Erlang History

® Erlang: Ericsson Language

Introduction to Erlang

® Designed to implement large-scale real-

i time telecommunication switching systems
Sébastien Tixeuil

Sebastien. Tixeuil@lip6.fr ® Open source version

® http://www.erlang.orqg

Main Characteristics Basics

. , o Diceribei
Declarative Distribution ® ‘%’ starts a comment

e C t ® |nt ti .
oncurren ntegration ° ‘.) endsadeclaratlon

® Real-ti . .
eal-time ® Every function must be in a module

e Continuous operation .
P ® source file name is module name +

® Robust “.erl”
e Memory management ® ‘:’ used for calling functions in other
modules

Basics The Erlang Shell

-module (tut) . % erl

Erlang (BEAM) emulator version 5.2 [source] [hipe]

—eXport ([double/l]) . Eshell V5.2 (abort with ~G)

1>

double(X) -> 1> 2 + 5.

7
2 x X. 2> (42 + 77) * 66 / 3.

2618.00

10:format

32> io:format("hello world™n", [1).

hello world

ok

33> jo:format("this outputs one Erlang term: “w™n", [hellol).

this outputs one Erlang term: hello

ok

34> io:format("this outputs two Erlang terms: "w"w™n", [hello, world]).
this outputs two Erlang terms: helloworld

ok

35> io:format("this outputs two Erlang terms: “w “w™n", [hello, world]).

this outputs two Erlang terms: hello world
ok

Manual

% erl -man io
ERLANG MODULE DEFINITION io(3)

MODULE
io - Standard I/0 Server Interface Functions

DESCRIPTION
This module provides an interface to standard Erlang IO
servers. The output functions all return ok if they are suc-

Pattern Matching

® The expression “Pattern =
Expression” causes “Expression” to
be evaluated and the result matched against
“Pattern”

e If the match succeeds,“Pattern” is then
bound

Pattern Matching

{A, B} = {12, apple}
{C, [Head|Taill} = {{222, man}, [a,b,c]l}

[{person, Name, Age, _}IT] =
[{person, fred, 22, male},
{person, susan, 19, female},

]

Recursive Functions

® Variables start with upper-case characters
® ‘;’ separates function clauses
® Variables are local to the function clause

® Pattern matching and guards to select
clauses

® Runtime error if no clause matches

Recursive Functions

-module(math).
-export([fac/1]).

fac(N) when N > 0 -> N * fac(N-1);
fac(0) -> 1.

> math:fac(25).
15511210043330985984000000

Lists

® Pattern-matching selects components of
the data

‘ ’isa“don’t care” pattern (not a variable)
® ‘[]’ is the empty list

® ‘[X,Y,Z] is a list with exactly three
elements

® ‘[X,Y,Z|Tail]’ has three or more
elements

Lists

18> [First |TheRest] = [1,2,3,4,5].

[1,2,3,4,5]
19> First.

1

20> TheRest.
[2,3,4,5]

Lists

21> [E1, E2 | R] = [1,2,3,4,5,6,7].
[1,2,3,4,5,6,7]

22> E1.

1

23> E2.

2

24> R.

[3,4,5,6,7]

Lists

26> [A, B | C¢] = [1, 2].
[1,2]
26> A.

27> B.

28> C.
[]

Lists

append([H|T], L) -> [H|append(T, L)];
append([], L) -> L.

list_length([]) ->
0;

list_length([First | Rest]) ->
1 + list_length(Rest).

List Comprehension

o Leftofthe‘| |’isan
expression template

® [f there are multiple
generators, you get all
combinations of values
® ‘Pattern <- List’
is a generator

® clements are picked
from the list in order

® The other expressions
are boolean filters

Lists

sort([Pivot|T]) ->
sort([X||X <- T, X < Pivot]) ++
[Pivot] ++
sort([X||X <- T, X >= Pivot]);
sort([]) -> [1]-

Numbers

Arbitrary-size integers (but usually just one
word)

#-notation for base-N integers

S-notation for character codes

(1ISO-8859-1)

Floating-point numbers

@ ==vys.=:=and /=vs. =/=

Arithmetic Expressions

Operator | Description Type | Operands | Prio
+ X + X unary | mixed 1
- X - X unary | mixed 1
X *xY X *xY binary | mixed 2
X/Y X / Y (floating point division) binary | mixed 2
X div Y integer division of X and Y binary | integer 2
X rem Y integer remainder of X divided by Y | binary | integer 2
X band Y | bitwise and of X and Y binary | integer 2
X+Y X+Y binary | mixed 3
X-Y X-Y binary | mixed 3
X bor Y bitwise or of X and Y binary | integer 3
X bxor Y | arithmetic bitwise xor X and Y binary | integer 3
X bsl N arithmetic bitshift left of X by N bits | binary | integer 3
X bsr N bitshift right of X by N bits binary | integer 3

Atoms

® Must start with lower case character or be
quoted

® Single-quotes are used to create arbitrary
atoms

® Similar to hashed strings
® use only one word of data

® constant-time equality test

Quoted Atoms

Characters | Meaning

\b backspace

\d delete

\e escape

\f form feed

\n newline

\r carriage return

\t tab

\v vertical tab

A\ backslash

\"A .. \"Z | control A to control Z (i.e. 0 .. 26)
\’ single quote

\" double quote

\000 The character with octal representation 000

Atoms

-module (tut2).
-export ([convert/2]).

convert (M, inch) ->
M/ 2.54;

convert (N, centimeter) ->
N *x 2.54.

10> tut2:convert(3, inch).
1.18110

11> tut2:convert(7, centimeter).
17.7800

Comparisons Tuples

Operator | Description Type

> . .
x>y X greater than Y coeree ® Tuples are the main data constructor in
X<y X less than Y coerce Erlan
X=<Y X equal to or less than Y coerce 8
X >= Y | X greater than or equal to Y | coerce ® A tuple whose first element is an atom is
X==Y |XequaltoY coerce called a tagged tuple
X /=Y X not equal to Y coerce
X =:= Y | Xequal toY exact ® The elements of a tuple can be any values
X =/=Y | Xnot equal to Y exact

Tuples Tuples

-module (tut3l3).

lookup(Key, {Key, val, |, >
-export([convert_length/1]). ookup(key, {key, val, _, _})

{ok, Val};
lookup(Key, {Keyl,Val,S,B}) when Key<Keyl->

convert_length({centimeter, X}) -> lookup (Key, S);

{inch, X / 2.54}; lookup(Key, {Keyl,Val,S,B}) ->
convert_length({inch, Y}) -> lookup(Key, B);

{centimeter, Y * 2.54}. lookup(Key, nil) ->

not found.

15> tut3:convert.length({inch, 5}).
{centimeter,12.7000}

16> tut3:convert_length(tut3:convert length({inch, 5})).
{inch,5.00000}

Record Syntax Built-in Functions

® Records are just a ® Not so good in public ® Implemented in C ® Many common BIFs are
syntax for working with interfaces (users must auto-imported
tagged tuples have same definition) o All the type tests and (recognized without
conversions are BIFs writing “erlang:..”)
® You don’t have to
remember element ® Most BIFs (not all) are in ® Operators
order and tuple size the module “erlang” (‘+')-")%)/’,...) are also
really BIFs

® Good for internal work
within a module

Fun Expressions

® Variables bound in the
environment can be
used in the fun-body

e Anonymous functions
(lambda expressions)

® Can have several clauses

® All variables in the
pattern are new

® All variable bindings in
the fun are local

Fun Expressions

90> Xf = fun(X) -> X * 2 end.
#Fun<erl_eval.5.123085357>
91> Xf(5).

10

Fun Expressions

map (Fun, [First|Rest]) ->
[Fun(First) |lmap(Fun,Rest)];
map (Fun, []1) ->
[].

92> Add.3 = fun(X) -> X + 3 end.
#Fun<erl_eval.5.123085357>

93> lists:map(Add-3, [1,2,3]).
[4,5,6]

Case-switches

® Choice between alternatives within the
body of a clause

case Expr of
Patternl [when Guardl] -> Seql;
Pattern2 [when Guard2] -> Seq2;

PatternN [when GuardN] -> SegN
end

If-switches

If-switches

® Like a case-switch ® only specific built-in

without the patterns and
the ‘when’ keyword

e Use‘true’ as catch-all
e Guards are special

® comma-separated list

functions (and all
operators)

no side effects

-module (tut9).
-export ([test_if/2]).

test_if (A, B) —>
if

A==5->
io:format("A = 5™n", [1),
a_equals_5;

B==6 >
io:format ("B = 6™n", [1),
b_equals_6;

A==2,B==23->
io:format("A == 2, B == 3'n", []),

%i.e. A equals 2 and B equals 3

a_equals_2_b_equals_3;
A==1;B==7->
io:format("A == 1 ; B ==7"n", [1),

a_equals_1_or_b_equals_7

%i.e. A equals 1 or B equals 7

Catching Exceptions Preprocessor

® Three classes of e only catch throw ® C-style token-level ® Use functions instead of
exceptions exceptions normally preprocessor macros if you can
(compiler can inline)
e throw:user-defined ® Re-thrown if no catch- ® Record definitions often
clause matches put in header files, to be
® error:runtime included
errors e ‘after’ partis always
run (side effects only) ® Use macros mainly for
® exit:end process constants
® Code is executed by a process
® Virtual machine layer processes
® A process keeps track of the program . o
pointer, the stack, the variables values, etc. ® Preemptive multitasking
® Every process has a unique process identifier ® Little overhead (e.g. 100.000 processes)
® Processes are concurrent ® Can use multiple CPUs on multiprocessor
machines
® Processes do not share data

Starting Processes Concurrency

® The “spawn” function creates a new
process ® Several processes may use the same
program code at the same time
® The new process will run the specified
function ® each has own program counter, stack, and
variables
® The spawn operation always returns .
immediately ® programmer need not think about other

processes updating the variables
® The return value is the Pid of the “child”

Processes

-module (tuti4).

-export ([start/1, say_something/2]).

say_something(What, 0) ->

done;

say_something(What, Times) ->
io:format("“p~n", [Whatl),
say_something(What, Times - 1).

start() ->

spawn(tutl4, say_something, [hello, 3]),
spawn(tutl4, say_something, [goodbye, 3]1).

9> tutld:start().

hello
goodbye
<0.63.0>
hello
goodbye
hello
goodbye

Message Passing

Pid ! Message

“|)1

is the send operator
® Pid of the receiver is used as the address
® Messages are sent asynchronously

® Any value can be sent as a message

Message Queues

® Each process has a message queue (mailbox)

® incoming messages are placed in the

queue (no size limit)

® A process receives a message when it
extracts it from the mailbox

® need not take the first message in the

queue

Receiving a Message

® receive-expressions are similar to case
switches

® patterns are used to match messages in
the mailbox

® messages in the queue are tested in
order

® only one message can be extracted each
time

Receiving a Message

receive
Messagel ->
Actionsl;
Message2 ->
Actions2;
after Time ->
TimeOutActions
end

Selective Receive

® Patterns and guards permit message
selection

® receive-clauses are tried in order

® |f no message matches, the process suspends
and waits for a new message

Send and Reply

® Pids are often included in messages
(self ()),so that the receiver can reply to
the sender

e If the reply includes the Pid of the
second process, it is easier for the first
process to recognize the reply

Send and Reply

Call (RPC)
A ! {self(), B},
receive
{A, Reply} -
Reply
end

Registered Processes

® A process can be registered under a name

® Any process can send a message to a
registered process, or look up the Pid

® The Pid might change (if the process is
restarted and re-registered), but the name
stays the same

Ping-pong

-module(tutil6).

-export ([start/0, ping/1, pong/0]).

start() ->
register(pong, spawn(tutl6, pong, [1)),
spawn(tut16, ping, [3]).

Ping-pong

Ping-pong

pong() ->
receive
finished ->
io:format ("Pong finished™n", []);
{ping, Ping_PID} ->
io:format ("Pong received ping™n", [1),
Ping_PID ! pong,
pong ()
end.

ping(0) ->
pong ! finished,
io:format("ping finished™n", [1);

ping(N) ->
pong ! {ping, self()},
receive
pong —>
io:format ("Ping received pong™n", [])
end,

ping(N - 1).

Receive with Timeout

® A receive-expression can have an after-
part

® can be an integer (milliseconds) or
“Infinity”
® The process waits until a matching message

arrives, or the timeout limit is exceeded

® soft real-time: no guarantees

Receive with Timeout

receive
Messagel [when Guardl] ->
Actionsl ;
Message2 [when Guard2] ->
Actions2 ;

after
TimeOutExpr ->
ActionsT
end

Message Order

® The only guaranteed message order is
when both the sender and the receiver are
the same for both messages (first-in, first-
out)

® Using selective receive, it is possible to
choose which messages to accept, even if
they arrive in a different order

Process Termination

® A process terminates when:

® it finishes the function call that it started
with

® there is an exception that is not caught

® All messages sent to a terminated process
will be thrown away

e Same Pid will not be used before long

Implementing Automata

msg_a

Implementing Automata

s1() —>
receive
msg_a —>

s20);

msg_c —>
s30
end.

s2(0) —>
receive
msg_x —>

s30);

msg_h ->
s40)
end.

s3() —>
receive
msg_b —>
s10);
msg_y —>
s20)
end.

s4() ->
receive
msg_i —>
s30
end.

Distribution Connecting Nodes

® Running “erl” with the flag “-name ® Nodes are connected the first time they
XXX try to communicate

® starts the Erlang network distribution ® The function“net adm:ping (Node)

system is the easiest way to set up a connection

_ _ between nodes
® makes the virtual machine emulator a

“node” (‘xxx@host .domain’) ® returns “pong” or “pang”
® Erlang nodes can communicate over the * Se.nd a message to a registered process
network (but must find each other first) using”{Name,Node} ! Message
Distribution is Running Remote
Transparent Processes

® Variants of the spawn function can start

) i 1 .
Possible to send a Pid from one node to processes directly on another node

another (Pids are unique across nodes)
® The module ‘global’ contains functions

® You can send a message to any process for

through its Pid (even on another node)
® registering and using named processes

over the whole network of connected
nodes

® You can run several Erlang nodes (with
different names) on the same computer

® setting global locks

Bit Syntax Token Passing Example

-define(IP_VERSION, 4).
-define(IP_MIN HDR LEN,5).

L e Unidirectional ring of N nodes
DgramSize = size(Dgram),

case Dgram of

<<?IP VERSION:4, HLen:d, ® Each node i has a state v (1) (integer)
SrvcType:8,TotLen:16,ID:16,Flgs:3,
FragOff:13,TTL:8,Proto:8,HdrChkSum:16, [Top:
SrcIP:32,DestIP:32,Body/binary>> when
HLen >= 5,4*HLen =< DgramSize -> e <v(n-1) = v(0)> => v (0):=v(0)+1 mod N
OptsLen = 4*(HLen-?IP_MIN HDR_LEN),
<<Opts:OptsLen/binary,Data/binary>> ® Bottom :
= Body,
® <v(i-1) != v(i)> -> v(i):=v(i-1)

end.

Token Ring Example

Token Ring Example

bottom(Child, State) ->
io:format ("> Bottom: “w, Seq#: “w, State#: “w .."n",
receive
N when N =/= State —->
Child ! N,
bottom(Child, N);
N when N =:= State ->
Child ! State,
bottom(Child, State)

[self(), Child, Statel),

end.

top(Child, State, Size) ->

io:format("> Top: “w, Seq#: “w, State#: “w .."n", [self(), Child, Statel),
receive
N when N =:= State ->

Child ! ((N + 1) rem Size) ,
top(Child, ((N + 1) rem Size), Size);
N when N =/= State ->
Child ! State,
top(Child, State, Size)
after 2000 —>
Child ! State,
top(Child, State, Size)
end.

Token Ring Example

-module(dijkstra) .
-export ([init/1]).

init(N) when N > 1 ->
Top = spawn(fun() -> wait() end),
Top ! { init(N - 1, Top, N), random:uniform(N), N }.

init(N, Last, Size) when N > 0 ->

spawvn(fun() -> bottom(init(N - 1, Last, Size), random:uniform(N)) end);
init(N, Last, _Size) when N =:= 0 ->

Last.

wait() ->
receive { Child, State, Size } —>
top(Child, State, Size)
end.

