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Example

I U0 = a
I Un+1 = Un

2 if Un is even
I Un+1 = 3Un+1

2 if Un is odd

n 0 1 2 3 4 5 6 7 8 9 10 11
Un 7 11 17 26 13 20 10 5 8 4 2 1

I Converges towards a “correct” behavior
I 1212121212121212121212121212. . .
I Independent from the initial value
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Self-stabilization

“Correct”

Time

Configurations

Stabilization Time
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Memory Corruption

I Example of a sequential program:

int x = 0;
...
if( x == 0 ) {

// code assuming x equals 0
}
else {

// code assuming x does not equal 0
}
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Distributed Systems

I Locality of information

I Locality of time
I ⇒ non-determinism

Definition (Configuration)
Product of the local states of the system components.

Definition (Execution)
Interleaving of the local executions of the system
components.
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Distributed Systems

Definition (Classical System, a.k.a. Non
stabilizing)
Starting from a particular initial configuration, the system
immediately exhibits correct behavior.

Definition (Self-stabilizing System)
Starting from any initial configuration, the system
eventually reaches a configuration from with its behavior
is correct.
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eventually reaches a configuration from with its behavior
is correct.

I defined by Dijkstra in 1974

I advocated by Lamport in 1984 to addesss
fault-tolerant issues
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Atomicity

I Example of “stabilizing” sequential program

int x = 0;
...
while( x == x ) {
x = 0;
// code assuming x equals 0

}
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Atomicity

I Example of “stabilizing” sequential program

0 iconst_0
1 istore_1
2 goto 7
5 iconst_0
6 istore_1
7 iload_1
8 iload_1
9 if_icmpeq 5
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Communications

I Message Passing
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Communications

I Shared Registers

a bc

d

e

rab

rba
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Communications

Message Passing

Shared Registers

Shared Memory

is more
difficult

to program
than
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to program
than

uses more
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Example

Definition (Shared Memory)
In one atomic step, read the states of all neighbors and
write own state

Definition (Guarded command)
I Guard→ Action

I Guard: predicate on the states of the neighborhood
I Action: executed if Guard evaluates to true
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Scheduling

Definition (Scheduler a.k.a. Daemon)
The daemon chooses among activatable processors those
that will execute their actions.

I The daemon can be seen as an adversary whose role
is to prevent stabilization
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Spatial Scheduling

true→ colori := Min
{
∆ \ {colorj|j ∈ Neighborsi}

}
∆ = { 0 , 1 }

a b

a ba b
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Temporal Scheduling

token→ pass token to left neighbor with probability
1
2

= token
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Fair Composition
Basic idea

I Compose several self-stabilizing algorithms
Al1, Al2, . . . Alk such that the results of algorithms
Al1, Al2, . . . Ali can be reused by Ali+1

I Ali+1 can not detect whether algorithms
Al1, Al2, . . . Ali have stabilized, but behaves as if

Example with k = 2

I Two simple algorithms server and client are
combined to obtain a more complex algorithm

I The server algorithm ensures that some properties
(used by the client) will be eventually verified
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Example

I Assume the server algorithm Al1 solves a task
defined by a set of legal executions T1, and the client
algorithm Al2 solves T2

Ai

I Let Ai be the set of states of process Pi for Al1, and let
Si = Ai × Bi be the set of states of process Pi for Al2,
where anytime Pi executes Al2, it modifies the Bi part
of Ai × Bi

Ai Bi
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Fair Composition

Definition (A-projection)
For a configuration c of S1 × S2 × · · · × Sn, the A-projection
of c is (a1, . . . , an) of A1 × · · · × An

Definition (Conditional Stabilization)
Al2 is self-stabilizing for task T2 given task T1 if any fair
computation of Al2 that has an A-projection in T1 has a
suffix in T2
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Fair Composition

Definition (Fair composition)
Al is a fair composition of Al1 and Al2 if, in Al, every
process alternatively executes actions of Al1 and Al2

Theorem
If Al2 is self-stabilizing for T2 given T1, and if Al1 is
self-stabilizing for T1, then the fair composition of Al1 and Al2

is self-stabilizing for T2

Ai Bi

Al1 Al2

Ai BiAi Bi
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Example
I We are given two self-stabilizing algorithms, one for

constructing a tree, one for mutual exclusion on a
ring

I We wish to construct a self-stabilizing mutual
exclusion algorithm on general graphs
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Crosssover Composition

Basic Idea
I We are given two algorithms Al1 and Al2

I Al1 is correct with hypothesis H1 and Al2 is correct
with hypothesis H2

I H2 is more restrictive than H1

Definition
Crossover Composition The crossover composition is
such that Al2 is conditionnaly executed (only when Al1 is
executed) Al2 is then correct with hypothesis H1
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Example

Uniform Unidirectionnal ring

I Each node i has a variable vi

I Each node i has a token if vi 6= vi−1 + 1 mod SND(n)

I Each node i passes a token by executing vi := vi−1 + 1
mod SND(n)

(SND(n) : smallest non divisor of n)
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Example

I SND(n) = 2
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Example

Algorithm Al1
I A node with the token is activatable
I An activated node always transmit the token
I Al1 solves the token passing problem with an

arbitrary distributed deamon (Hypothesis H1)
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Example

Algorithm Al2
I Each node with a token is activatable
I Each activated node transmists the token with

probability 1
2

I Al2 solves the self-stabilizing mutual exclusion
problem using token passing and a bounded daemon
(Hypothesis H2)
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Example

Algorithm Al2 composed with Al1
I A node may have two tokens (one deterministic and

one probabilistic)
I A node with a deterministic token is activatable
I An activated node passes the deterministic token,

and (if it has it) the probabilistic token with
probability 1

2
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Probabilistic
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Example

I Al2 composed with Al1 solves the self-stabilizing
mutual exclusion problem with an arbitrary
distributed deamon (H1)

I Al2 composed with Al1 does not solve a more
complex problem, but handles less restrictive
hypothesis
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Transfer Function

Basic Idea
I c1 → c2 → c3 → c4 → · · · → ci

I FP(c1) > FP(c2) > FP(c3) > . . . > FP(ci) = bound

I Used to prove convergence
I Can be used to compute the number of steps to reach

a legitimate configuration
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Convergence stairs

I Ai is a predicate
I Ak is legitimate
I For any i between 1 and k, Ai+1 is a refinement of Ai

A1

A2

...

Ak
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Self-stabilization

Pros
I The network need not be initialized
I When a fault is diagnosed, it is sufficient to identify,

then remove or restart the faulty components
I The self-stabilization property does not depend on

the nature of the fault
I The self-stabilization property does not depend on

the extent of the fault
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Self-stabilization

Cons
I “Eventually” does not give any bound on the

stabilization time
I A single failure may trigger a correcting action at

every node in the network
I Faults must be sufficiently rare that they can be

considered are transient
I Nodes never know whether the system is stabilized

or not


