between them. Each state is represented by a separate
function and events are represented by messages.

The state functions wait in a receive for an event message. When a message
has been received the FSM makes a transition to the new state by calling the
function for that state. By making sure that each call to a new state is a last call
(see Section ??) the FSM process will evaluate in constant space.

State data can be handled by adding arguments to the state functions. With
this model actions that are to be performed on entering a state are done before the
receive and any actions that are to be performed on leaving the state are done

Distribution

• Running “erl” with the flag “-name
xxx”

• starts the Erlang network distribution
system

• makes the virtual machine emulator a
“node” (‘xxx@host.domain’)

• Erlang nodes can communicate over the
network (but must find each other first)

Connecting Nodes

• Nodes are connected the first time they
try to communicate

• The function “net_adm:ping(Node)”
is the easiest way to set up a connection
between nodes

• returns “pong” or “pang”

• Send a message to a registered process
using “{Name,Node} ! Message”

Distribution is
Transparent

• Possible to send a Pid from one node to
another (Pids are unique across nodes)

• You can send a message to any process
through its Pid (even on another node)

• You can run several Erlang nodes (with
different names) on the same computer

Running Remote
Processes

• Variants of the spawn function can start
processes directly on another node

• The module ‘global’ contains functions
for

• registering and using named processes
over the whole network of connected
nodes

• setting global locks

Bit Syntax

4.2 Concurrent Erlang in 2 examples

1 - Spawn

Pid = spawn(fun() -> loop(0) end)

2 - Send and receive

Pid ! Message,

.....

receive

Message1 ->

Actions1;

Message2 ->

Actions2;

...

after Time ->

TimeOutActions

end

4.3 Distributed Erlang in 1 example

1 - Distribution

...

Pid = spawn(Fun@Node)

...

alive(Node)

...

not_alive(Node)

4.4 Fault tolerant Erlang in 2 examples

1 - Catch/throw

...

case (catch foo(A, B)) of

{abnormal_case1, Y} ->

...

{’EXIT’, Opps} ->

...

Val ->

...

end,

..

foo(A, B) ->

...

throw({abnormal_case1, ...})

2 - Monitor a process

...

process_flag(trap_exit, true),

Pid = spawn_link(fun() -> ... end),

receive

{’EXIT’, Pid, Why} ->

...

end

4.5 Bit syntax in 1 example

Erlang has a “bit syntax” for parsing bit aligned data fields in

packet data. As an example we show how to parse the header

of an IPv4 datagram:

Dgram is bound to the consecutive bytes of an IP datagram

of IP protocol version 4. We can extract the header and the

data of the datagram with the following code:

-define(IP_VERSION, 4).

-define(IP_MIN_HDR_LEN,5).

DgramSize = size(Dgram),

case Dgram of

<<?IP_VERSION:4, HLen:4,

SrvcType:8,TotLen:16,ID:16,Flgs:3,

FragOff:13,TTL:8,Proto:8,HdrChkSum:16,

SrcIP:32,DestIP:32,Body/binary>> when

HLen >= 5,4*HLen =< DgramSize ->

OptsLen = 4*(HLen-?IP_MIN_HDR_LEN),

<<Opts:OptsLen/binary,Data/binary>>

= Body,

...

end.

4.6 Behaviors

Many common programming patterns5 in Erlang can be cap-

tured in the form of higher-order functions.

For example, a universal Client - Serverwith dynamic code

update can be written as follows:

server(Fun, Data) ->

receive

{new_fun, Fun1} ->

server(Fun1, Data);

{rpc, From, ReplyAs, Q} ->

{Reply, Data1} = Fun(Q, Data),

From ! {ReplyAs, Reply},

server(Fun, Data1)

end.

Here, the semantics of the server is completely determined

by the function Fun. By sending a message of the form

{new_fun, Fun’} the semantics of the server will change

without having to stop the system.

The server is accessed by calling the routine rpc which is

as follows:

5Called behaviors in Erlang.

Token Passing Example

• Unidirectional ring of N nodes

• Each node i has a state v(i) (integer)

• Top :

• <v(n-1) = v(0)> -> v(0):=v(0)+1 mod N

• Bottom :

• <v(i-1) != v(i)> -> v(i):=v(i-1)

Token Ring Example

-module(dijkstra).
-export([init/1]).

init(N) when N > 1 ->
Top = spawn(fun() -> wait() end),
Top ! { init(N - 1, Top, N), random:uniform(N), N }.

init(N, Last, Size) when N > 0 ->
spawn(fun() -> bottom(init(N - 1, Last, Size), random:uniform(N)) end);

init(N, Last, _Size) when N =:= 0 ->
Last.

wait() ->
receive { Child, State, Size } ->

top(Child, State, Size)
end.

top(Child, State, Size) ->
io:format("> Top: ~w, Seq#: ~w, State#: ~w ..~n", [self(), Child, State]),
receive

N when N =:= State ->
Child ! ((N + 1) rem Size) ,
top(Child, ((N + 1) rem Size), Size);

N when N =/= State ->
Child ! State,
top(Child, State, Size)

after 2000 ->
Child ! State,
top(Child, State, Size)

end.

bottom(Child, State) ->
io:format("> Bottom: ~w, Seq#: ~w, State#: ~w ..~n", [self(), Child, State]),
receive

N when N =/= State ->
Child ! N,
bottom(Child, N);

N when N =:= State ->
Child ! State,
bottom(Child, State)

end.

1

Token Ring Example

-module(dijkstra).
-export([init/1]).

init(N) when N > 1 ->
Top = spawn(fun() -> wait() end),
Top ! { init(N - 1, Top, N), random:uniform(N), N }.

init(N, Last, Size) when N > 0 ->
spawn(fun() -> bottom(init(N - 1, Last, Size), random:uniform(N)) end);

init(N, Last, _Size) when N =:= 0 ->
Last.

wait() ->
receive { Child, State, Size } ->

top(Child, State, Size)
end.

top(Child, State, Size) ->
io:format("> Top: ~w, Seq#: ~w, State#: ~w ..~n", [self(), Child, State]),
receive

N when N =:= State ->
Child ! ((N + 1) rem Size) ,
top(Child, ((N + 1) rem Size), Size);

N when N =/= State ->
Child ! State,
top(Child, State, Size)

after 2000 ->
Child ! State,
top(Child, State, Size)

end.

bottom(Child, State) ->
io:format("> Bottom: ~w, Seq#: ~w, State#: ~w ..~n", [self(), Child, State]),
receive

N when N =/= State ->
Child ! N,
bottom(Child, N);

N when N =:= State ->
Child ! State,
bottom(Child, State)

end.

1

Token Ring Example
-module(dijkstra).
-export([init/1]).

init(N) when N > 1 ->
Top = spawn(fun() -> wait() end),
Top ! { init(N - 1, Top, N), random:uniform(N), N }.

init(N, Last, Size) when N > 0 ->
spawn(fun() -> bottom(init(N - 1, Last, Size), random:uniform(N)) end);

init(N, Last, _Size) when N =:= 0 ->
Last.

wait() ->
receive { Child, State, Size } ->

top(Child, State, Size)
end.

top(Child, State, Size) ->
io:format("> Top: ~w, Seq#: ~w, State#: ~w ..~n", [self(), Child, State]),
receive

N when N =:= State ->
Child ! ((N + 1) rem Size) ,
top(Child, ((N + 1) rem Size), Size);

N when N =/= State ->
Child ! State,
top(Child, State, Size)

after 2000 ->
Child ! State,
top(Child, State, Size)

end.

bottom(Child, State) ->
io:format("> Bottom: ~w, Seq#: ~w, State#: ~w ..~n", [self(), Child, State]),
receive

N when N =/= State ->
Child ! N,
bottom(Child, N);

N when N =:= State ->
Child ! State,
bottom(Child, State)

end.

1

