
Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Introduction to Self-stabilization

Sébastien Tixeuil

LIP6 - CNRS 7606 & INRIA Grand Large
Université Pierre & Marie Curie - Paris 6, France

Sebastien.Tixeuil@lip6.fr

November 19, 2008

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Outline
Self-stabilization

Hypothesis
Atomicity
Scheduling

Composition
Fair Composition
Crossover Composition

Proof Techniques
Transfer Function
Convergence stairs

Conclusion

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

I U0 = a
I Un+1 = Un

2 if Un is even
I Un+1 = 3Un+1

2 if Un is odd

n 0 1 2 3 4 5 6 7 8 9 10 11
Un 7 11 17 26 13 20 10 5 8 4 2 1

I Converges towards a “correct” behavior
I 1212121212121212121212121212. . .
I Independent from the initial value

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

I U0 = a
I Un+1 = Un

2 if Un is even
I Un+1 = 3Un+1

2 if Un is odd

n 0 1 2 3 4 5 6 7 8 9 10 11
Un 7 11 17 26 13 20 10 5 8 4 2 1

I Converges towards a “correct” behavior
I 1212121212121212121212121212. . .
I Independent from the initial value

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

I U0 = a
I Un+1 = Un

2 if Un is even
I Un+1 = 3Un+1

2 if Un is odd

n 0 1 2 3 4 5 6 7 8 9 10 11
Un 7 11 17 26 13 20 10 5 8 4 2 1

I Converges towards a “correct” behavior
I 1212121212121212121212121212. . .
I Independent from the initial value

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

“Correct”

Iterations

Values

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Self-stabilization

“Correct”

Time

Configurations

Stabilization Time

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Memory Corruption

I Example of a sequential program:

int x = 0;
...
if(x == 0) {

// code assuming x equals 0
}
else {

// code assuming x does not equal 0
}

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Distributed Systems

a b

c

d

e

f

gh

i j

k

l

d

e

f

6 4

6

3

4

6

31

6 1

4

4

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Distributed Systems

a b

c

d

e

f

gh

i j

k

l

d

e

f

6 4

6

3

4

6

31

6 1

4

4

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Distributed Systems

a b

c

d

e

f

gh

i j

k

l

d

e

f

6 4

6

3

4

6

31

6 1

4

4

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Distributed Systems

I Locality of information

I Locality of time
I ⇒ non-determinism

Definition (Configuration)
Product of the local states of the system components.

Definition (Execution)
Interleaving of the local executions of the system
components.

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Distributed Systems

I Locality of information
I Locality of time

I ⇒ non-determinism

Definition (Configuration)
Product of the local states of the system components.

Definition (Execution)
Interleaving of the local executions of the system
components.

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Distributed Systems

I Locality of information
I Locality of time
I ⇒ non-determinism

Definition (Configuration)
Product of the local states of the system components.

Definition (Execution)
Interleaving of the local executions of the system
components.

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Distributed Systems

I Locality of information
I Locality of time
I ⇒ non-determinism

Definition (Configuration)
Product of the local states of the system components.

Definition (Execution)
Interleaving of the local executions of the system
components.

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Distributed Systems

Definition (Classical System, a.k.a. Non
stabilizing)
Starting from a particular initial configuration, the system
immediately exhibits correct behavior.

Definition (Self-stabilizing System)
Starting from any initial configuration, the system
eventually reaches a configuration from with its behavior
is correct.

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Self-stabilization

Definition (Self-stabilizing System)
Starting from any initial configuration, the system
eventually reaches a configuration from with its behavior
is correct.

I defined by Dijkstra in 1974

I advocated by Lamport in 1984 to addesss
fault-tolerant issues

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Self-stabilization

Definition (Self-stabilizing System)
Starting from any initial configuration, the system
eventually reaches a configuration from with its behavior
is correct.

I defined by Dijkstra in 1974
I advocated by Lamport in 1984 to addesss

fault-tolerant issues

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Self-stabilization

Hypothesis
Atomicity
Scheduling

Composition
Fair Composition
Crossover Composition

Proof Techniques
Transfer Function
Convergence stairs

Conclusion

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Atomicity

I Example of “stabilizing” sequential program

int x = 0;
...
while(x == x) {
x = 0;
// code assuming x equals 0

}

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Atomicity

I Example of “stabilizing” sequential program

0 iconst_0
1 istore_1
2 goto 7
5 iconst_0
6 istore_1
7 iload_1
8 iload_1
9 if_icmpeq 5

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Atomicity

I Example of “stabilizing” sequential program

0 iconst_0
1 istore_1
2 goto 7
5 iconst_0
6 istore_1
7 iload_1
8 iload_1
9 if_icmpeq 5

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Communications

I Message Passing

a bc

d

e

m1 m3

m2

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Communications

I Shared Registers

a bc

d

e

rab

rba

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Communications

I Shared Memory

a bc

d

e

a bc

d

e

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Communications

Message Passing

Shared Registers

Shared Memory

is more
difficult

to program
than

is more
difficult

to program
than

uses more
resources

than

uses more
resources

than

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Communications

Message Passing

Shared Registers

Shared Memory

is more
difficult

to program
than

is more
difficult

to program
than

uses more
resources

than

uses more
resources

than

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Communications

Message Passing

Shared Registers

Shared Memory

is more
difficult

to program
than

is more
difficult

to program
than

uses more
resources

than

uses more
resources

than

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Definition (Shared Memory)
In one atomic step, read the states of all neighbors and
write own state

Definition (Guarded command)
I Guard→ Action

I Guard: predicate on the states of the neighborhood
I Action: executed if Guard evaluates to true

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Definition (Shared Memory)
In one atomic step, read the states of all neighbors and
write own state

Definition (Guarded command)
I Guard→ Action
I Guard: predicate on the states of the neighborhood

I Action: executed if Guard evaluates to true

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Definition (Shared Memory)
In one atomic step, read the states of all neighbors and
write own state

Definition (Guarded command)
I Guard→ Action
I Guard: predicate on the states of the neighborhood
I Action: executed if Guard evaluates to true

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

3 3

2

1

2

2

1r

1 1

3

2

8

7

4

22

8

23

2

1

8 1

1

1

1 1

2 2

7

3

2 2

2

2

3 4 33 3 3

true→ Distancei := Minj∈Neighborsi

{
Distancej + 1

}

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

3 3

2

1

2

2

1r

1 1

3

2

8

7

4

22

8

23

2

1

8 1

1

1

1 1

2 2

7

3

2 2

2

2

3 4 33 3 3

true→ Distancei := Minj∈Neighborsi

{
Distancej + 1

}

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

3 3

2

1

2

2

1r

1 1

3

2

8

7

4

2

2

8

23

2

1

8 1

1

1

1 1

2 2

7

3

2 2

2

2

3 4 33 3 3

true→ Distancei := Minj∈Neighborsi

{
Distancej + 1

}

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

3 3

2

1

2

2

1r

1 1

3

2

8

7

4

22

8

2

3

2

1

8 1

1

1

1 1

2 2

7

3

2 2

2

2

3 4 33 3 3

true→ Distancei := Minj∈Neighborsi

{
Distancej + 1

}

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

3 3

2

1

2

2

1r

1 1

3

2

8

7

4

2

2

8

2

3

2

1

8 1

1

1

1 1

2 2

7

3

2 2

2

2

3 4 33 3 3

true→ Distancei := Minj∈Neighborsi

{
Distancej + 1

}

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

3 3

2

1

2

2

1r

1 1

3

2

8

7

4

2

2

8

2

3

2

1

8 1

1

1

1 1

2 2

7

3

2 2

2

2

3 4 33 3 3

true→ Distancei := Minj∈Neighborsi

{
Distancej + 1

}

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

3 3

2

1

2

2

1r

1 1

3

2

8

7

4

2

2

8

2

3

2

1

8 1

1

1

1 1

2 2

7

3

2 2

2

2

3 4 33 3 3

true→ Distancei := Minj∈Neighborsi

{
Distancej + 1

}

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

3 3

2

1

2

2

1r

1 1

3

2

8

7

4

2

2

8

23

2

1

8 1

1

1

1 1

2 2

7

3

2 2

2

2

3 4 33 3 3

true→ Distancei := Minj∈Neighborsi

{
Distancej + 1

}

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

3 3

2

1

2

2

1r

1 1

3

2

8

7

4

2

2

8

23

2

1

8 1

1

1

1 1

2 2

7

3

2 2

2

2

3 4 33 3 3

true→ Distancei := Minj∈Neighborsi

{
Distancej + 1

}

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

3 3

2

1

2

2

1r

1 1

3

2

8

7

4

22

8

23

2

1

8 1

1

1

1 1

2 2

7

3

2 2

2

2

3 4 3

3 3 3

true→ Distancei := Minj∈Neighborsi

{
Distancej + 1

}

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

3 3

2

1

2

2

1r

1 1

3

2

8

7

4

22

8

23

2

1

8 1

1

1

1 1

2 2

7

3

2 2

2

2

3 4 3

3 3 3

true→ Distancei := Minj∈Neighborsi

{
Distancej + 1

}

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Scheduling

Definition (Scheduler a.k.a. Daemon)
The daemon chooses among activatable processors those
that will execute their actions.

I The daemon can be seen as an adversary whose role
is to prevent stabilization

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Spatial Scheduling

true→ colori := Min
{
∆ \ {colorj|j ∈ Neighborsi}

}
∆ = { 0 , 1 }

a b

a ba b

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Spatial Scheduling

true→ colori := Min
{
∆ \ {colorj|j ∈ Neighborsi}

}
∆ = { 0 , 1 }

a b

a ba b

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Spatial Scheduling

true→ colori := Min
{
∆ \ {colorj|j ∈ Neighborsi}

}
∆ = { 0 , 1 }

a b

a b

a b

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Spatial Scheduling

true→ colori := Min
{
∆ \ {colorj|j ∈ Neighborsi}

}
∆ = { 0 , 1 }

a b

a b

a b

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Spatial Scheduling

true→ colori := Min
{
∆ \ {colorj|j ∈ Neighborsi}

}
∆ = { 0 , 1 }

a b

a ba b

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Spatial Scheduling

true→ colori := Min
{
∆ \ {colorj|j ∈ Neighborsi}

}
∆ = { 0 , 1 }

a b

a ba b

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Spatial Scheduling

true→ colori := Min
{
∆ \ {colorj|j ∈ Neighborsi}

}
∆ = { 0 , 1 }

a b

a b

a b

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Spatial Scheduling

true→ colori := Min
{
∆ \ {colorj|j ∈ Neighborsi}

}
∆ = { 0 , 1 }

a b

a b

a b

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Spatial Scheduling

true→ colori := Min
{
∆ \ {colorj|j ∈ Neighborsi}

}
∆ = { 0 , 1 }

a ba b

a b

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Spatial Scheduling

Synchronous

Distributed

Central

is more
difficult

to program
than

is more
difficult

to program
than

uses more
resources

than

uses more
resources

than

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Spatial Scheduling

Synchronous

Distributed

Central

is more
difficult

to program
than

is more
difficult

to program
than

uses more
resources

than

uses more
resources

than

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Spatial Scheduling

Synchronous

Distributed

Central

is more
difficult

to program
than

is more
difficult

to program
than

uses more
resources

than

uses more
resources

than

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Temporal Scheduling

token→ pass token to left neighbor with probability
1
2

= token

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Temporal Scheduling

token→ pass token to left neighbor with probability
1
2

= token

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Temporal Scheduling

token→ pass token to left neighbor with probability
1
2

= token

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Temporal Scheduling

token→ pass token to left neighbor with probability
1
2

= token

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Temporal Scheduling

token→ pass token to left neighbor with probability
1
2

= token

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Temporal Scheduling

token→ pass token to left neighbor with probability
1
2

= token

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Temporal Scheduling

token→ pass token to left neighbor with probability
1
2

= token

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Temporal Scheduling

token→ pass token to left neighbor with probability
1
2

= token

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Temporal Scheduling

token→ pass token to left neighbor with probability
1
2

= token

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Temporal Scheduling

token→ pass token to left neighbor with probability
1
2

= token

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Temporal Scheduling

token→ pass token to left neighbor with probability
1
2

= token

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Temporal Scheduling

token→ pass token to left neighbor with probability
1
2

= token

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Temporal Scheduling

Proper

Fair

Bounded

is more
difficult

to program
than

is more
difficult

to program
than

uses more
resources

than

uses more
resources

than

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Temporal Scheduling

Proper

Fair

Bounded

is more
difficult

to program
than

is more
difficult

to program
than

uses more
resources

than

uses more
resources

than

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Temporal Scheduling

Proper

Fair

Bounded

is more
difficult

to program
than

is more
difficult

to program
than

uses more
resources

than

uses more
resources

than

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Self-stabilization

Hypothesis
Atomicity
Scheduling

Composition
Fair Composition
Crossover Composition

Proof Techniques
Transfer Function
Convergence stairs

Conclusion

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Fair Composition
Basic idea

I Compose several self-stabilizing algorithms
Al1, Al2, . . . Alk such that the results of algorithms
Al1, Al2, . . . Ali can be reused by Ali+1

I Ali+1 can not detect whether algorithms
Al1, Al2, . . . Ali have stabilized, but behaves as if

Example with k = 2

I Two simple algorithms server and client are
combined to obtain a more complex algorithm

I The server algorithm ensures that some properties
(used by the client) will be eventually verified

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Fair Composition
Basic idea

I Compose several self-stabilizing algorithms
Al1, Al2, . . . Alk such that the results of algorithms
Al1, Al2, . . . Ali can be reused by Ali+1

I Ali+1 can not detect whether algorithms
Al1, Al2, . . . Ali have stabilized, but behaves as if

Example with k = 2

I Two simple algorithms server and client are
combined to obtain a more complex algorithm

I The server algorithm ensures that some properties
(used by the client) will be eventually verified

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

I Assume the server algorithm Al1 solves a task
defined by a set of legal executions T1, and the client
algorithm Al2 solves T2

Ai

I Let Ai be the set of states of process Pi for Al1, and let
Si = Ai × Bi be the set of states of process Pi for Al2,
where anytime Pi executes Al2, it modifies the Bi part
of Ai × Bi

Ai Bi

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Fair Composition

Definition (A-projection)
For a configuration c of S1 × S2 × · · · × Sn, the A-projection
of c is (a1, . . . , an) of A1 × · · · × An

Definition (Conditional Stabilization)
Al2 is self-stabilizing for task T2 given task T1 if any fair
computation of Al2 that has an A-projection in T1 has a
suffix in T2

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Fair Composition

Definition (Fair composition)
Al is a fair composition of Al1 and Al2 if, in Al, every
process alternatively executes actions of Al1 and Al2

Theorem
If Al2 is self-stabilizing for T2 given T1, and if Al1 is
self-stabilizing for T1, then the fair composition of Al1 and Al2

is self-stabilizing for T2

Ai Bi

Al1 Al2

Ai BiAi Bi

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Fair Composition

Definition (Fair composition)
Al is a fair composition of Al1 and Al2 if, in Al, every
process alternatively executes actions of Al1 and Al2

Theorem
If Al2 is self-stabilizing for T2 given T1, and if Al1 is
self-stabilizing for T1, then the fair composition of Al1 and Al2

is self-stabilizing for T2

Ai Bi

Al1 Al2

Ai Bi

Ai Bi

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Fair Composition

Definition (Fair composition)
Al is a fair composition of Al1 and Al2 if, in Al, every
process alternatively executes actions of Al1 and Al2

Theorem
If Al2 is self-stabilizing for T2 given T1, and if Al1 is
self-stabilizing for T1, then the fair composition of Al1 and Al2

is self-stabilizing for T2

Ai Bi

Al1 Al2

Ai Bi

Ai Bi

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example
I We are given two self-stabilizing algorithms, one for

constructing a tree, one for mutual exclusion on a
ring

I We wish to construct a self-stabilizing mutual
exclusion algorithm on general graphs

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

r

a

c d

b

2

3

1 1

1

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

r

a

c d

b

2

3

1 1

1

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

r

a

c d

b

2

3

1 1

1

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

r

a

c d

b

2

3

1 1

1

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

r

a

c d

b

2

3

1 1

1

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

r

a

c d

b

2

3

1 1

1

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

r

a

c d

b

2

3

1 1

1

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

r

a

c d

b

2

3

1 1

1

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

r

a

c d

b

2

3

1 1

1

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

r

a

c d

b

2

3

1 1

1

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Crosssover Composition

Basic Idea
I We are given two algorithms Al1 and Al2

I Al1 is correct with hypothesis H1 and Al2 is correct
with hypothesis H2

I H2 is more restrictive than H1

Definition
Crossover Composition The crossover composition is
such that Al2 is conditionnaly executed (only when Al1 is
executed) Al2 is then correct with hypothesis H1

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Uniform Unidirectionnal ring

I Each node i has a variable vi

I Each node i has a token if vi 6= vi−1 + 1 mod SND(n)

I Each node i passes a token by executing vi := vi−1 + 1
mod SND(n)

(SND(n) : smallest non divisor of n)

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

I SND(n) = 2

0

1

1

0

0

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

I SND(n) = 2

0

1

1

0

0

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

I SND(n) = 2

0

1

1

0

0

0

0

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

I SND(n) = 2

0

1

1

0

0

0

0

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

I SND(n) = 2

0

1

1

0

0

0

0

0

1

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Algorithm Al1
I A node with the token is activatable
I An activated node always transmit the token
I Al1 solves the token passing problem with an

arbitrary distributed deamon (Hypothesis H1)

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Algorithm Al2
I Each node with a token is activatable
I Each activated node transmists the token with

probability 1
2

I Al2 solves the self-stabilizing mutual exclusion
problem using token passing and a bounded daemon
(Hypothesis H2)

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Algorithm Al2 composed with Al1
I A node may have two tokens (one deterministic and

one probabilistic)
I A node with a deterministic token is activatable
I An activated node passes the deterministic token,

and (if it has it) the probabilistic token with
probability 1

2

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Deterministic

Probabilistic

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Deterministic

Probabilistic

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Deterministic

Probabilistic

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Deterministic

Probabilistic

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Deterministic

Probabilistic

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Deterministic

Probabilistic

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Deterministic

Probabilistic

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Deterministic

Probabilistic

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Deterministic

Probabilistic

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Deterministic

Probabilistic

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Deterministic

Probabilistic

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Deterministic

Probabilistic

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

Deterministic

Probabilistic

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Example

I Al2 composed with Al1 solves the self-stabilizing
mutual exclusion problem with an arbitrary
distributed deamon (H1)

I Al2 composed with Al1 does not solve a more
complex problem, but handles less restrictive
hypothesis

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Self-stabilization

Hypothesis
Atomicity
Scheduling

Composition
Fair Composition
Crossover Composition

Proof Techniques
Transfer Function
Convergence stairs

Conclusion

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Transfer Function

Basic Idea
I c1 → c2 → c3 → c4 → · · · → ci

I FP(c1) > FP(c2) > FP(c3) > . . . > FP(ci) = bound

I Used to prove convergence
I Can be used to compute the number of steps to reach

a legitimate configuration

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Transfer Function

“Correct”

Time

Configurations

Bound

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Transfer Function

“Correct”

Time

Configurations

Bound

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Convergence stairs

I Ai is a predicate
I Ak is legitimate
I For any i between 1 and k, Ai+1 is a refinement of Ai

A1

A2

...

Ak

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Self-stabilization

Hypothesis
Atomicity
Scheduling

Composition
Fair Composition
Crossover Composition

Proof Techniques
Transfer Function
Convergence stairs

Conclusion

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Self-stabilization

Pros
I The network need not be initialized
I When a fault is diagnosed, it is sufficient to identify,

then remove or restart the faulty components
I The self-stabilization property does not depend on

the nature of the fault
I The self-stabilization property does not depend on

the extent of the fault

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Self-stabilization

Cons
I “Eventually” does not give any bound on the

stabilization time
I A single failure may trigger a correcting action at

every node in the network
I Faults must be sufficiently rare that they can be

considered are transient
I Nodes never know whether the system is stabilized

or not

