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Abstract

One of the topics of paramount importance in the development of Grid
middleware is the impact of faults since their probability of occurrence in
a Grid infrastructure and in large-scale distributed system is actually very
high. In this paper we explore the versatility of a new tool for fault injec-
tion in distributed applications: FAIL-FCI. In particular, we show that
not only we are able to fault-load existing distributed applications (as
used in most current papers that address fault-tolerance issues), we are
also able to inject qualitative faults, i.e. inject specific faults at very spe-
cific moments in the program code of the application under test. Finally,
and although this was not the primary purpose of the tool, we are also
able to inject specific patterns of workload, in order to stress test the
application under test. Interestingly enough, the whole process is driven
by a simple unified description language, that is totally independent from
the language of the application, so that no code changes or recompilation
are needed on the application side.

1 Introduction

It is expected that Grid middleware is reliable and provides a comprehensive sup-
port for fault-tolerance mechanisms, such as failure-detection, check-pointing-
recovery, replication, software rejuvenation, component-based reconfiguration,
among others. One of the techniques to evaluate the effectiveness of those fault-
tolerance mechanisms and the reliability level of the Grid middleware is to make
use of some fault-injection tool and robustness tester to conduct some exper-
imental assessment of the dependability metrics of the target system. In this
paper, we present a software that can be used both for software fault-injection
and for stress testing of distributed applications, which are the basis for depend-
ability benchmarking in Grid Computing.

Some applications (for example peer to peer applications) involve a consid-
erable number of users, e.g. to exchange files or to execute long calculations
(SeTi@Home, Decrypthon, Xtremweb, Boinc, etc.). For those applications, the
appearance and disappearance of participating machines are unpredictable, very
frequent and occur eventually while the application is run. It is particularly dif-
ficult to study the functioning of large-scale distributed programs: it would be
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necessary to have a considerable number of computers and engineering power
to execute the software in an actual situation, to measure the performances or
to detect the defects.

Testing the validity of fault-tolerant software and measuring the impact on
performance of occurring faults requires being able to control those faults. When
an application is run on a cluster, it is likely that machines will run roughly at
the same speed (for example a one to ten ratio on the relative speeds of the
processors makes it easy to solve the consensus problem), so the considered
system is actually synchronous. Afterwards, when the application is then run
at a larger scale (e.g. in an Internet-like setting) where the strong synchrony
hypothesis does not hold any more, crucial issues related to fault-tolerance and
asynchronous settings have been overlooked.

2 Distributed Fault-injection

2.1 State of the art

The issues in testing component-based distributed systems have already been
described and methodology for testing components and systems has already
been proposed. However, testing for fault tolerance remains a challenging issue.
Indeed, in available systems, the fault-recovery code is rarely executed in the
test-bed as faults rarely get triggered. As the ability of a system to perform
well in the presence of faults depends on the correctness of the fault-recovery
code, it is mandatory to actually test this code. Testing based on fault-injection
can be used to test for fault-tolerance by injecting faults into a system under
test and observing its behavior. The most obvious point is that simple tests
(e.g. every few minutes or so, a randomly chosen machine crashes) should
be simple to write and deploy. On the other hand, it should be possible to
inject faults for very specific cases (e.g. in a particular global state of the
application), even if it requires a better understanding of the tested application.
Also, decoupling the fault injection platform from the tested application is a
desirable property, as different groups can concentrate on different aspects of
fault-tolerance. Decoupling requires that no source code modification of the
tested application should be necessary to inject faults. Finally, to properly
evaluate a distributed application in the context of faults, the impact of the
fault injection platform should be kept low, even if the number of machines is
high. Of course, the impact is doomed to increase with the complexity of the
fault scenario, e.g. when every action of every processor is likely to trigger a
fault action, injecting those faults will induce an over-head that is certainly not
negligible. The table below captures the major differences between the main
solutions for distributed fault injection relatively to those criteria. For a more
thorough survey of available tools, please refer to [7].
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Criteria ORCHESTRA [2] NFTAPE [6] LOKI [1] FAIL-FCI
High Expressiveness no yes no yes
High-level Language no no no yes

Low Intrusion yes no yes yes
Probabilistic Scenario yes yes no yes
No Code Modification yes no no yes

Scalability yes no yes yes
Global-state Injection no yes yes yes

2.2 FAIL-FCI

We now describe the FAIL-FCI framework that is presented in [5]. For further
explanations, please refer to the original paper. First, FAIL (for Fault Injection
Language) is a language that permits to easily described fault scenarios. Second,
FCI (for FAIL Cluster Implementation) is a distributed fault injection platform
whose input language for describing fault scenarios is FAIL. The FAIL language
allows defining fault scenarios. A scenario describes, using a high-level abstract
language, state machines which model fault occurrences. The FAIL language
also describes the association between these state machines and a computer (or
a group of computers) in the network.

The FCI platform is composed of several building blocks:

The FCI compiler : The fault scenarios written in FAIL are pre-compiled by the
FCI compiler which generates C++ source files and default configuration
files.

The FCI library : The files generated by the FCI compiler are bundled with the
FCI library into several archives, and then distributed across the network
to the target machines according to the user-defined configuration files.
Both the FCI compiler generated files and the FCI library files are provided
as source code archives, to enable support for heterogeneous clusters.

The FCI daemon: The source files that have been distributed to the target
machines are then extracted and compiled to generate specific executable
files for every computer in the system. Those executables are referred
to as the FCI daemons. When the experiment begins, the distributed
application to be tested is executed through the FCI daemon installed on
every computer, to allow its instrumentation and its handling according
to the fault scenario.

3 Versatile Fault Injection with FAIL-FCI

In [5], the vast majority of experiments were made on a custom made distributed
program, for which both source code and expertise were available. Moreover,
tests only dealt with the overhead of the FAIL platform, and simply showed
that this overhead was, for practical purposes, negligible.
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In this section, we use FAIL-FCI to inject fault and stress test a readily
available distributed application: XtremWeb [3]. The remaining of the section
is organized as follows: Section 3.1 reviews the XtremWeb platform that we
use for our tests. Section 3.2 describes the particular settings that we use for
our experiments. Sections 3.3, 3.4, and 3.5 describe respectively how to use
FAIL-FCI for quantitative fault injection, qualitative fault injection, and stress
testing.

3.1 Overview of XtremWeb

XtremWeb is a general purpose platform that can be used for high performance
distributed computation. A list of tasks (or jobs) is described by the user
and then distributed over the different available nodes of the system. The basic
operating mode of XtremWeb is based on a participant community, e.g. it allows
a High School, a University or a Company to setup and run a Global Computing
or Peer to Peer distributed system for either a dedicated application or a whole
range of applications. The original XtremWeb application is written in Java,
but we used here the C++ version of the software, that is expected to achieve
the most efficient results. The XtremWeb tool is divided into three modules:
(i) the dispatcher centralizes, organizes and distributes the tasks, (ii) the client
proposes a set of tasks to the manager, and (iii) a set of workers regularly
requests a work from the manager. Like other distributed system platforms,
the XtremWeb platform uses (i) remote resources (PCs, workstations, servers)
connected to the Internet, or (ii) a pool of resources (PCs, workstations, servers)
inside a LAN.

3.2 Technical Settings

3.2.1 Hardware Settings

Each experiment was performed on two different hardware settings, to show
versatility of our fault injection mechanism:

1. Cluster: in this case, the experiments were performed on a 30 machines
cluster running Linux 2.6.7. All machines have one 32 bits processor
whose frequencies varies between 1533 MHz and 2083 MHz and whose
equipped RAM is between 527 MB and 885 MB, connected through 100
Mbps Ethernet network.

2. GrideXplorer [4]: in this case, the experiments were performed on 160
machines running Linux 2.6.14.3. All machines have two 64bits 1994 MHz
processors each, and 2 GB of RAM, and are connected through Gigabit
Ethernet.

3.2.2 XtremWeb Settings

For all performed experiments, the XtremWeb dispatcher and client were placed
on a single machine (lri7-209). The workload of the client does not really influ-
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ence the dispatcher: indeed, the client and dispatcher almost run in a sequential
way; the client first gives a list of jobs to the dispatcher at the beginning of the
run, and the dispatcher notices the client when the jobs have been completed
and results are available. The workers are each placed on a dedicated machine
in the cluster or in GrideXplorer (30 and 160 such machines, respectively).

Before a particular test starts, the dispatcher is started, as well as all workers.
Then, the client is started (the staring time of the client is referred to as the test
begin time). When the client exits (after receipt of an acknowledgement from
the dispatcher), this time is referred to as the test end time.

The particular application that is run with XtremWeb is POV-Ray, which
creates three-dimensional, photo-realistic images using a rendering technique
called ray-tracing. For our purpose, a task consists in calculating a particular
picture using POV-Ray. This operation is requested sufficiently many times for
the measures to be meaningfull. When the dispatcher receives a task request
from a worker, it sends all necessary information to perform the computation
of one picture.

3.3 Quantitative Fault Injection

We first design a probabilistic fault scenario, to quickly get a quantitative view
of the fault tolerance capabilities of XtremWeb. We assume that both the
dispatcher and the client are not subject to faults (i.e. some tasks can be
submitted, and some results can be returned). XtremWeb workers are run on
the remaining machines that are subject to faults. The running time is the time
between the client is started and the results are collected. The fault model is
as follows: every x seconds, each of the XtremWeb workers may crash (and
cease functioning) with probability y. Yet, we wish to ensure that there exists
a particular worker that can not crash, in order to guarantee that the running
time is always finite. The above scenario can be expressed in a surprisingly terse
way using the FAIL language (with x = 5, y = 10%, and 30 workers here):

spyfunc main;

Daemon ADV1 {

node 1: before(main) -> continue, !ok(G1[1]), !go(G1), goto 2;

node 2:

}

Daemon ADV2 {

node 1: before(main) -> stop, goto 2;

node 2: ?ok -> continue, goto 4;

?go -> continue, goto 3;

node 3: always int x = FAIL_RANDOM(1,100); always time_g timer = 5;

timer && x <= 10 -> halt, goto 4;

timer && x > 10 -> continue, goto 3;

node 4:

}

Computer P1 { program = "dummy"; daemon = ADV1; }

Group G1 { size = 30; program = "WorkerStatic -i lri7-209"; daemon = ADV2; }

We now informally describe the aforementioned source code. First, two
automata are defined: ADV1 and ADV2, then automata ADV1 is associated to
one computer P1 (that will execute dummy code), while ADV2 is associated
to 30 machines (that form the G1 group), each executing the executable file
WorkerStatic with the same parameters.
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ADV2 runs as follows: the daemon first wait that the program has loaded,
but before the main function is executed, the program is halted. The execution
continues when the ADV1 automata sends either the ’ok’ or the ’go’ message.
Now, the ADV1 simply send the ’ok’ message to a particular automata in the
G1 group, and then a ’go’ messages to all automata in the G1 group. So, one
automata in the G1 group first receive a ’ok’ message, moves to a new state
(node 4), from which it simply runs the program, ignoring subsequent messages
and events. So the corresponding worker process runs smoothly afterwards. In
contrast, the other processes in the G1 group receive the ’go’ message. As a
result, the state is changed (node 3) so that they now receive timer events (every
five seconds). When the time expires, with 10% probability, the process under
test crashes, while with 90% probability, the process continues its computation
for another 5 seconds. Further details about the FAIL language can be found
in [5].

We carried out this test using two values for x (5 and 10 seconds) and
y varying from 10% to 90% with increments of 10%. The obtained results
regarding the execution time of the total set of jobs are summarized in Figure 1.
As can be seen in Figure 1, in some of the cluster settings, the computation did
not terminate (That is why there is no results for the case every 5 seconds with
the probability 0.8 and 0.9), due to a malfunction of the XtremWeb dispatcher
(recall that this process was not purposely given crash order by the FAIL-
FCI framework). So, we also collected information about the dispatcher failure
during the tests, and these results are presented in Figure 2.
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Figure 1: Impact of workers crash on execution time

Before running the tests, one would expect that the two curves would in-
crease, with an extra increasing gap between them. In the Cluster setting, when
there are no crashes, the time used to complete the execution of the tasks is
approximately 25 seconds. Starting with a probability of failure of 40%, the
results are as expected, but for lower probabilities, the rate of fault appearance
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Figure 2: Impact of workers crashes on dispatcher failure

does not significantly change the execution time. Also, when failures occur only
every ten seconds, there is some kind of equilibrium (between 40% probabil-
ity and 60% probability) where the execution time does not vary much. This
equilibrium reflects the fact that if more failures occurred so far, it means that
fewer failures are likely to appear (because there are fewer healthy machines yet)
in the future. We can see the same phenomenon in the GrideXplorer setting.
But, for this setting, the phenomenon appears at a lower probability of fault
appearence (between 20% probability and 30% probability) and is less marked.
After this phenomenon, the two curve increase with an extra gap like in the
cluster setting but this increase is much higher. Indeed, for the case every 10
seconds, the execution time for a probability of 30% is 2,4 time the execution
time for a probability of 40%. From a 30% probability of fault appearence, the
scale of the GrideXplorer setting have a real impact on performence compare
to the cluster setting. At a lower probability of fault appearence this impact is
negligible.

When some tests did not finished, we detected in these cases that the dis-
patcher was still running but was not available anymore (i.e. workers could not
communicate with the dispatcher to notify they completed their task). Figure 2
shows that starting from a 70% probability for a worker to crash every five sec-
onds, the dispatcher ends up failing in 50% of the runs. Also, from a probability
of 80% for a worker to crash every five second, the dispatcher always fail. This
failure of the dispatcher probably reveals a bug that would extremely rarely
occur in a real cluster, these fault rates being pretty extreme: every 5 seconds,
80% of the nodes crash! A surprizing observation is that in the GrideXplorer
setting, all tests finished despite the larger set of worker processes. So, scalabil-
ity is probably not the explanation for the dispatcher malfunction in the Cluster
case. Probably, the difference in machine hardware (two processors and 2 GB
of RAM vs. one processor and less than 1 GB of RAM) hints that the difference
is due to ressource exhaustion or a problem with thread synchronization.
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3.4 Qualitative Fault Injection

The quantitative evaluation that was presented in Section 3.3 could also be han-
dled, although if a more tedious and cumbersome way, through proper scripting
of the distributed application. In this section, we go one step further and pro-
vide qualitative evaluation of the faults that could potentially hit the system.
In more details, we are interested here in which part of the XtremWeb workers
the fault occur. In particular, we consider the following four possible logical
states for a particular XtremWeb worker:

1. job received : the XtremWeb worker has received a job to perform from
the XtremWeb dispatcher,

2. after comput.: the XtremWeb worker has finished to perform its task,

3. job finished : the XtremWeb worker has notified the XtremWeb dispatcher
that it completed its job,

4. job completed : the XtremWeb worker has sent the XtremWeb dispatcher
the results of the completed task.

Our goal in this series of tests is to fix the number of workers (30 and 160,
respectively) and the crash probability (40%), but a worker may only fail at
precise points in its program code: the points that correspond to entering the
four states mentioned above. The corresponding FAIL program (i.e. fault
scenario) is as follows (considering that faults would only occur when the worker
is in the state job completed):

spyfunc main; spyfunc Protocol::DataSaved; spyfunc Protocol::release;

Daemon ADV1 {

node 1: before(main) -> continue, !ok(G1[1]), !go(G1), goto 2;

node 2:

}

Daemon ADV2 {

node 1: before(main) -> stop, goto 2;

node 2: ?ok -> continue, goto 5;

?go -> continue, goto 3;

node 3: always int x = FAIL_RANDOM(1,100);

before(Protocol::DataSaved) && x <= 40 -> continue, goto 4;

before(Protocol::DataSaved) && x > 40 -> continue, goto 3;

node 4: before(Protocol::release) -> stop, goto 5;

node 5:

}

As in Section 3.3, there are two automata ADV1 and ADV2 that are dispatched
in the same way as before. The same trick to get at least one working worker
is also used (using the ’ok’ and ’go’ messages). the key difference is the use of
breakpoints to get back control over the processes when a particular function
is reached. In this scenario, the methods DataSaved and release of the class
Protocol are watched. The state job completed is reach after the call to the
method DataSaved has completed and just before the call of the method release.
Note that the release method is called often and in various contexts in the
XtremWeb worker code, but only corresponds to the job completed state after
the DataSaved method has been executed.
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The obtained results are summarized in Figure 3. In this Figure, the category
without fault refers to the test without injecting faults (for comparison purpose).
For every of the four aforementioned possible states of the workers, two kinds
of faults are considered:

1. suspending the process (using stop in the FAIL language) to simulate an
overloaded machine,

2. crashing the process (using halt in the FAIL language).

We did not collect information about possible dispatcher failures, since no
crashes were observed in both settings (this was expected in the Cluster setting,
because the probability of crashes was 40%).
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Figure 3: Impact of the state of a worker when crashing

It was expected that injecting stop faults would induce worse performance
than injecting halt faults (because in the first case, the other end of the TCP
connexion, i.e. the dispatcher, is not notified by the network layer that some-
thing bad happened, while in the second case, it usually is). This was confirmed
by the results we obtained. We also expected that the later the injection (but
yet before the results are sent to the dispatcher), the more time it would take
to complete the computation. However, and surprisingly, if the workers crash
before even starting a computation, the performance is worse than if it crashes
after the computation. This behavior is probably due to an misconception in
the XtremWeb dispatcher, that does not expect failures just after the job was
sent (at that time, it is probably not watching the TCP connexion with the
worker, while it is when the job is near to completion). We also remark that
if a worker crashes after a job is completed the worker notified the controller
that the results are available), then the performance is almost the same as if no
faults were injected.
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3.5 Stress Testing

Sections 3.3 and 3.4 showed how FAIL-FCI can be used to obtain failure re-
silience capabilities of distributed applications using a unified approach for both
quantitative and qualitative analysis. We now show that the same tool can be
set up to handle stress testing as well. For this purpose, we use a slightly differ-
ent scenario. The set of tasks is the same as before, and the XtremWeb client
and dispatcher are still on the same machine. The test begin time is the time
when both the XtremWeb client and dispatcher are up and running, waiting for
workers to perform the tasks. Then, a particular XtremWeb worker is launched
into action with probability y every x seconds. When the client exits (after
having received the acknowledgement from the dispatcher), the current time is
taken as the test end time.

The corresponding scenario written using the FAIL language is as follows
(considering that x = 1 and y = 10%):

spyfunc main;

Daemon ADV1 {

node 1: before(main) -> continue, !go(G1), goto 2;

node 2:

}

Daemon ADV2 {

node 1: before(main) -> stop, goto 2;

node 2: ?go -> stop, goto 3;

node 3: always int x = FAIL_RANDOM(1,100);

always time_g timer = 1;

timer && x <= 10 -> continue, goto 4;

timer && x > 10 -> stop, goto 3;

node 4:

}

We performed tests varying x from 1 to 9 seconds (with increments of 2
seconds), and varying y from 10% to 100% in the Cluster setting, and varying
x from 1 to 2 seconds (with increments of 2 seconds), and varying y from 10%
to 100% in the GrideXplorer setting. The obtained results regarding the global
execution time are summarized in Figure 4. We did not collect information
about dispatcher failure, since none appeared.

It was expected that the shape of the curves would have a “U” form for at
least the test with x = 1 (getting workers to the job every second): if few workers
arrive at the same time, the performance is low, if several workers arrive at the
same time, this is manageable by the dispatcher and the performance is good, if
many workers arrive at the same time, the dispatcher would be more overloaded
and the overall performance would be worse that with fewer workers. In the
Cluster setting, all curves are decreasing, which means that the more workers
you get, the faster is the completion of the computation. It also means that
the C++ version of XtremWeb can handle 30 new workers arriving at the same
time with no problems (this is the case where y = 100%). At the contrary,
the GrideXplorer setting show that the more workers you put simultaneously
in the system, the longer time it takes to complete the task. So, with 160
workers, many of which arriving simultaneously, the XtremWeb dispatcher is
clearly stressed but degrades gracefully.
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Figure 4: Stress testing

4 Concluding Remarks

We proposed a unified approach for fault injection and stress testing distributed
applications. Fault injection can be made using a quantitative approach (as in
most related studies) as well as the more original qualitative approach, where
precise faults are inserted at precise logical states of the application under test.
Although the set of possible fault injection is extremely large, the language that
describes the faults scenario is high level and independent from the language
used in the application. This enables decoupling between the application pro-
grammers and the test specifiers, so that expertise is used in the proper domain.

As a proof of concept, we also showed that the same specification language
and fault injection tool could also be used as a stress test platform. The prelim-
inary tests we performed actually raised a number of interesting open questions.
The main one relates to the use of FAIL-FCI at a larger scale (for purpose of
stress testing), i.e. 1000-10000 machines. We are currently investigating us-
ing our fault injector in larger systems, typically by using emulation schemes,
within the GrideXplorer project platform. Further studies are needed to see
the effect of correlated faults injection (such as those occurring when a virus is
spread throughout the network). Finally, extra development is needed to inte-
grate FCI with self-distributing applications (such as those based on MPI), since
our current implementation assumes that distributed applications are launched
through a ssh-like mechanism.
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