

## Outline

## Self-stabilization

## Hypotheses

## Atomicity Scheduling

## Composition

## Fair Composition Crossover Composition

## Proof Techniques

## Transfer Function Convergence stairs

## Conclusion



## Example

## Example

- $U_0 = a$
- $U_{n+1} = \frac{U_n}{2}$  if  $U_n$  is even
- $U_{n+1} = \frac{3U_n + 1}{2}$  if  $U_n$  is odd

- ▶  $U_0 = a$
- ▶  $U_{n+1} = \frac{U_n}{2}$  if  $U_n$  is even
- ▶  $U_{n+1} = \frac{3U_n + 1}{2}$  if  $U_n$  is odd

| $n$   | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7 | 8 | 9 | 10 | 11 |
|-------|---|----|----|----|----|----|----|---|---|---|----|----|
| $U_n$ | 7 | 11 | 17 | 26 | 13 | 20 | 10 | 5 | 8 | 4 | 2  | 1  |



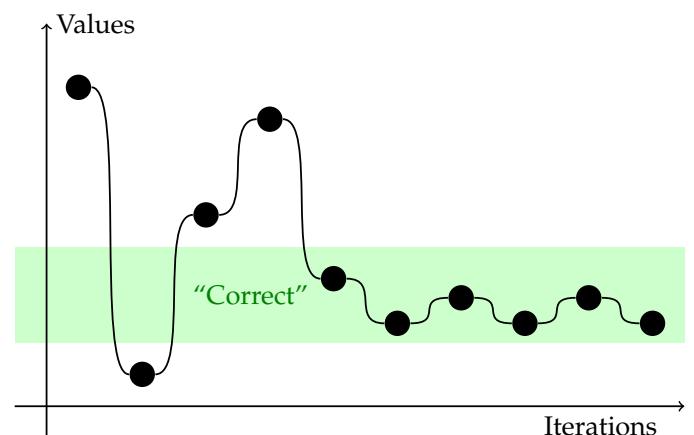
## Example

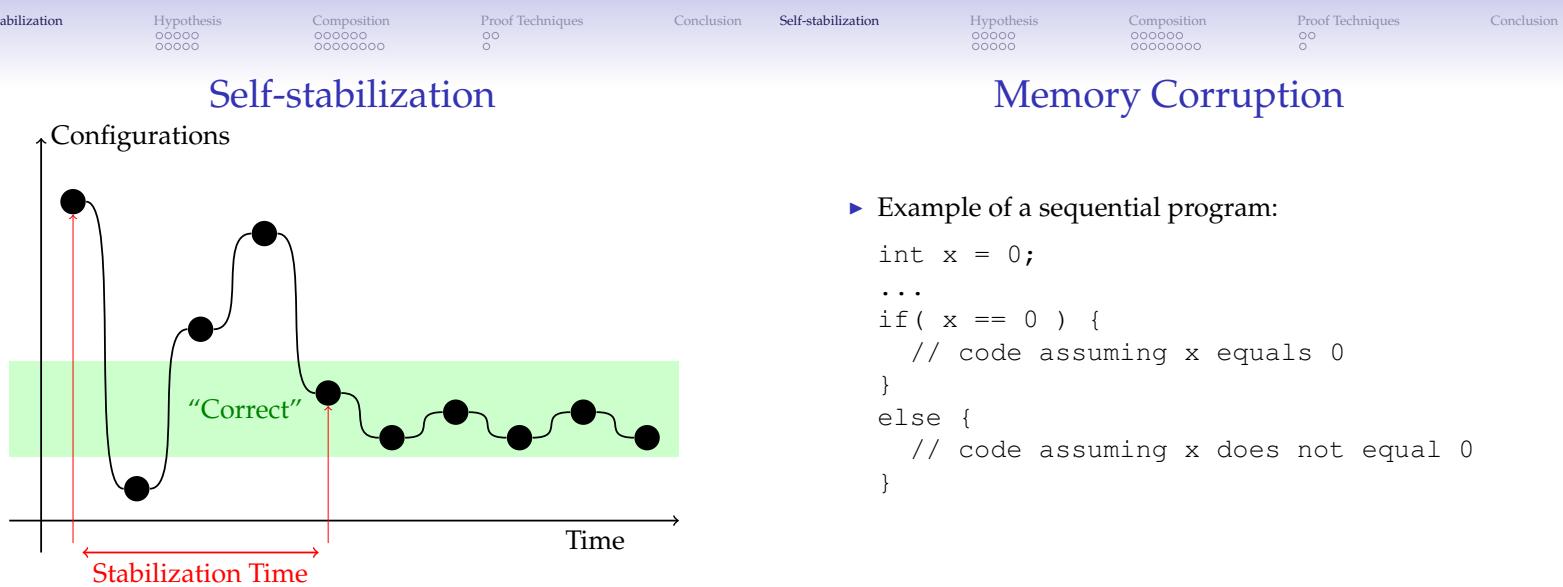
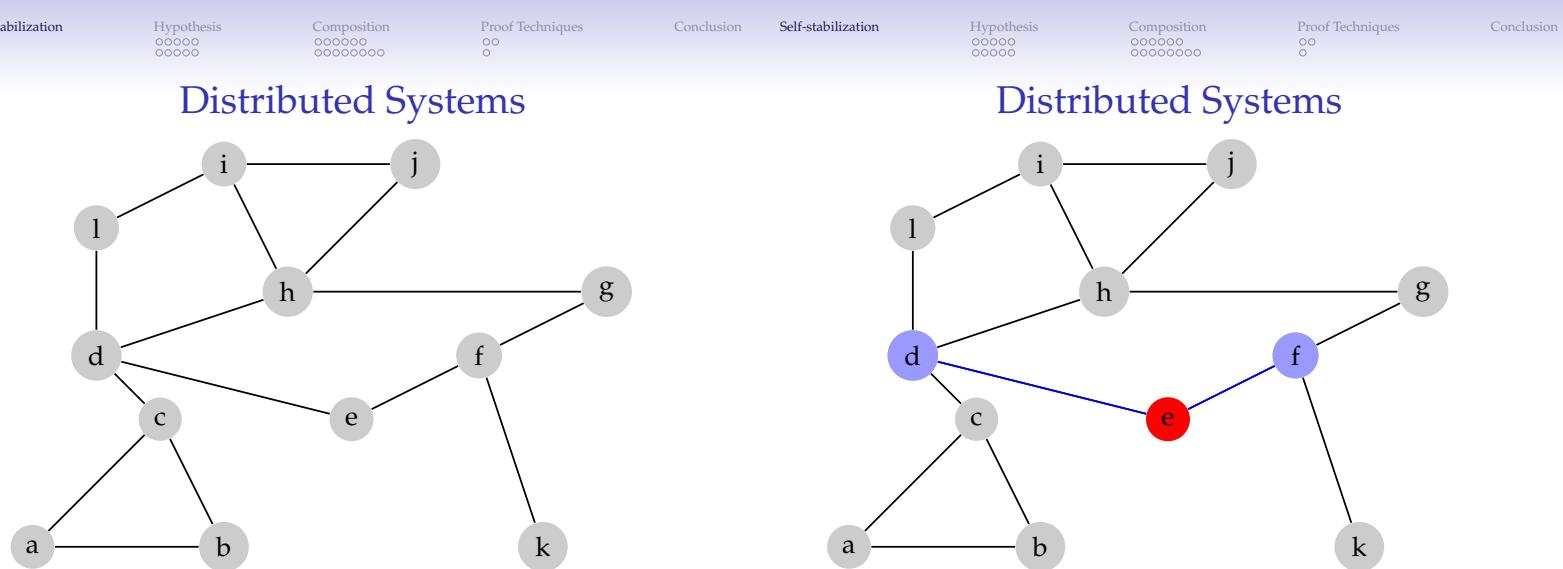
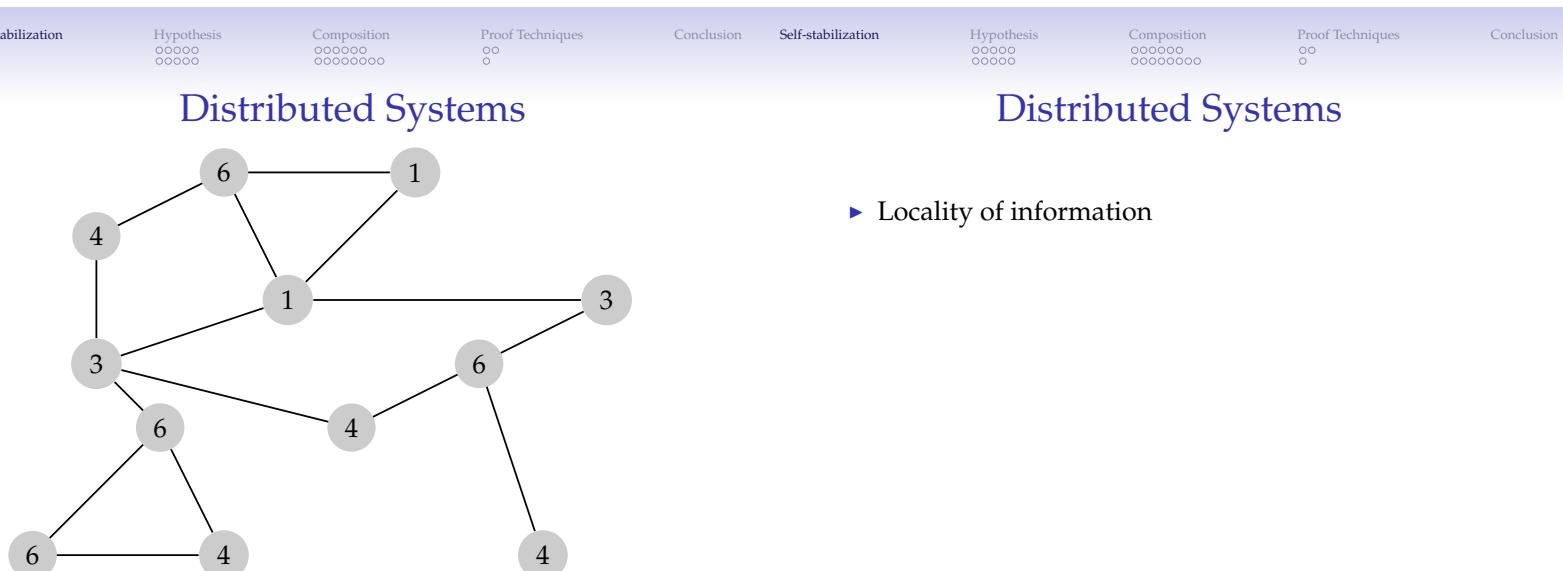
## Example

- ▶  $U_0 = a$
- ▶  $U_{n+1} = \frac{U_n}{2}$  if  $U_n$  is even
- ▶  $U_{n+1} = \frac{3U_n + 1}{2}$  if  $U_n$  is odd

| $n$   | 0 | 1  | 2  | 3  | 4  | 5  | 6  | 7 | 8 | 9 | 10 | 11 |
|-------|---|----|----|----|----|----|----|---|---|---|----|----|
| $U_n$ | 7 | 11 | 17 | 26 | 13 | 20 | 10 | 5 | 8 | 4 | 2  | 1  |

- ▶ Converges towards a “correct” behavior
  - ▶ 12121212121212121212121212121212...
  - ▶ Independent from the initial value





|                    |                     |                         |                             |            |                    |                     |                         |                             |            |
|--------------------|---------------------|-------------------------|-----------------------------|------------|--------------------|---------------------|-------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|---------------------|-------------------------|-----------------------------|------------|--------------------|---------------------|-------------------------|-----------------------------|------------|

## Distributed Systems

- ▶ Locality of information
- ▶ Locality of time

- ▶ Locality of information
- ▶ Locality of time
- ▶ ⇒ **non-determinism**

|                    |                     |                         |                             |            |                    |                     |                         |                             |            |
|--------------------|---------------------|-------------------------|-----------------------------|------------|--------------------|---------------------|-------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|---------------------|-------------------------|-----------------------------|------------|--------------------|---------------------|-------------------------|-----------------------------|------------|

## Distributed Systems

- ▶ Locality of information
- ▶ Locality of time
- ▶ ⇒ **non-determinism**

### Definition (Configuration)

Product of the local states of the system components.

### Definition (Execution)

Interleaving of the local executions of the system components.

**Definition (Classical System, a.k.a. Non stabilizing)**

Starting from a **particular** initial configuration, the system **immediately** exhibits correct behavior.

### Definition (Self-stabilizing System)

Starting from **any** initial configuration, the system **eventually** reaches a configuration from with its behavior is correct.

|                    |                     |                         |                             |            |                    |                     |                         |                             |            |
|--------------------|---------------------|-------------------------|-----------------------------|------------|--------------------|---------------------|-------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|---------------------|-------------------------|-----------------------------|------------|--------------------|---------------------|-------------------------|-----------------------------|------------|

## Self-stabilization

### Definition (Self-stabilizing System)

Starting from **any** initial configuration, the system **eventually** reaches a configuration from with its behavior is correct.

- ▶ defined by Dijkstra in 1974

## Self-stabilization

### Definition (Self-stabilizing System)

Starting from **any** initial configuration, the system **eventually** reaches a configuration from with its behavior is correct.

- ▶ defined by Dijkstra in 1974
- ▶ advocated by Lamport in 1984 to address fault-tolerant issues

|                    |                              |                                   |                             |            |                    |                              |                                   |                             |            |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○<br>○○○○○ | Composition<br>○○○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>●○○○○<br>○○○○○ | Composition<br>○○○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|

## Self-stabilization

Hypothesis  
Atomicity  
Scheduling

Composition  
Fair Composition  
Crossover Composition

Proof Techniques  
Transfer Function  
Convergence stairs

## Conclusion

## Atomicity

- ▶ Example of “stabilizing” sequential program

```
int x = 0;
...
while( x == x ) {
    x = 0;
    // code assuming x equals 0
}
```

|                    |                              |                                   |                             |            |                    |                              |                                   |                             |            |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>●○○○○<br>○○○○○ | Composition<br>○○○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>●○○○○<br>○○○○○ | Composition<br>○○○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|

## Atomicity

## Atomicity

- ▶ Example of “stabilizing” sequential program

```
0  iconst_0
1  istore_1
2  goto 7
5  iconst_0
6  istore_1
7  iload_1
8  iload_1
9  if_icmpeq 5
```

- ▶ Example of “stabilizing” sequential program

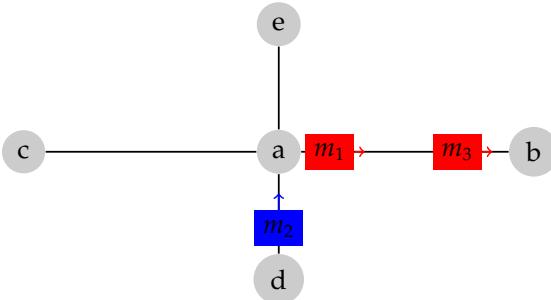
```
0  iconst_0
1  istore_1
2  goto 7
5  iconst_0
6  istore_1
7  iload_1
8  iload_1
9  if_icmpeq 5
```

|                    |                              |                                   |                             |            |                    |                              |                                   |                             |            |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○<br>○○○○○ | Composition<br>○○○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○<br>○○○○○ | Composition<br>○○○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|

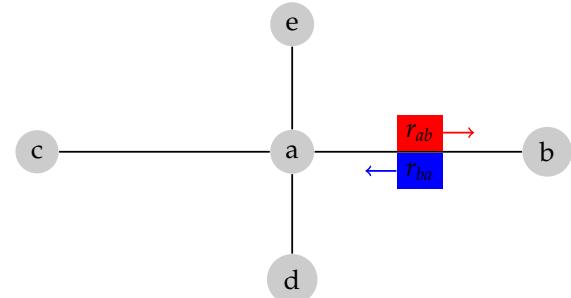
## Communications

## Communications

- ▶ Message Passing

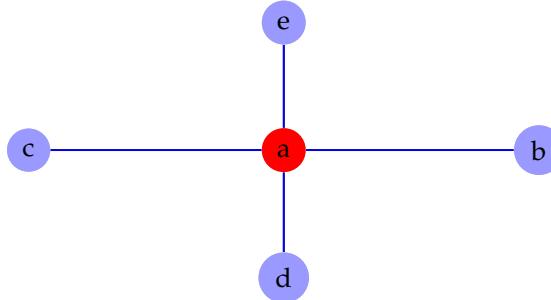


- ▶ Shared Registers





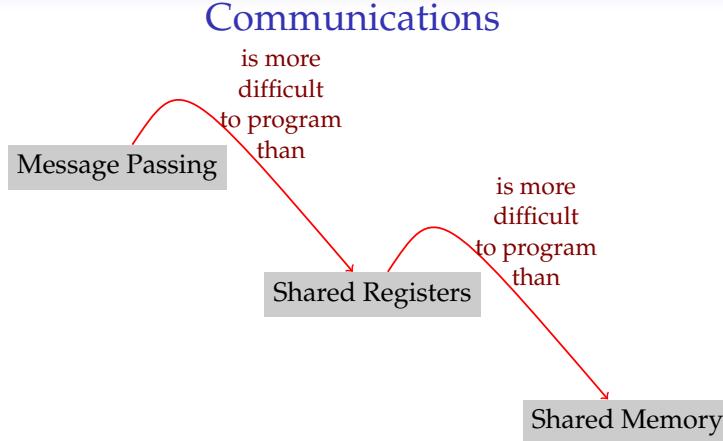
## ► Shared Memory



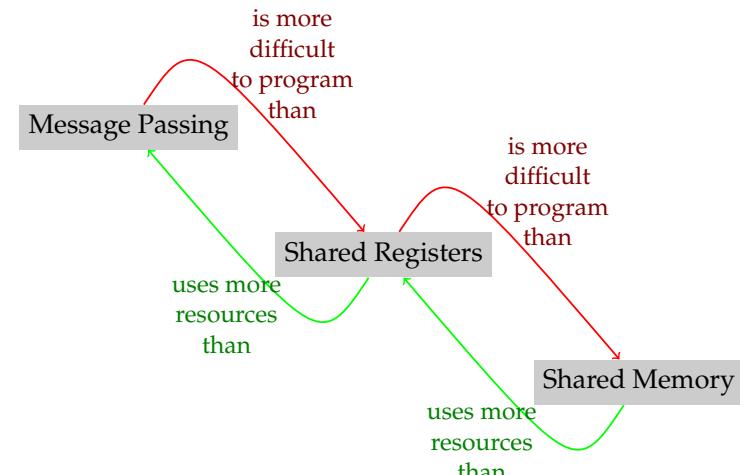
## Message Passing

## Shared Registers

## Shared Memory



## Communications



## Example

## Definition (Shared Memory)

In one atomic step, read the states of all neighbors and write own state

## Definition (Guarded command)

## ► Guard → Action

## Definition (Shared Memory)

In one atomic step, read the states of all neighbors and write own state

## Definition (Guarded command)

- ▶ Guard → Action
- ▶ Guard: predicate on the states of the neighborhood

Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

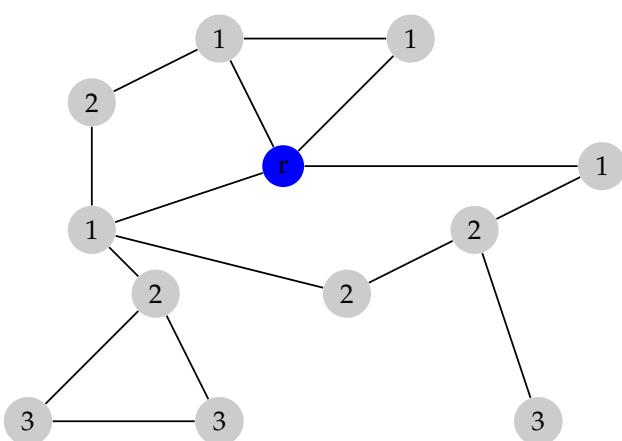
## Example

### Definition (Shared Memory)

In one atomic step, read the states of all neighbors and write own state

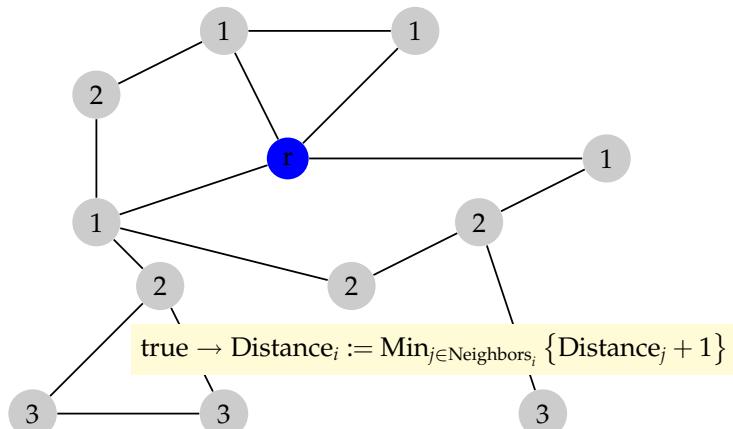
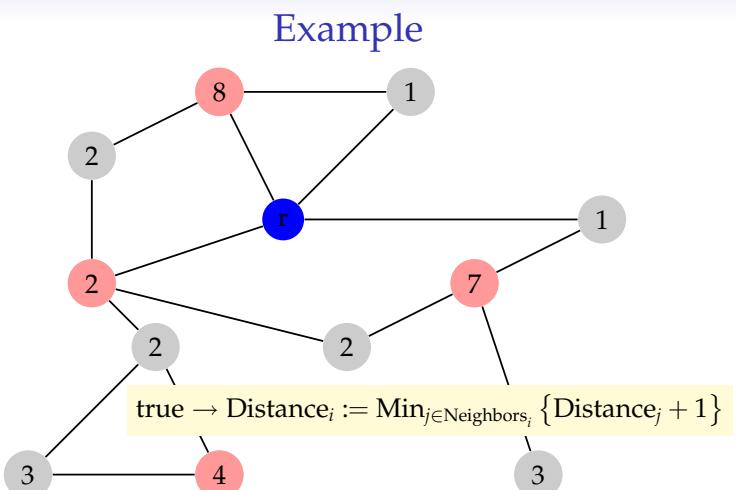
### Definition (Guarded command)

- Guard → Action
- Guard: predicate on the states of the neighborhood
- Action: executed if Guard evaluates to true



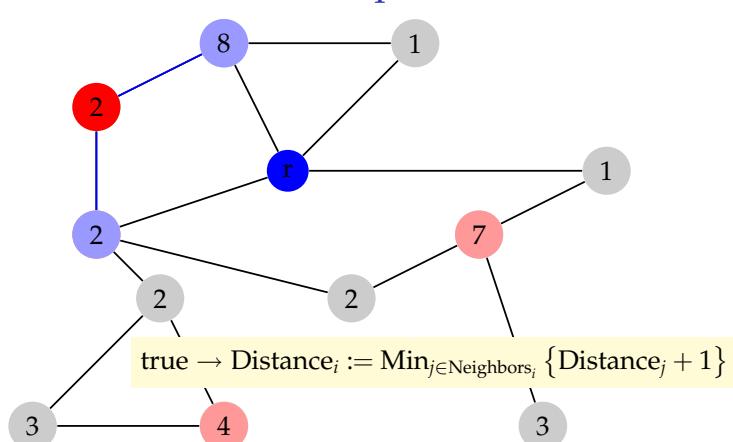
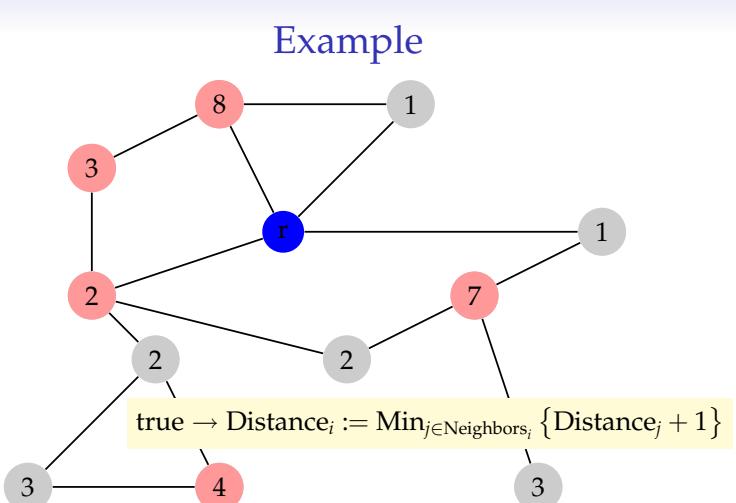
Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

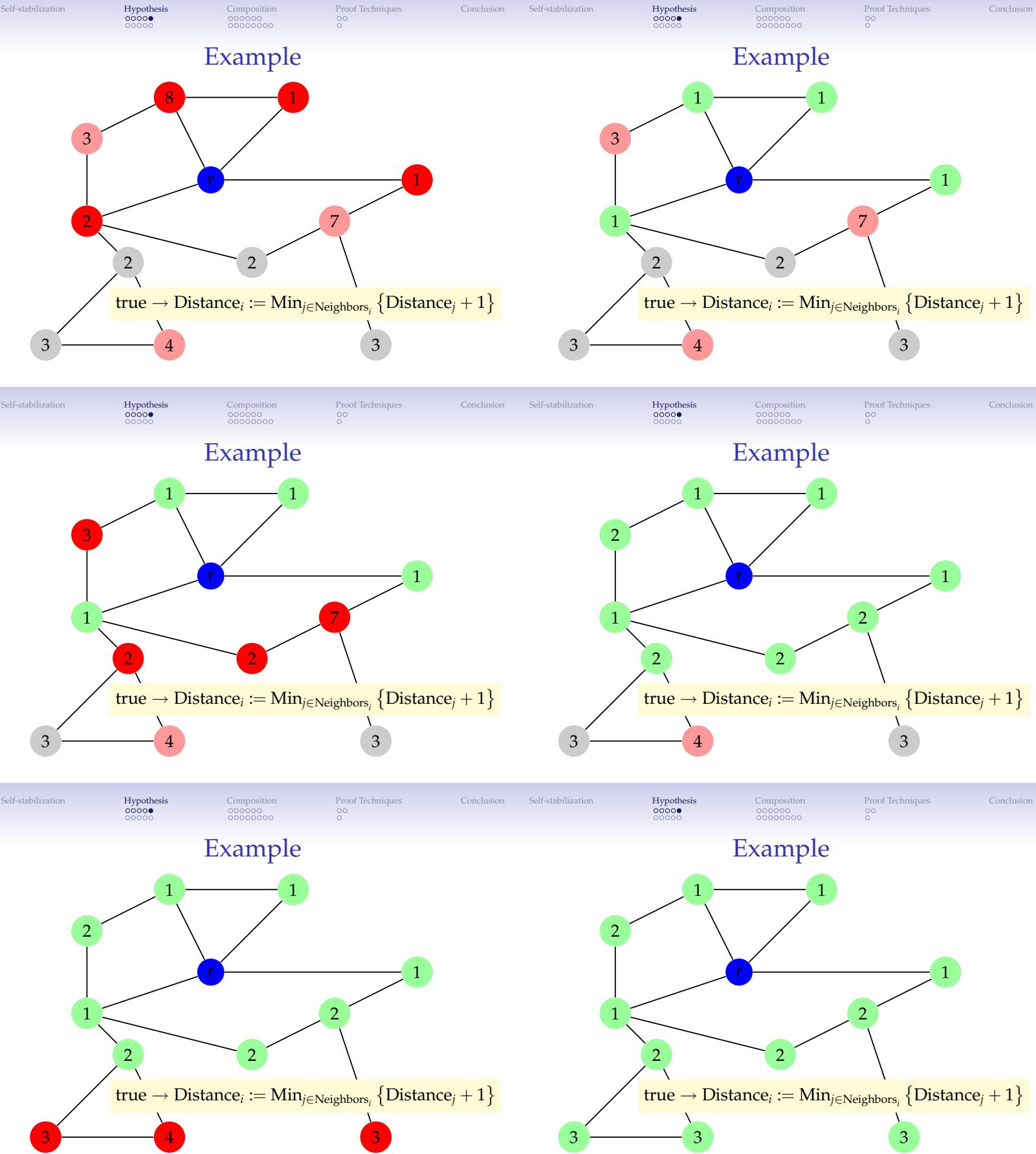
## Example



Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

## Example





|                    |                              |                                   |                             |            |                    |                              |                                   |                             |            |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○<br>●●○○○ | Composition<br>○○○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○<br>●●○○○ | Composition<br>○○○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|

## Scheduling

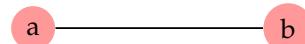
### Definition (Scheduler a.k.a. Daemon)

The daemon chooses among activatable processors those that will execute their actions.

- The **daemon** can be seen as an adversary whose role is to prevent stabilization

$$\text{true} \rightarrow \text{color}_i := \text{Min} \{ \Delta \setminus \{\text{color}_j | j \in \text{Neighbors}_i\} \}$$

$$\Delta = \{ \textcolor{red}{0}, \textcolor{blue}{1} \}$$



|                    |                              |                                   |                             |            |                    |                              |                                   |                             |            |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○<br>●●○○○ | Composition<br>○○○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○<br>●●○○○ | Composition<br>○○○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|

## Spatial Scheduling

$$\text{true} \rightarrow \text{color}_i := \text{Min} \{ \Delta \setminus \{\text{color}_j | j \in \text{Neighbors}_i\} \}$$

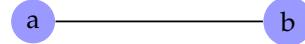
$$\Delta = \{ \textcolor{red}{0}, \textcolor{blue}{1} \}$$



## Spatial Scheduling

$$\text{true} \rightarrow \text{color}_i := \text{Min} \{ \Delta \setminus \{\text{color}_j | j \in \text{Neighbors}_i\} \}$$

$$\Delta = \{ \textcolor{red}{0}, \textcolor{blue}{1} \}$$



|                    |                              |                                   |                             |            |                    |                              |                                   |                             |            |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○<br>●●○○○ | Composition<br>○○○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○<br>●●○○○ | Composition<br>○○○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|

## Spatial Scheduling

$$\text{true} \rightarrow \text{color}_i := \text{Min} \{ \Delta \setminus \{\text{color}_j | j \in \text{Neighbors}_i\} \}$$

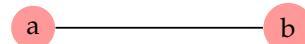
$$\Delta = \{ \textcolor{red}{0}, \textcolor{blue}{1} \}$$



## Spatial Scheduling

$$\text{true} \rightarrow \text{color}_i := \text{Min} \{ \Delta \setminus \{\text{color}_j | j \in \text{Neighbors}_i\} \}$$

$$\Delta = \{ \textcolor{red}{0}, \textcolor{blue}{1} \}$$



Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

Hypothesis  
○○○○○  
○●○○○

Composition  
○○○○○○  
○○○○○○○○

Proof Techniques  
○○  
○

Conclusion

Self-stabilization

Hypothesis  
○○○○○  
○●○○○

Composition  
○○○○○○  
○○○○○○○○

Proof Techniques  
○○  
○

Conclusion

## Spatial Scheduling

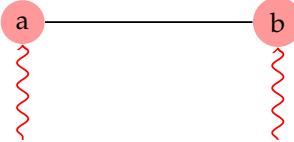
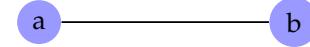
## Spatial Scheduling

true  $\rightarrow$   $\text{color}_i := \text{Min} \{ \Delta \setminus \{\text{color}_j | j \in \text{Neighbors}_i\} \}$

true  $\rightarrow$   $\text{color}_i := \text{Min} \{ \Delta \setminus \{\text{color}_j | j \in \text{Neighbors}_i\} \}$

$$\Delta = \{ \textcolor{red}{0}, \textcolor{blue}{1} \}$$

$$\Delta = \{ \textcolor{red}{0}, \textcolor{blue}{1} \}$$



Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

Hypothesis  
○○○○○  
○●○○○

Composition  
○○○○○○  
○○○○○○○○

Proof Techniques  
○○  
○

Conclusion

Self-stabilization

Hypothesis  
○○○○○  
○●○○○

Composition  
○○○○○○  
○○○○○○○○

Proof Techniques  
○○  
○

Conclusion

## Spatial Scheduling

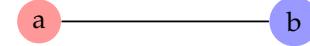
## Spatial Scheduling

true  $\rightarrow$   $\text{color}_i := \text{Min} \{ \Delta \setminus \{\text{color}_j | j \in \text{Neighbors}_i\} \}$

true  $\rightarrow$   $\text{color}_i := \text{Min} \{ \Delta \setminus \{\text{color}_j | j \in \text{Neighbors}_i\} \}$

$$\Delta = \{ \textcolor{red}{0}, \textcolor{blue}{1} \}$$

$$\Delta = \{ \textcolor{red}{0}, \textcolor{blue}{1} \}$$



Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

Hypothesis  
○○○○○  
○●○○○

Composition  
○○○○○○  
○○○○○○○○

Proof Techniques  
○○  
○

Conclusion

Self-stabilization

Hypothesis  
○○○○○  
○●○○○

Composition  
○○○○○○  
○○○○○○○○

Proof Techniques  
○○  
○

Conclusion

## Spatial Scheduling

## Spatial Scheduling

Distributed

is more difficult to program than  
Distributed

Synchronous

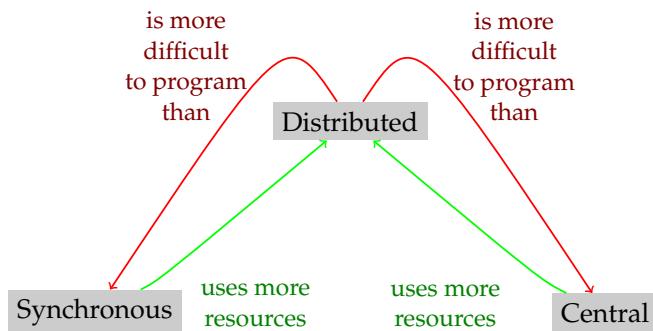
Central

Synchronous

Central

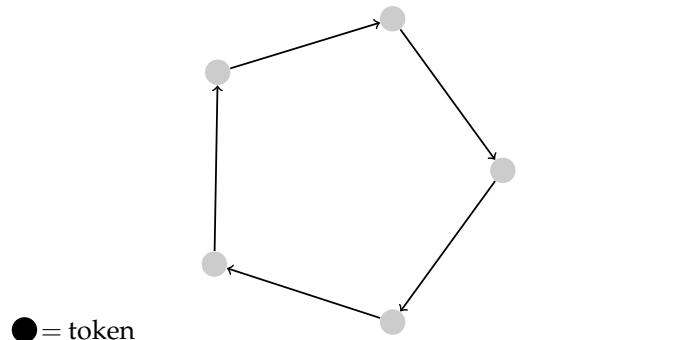
|                    |                              |                                   |                             |            |                    |                               |                                       |                             |            |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|-------------------------------|---------------------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○<br>○○○○○ | Composition<br>○○○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○<br>○○○○○○ | Composition<br>○○○○○○○○<br>○○○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|-------------------------------|---------------------------------------|-----------------------------|------------|

## Spatial Scheduling



## Temporal Scheduling

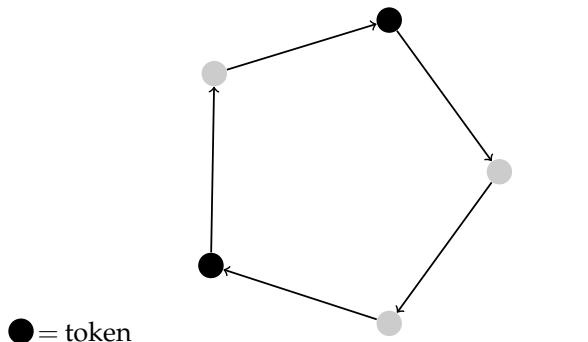
token  $\rightarrow$  pass token to left neighbor with probability  $\frac{1}{2}$



|                    |                              |                                   |                             |            |                    |                               |                                       |                             |            |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|-------------------------------|---------------------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○<br>○○○○○ | Composition<br>○○○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○<br>○○○○○○ | Composition<br>○○○○○○○○<br>○○○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|-------------------------------|---------------------------------------|-----------------------------|------------|

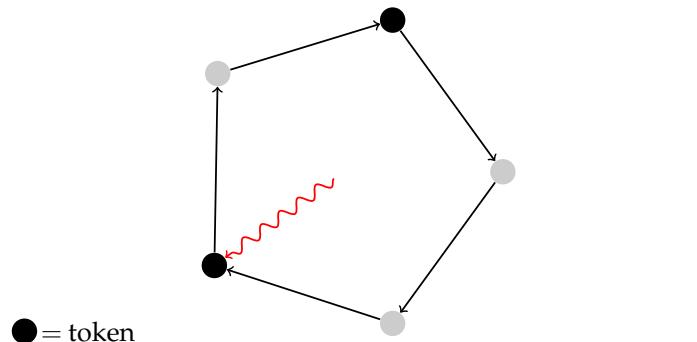
## Temporal Scheduling

token  $\rightarrow$  pass token to left neighbor with probability  $\frac{1}{2}$



## Temporal Scheduling

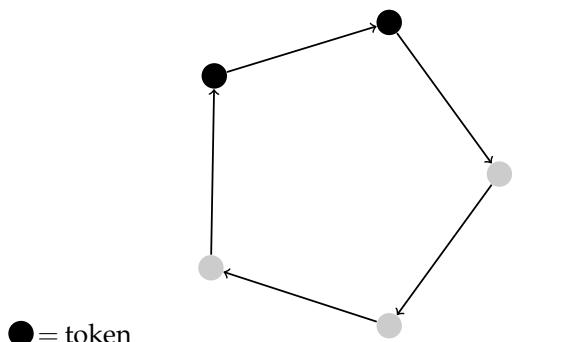
token  $\rightarrow$  pass token to left neighbor with probability  $\frac{1}{2}$



|                    |                              |                                   |                             |            |                    |                               |                                       |                             |            |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|-------------------------------|---------------------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○<br>○○○○○ | Composition<br>○○○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○<br>○○○○○○ | Composition<br>○○○○○○○○<br>○○○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|------------------------------|-----------------------------------|-----------------------------|------------|--------------------|-------------------------------|---------------------------------------|-----------------------------|------------|

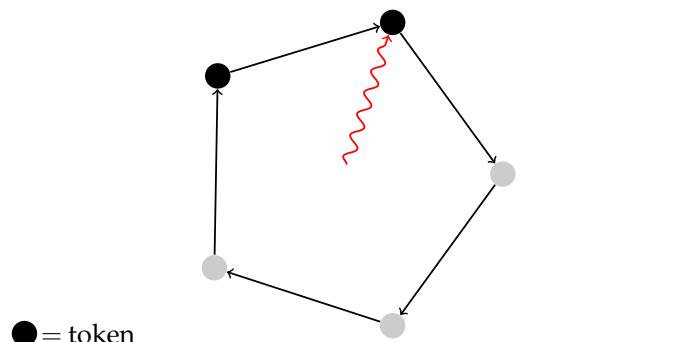
## Temporal Scheduling

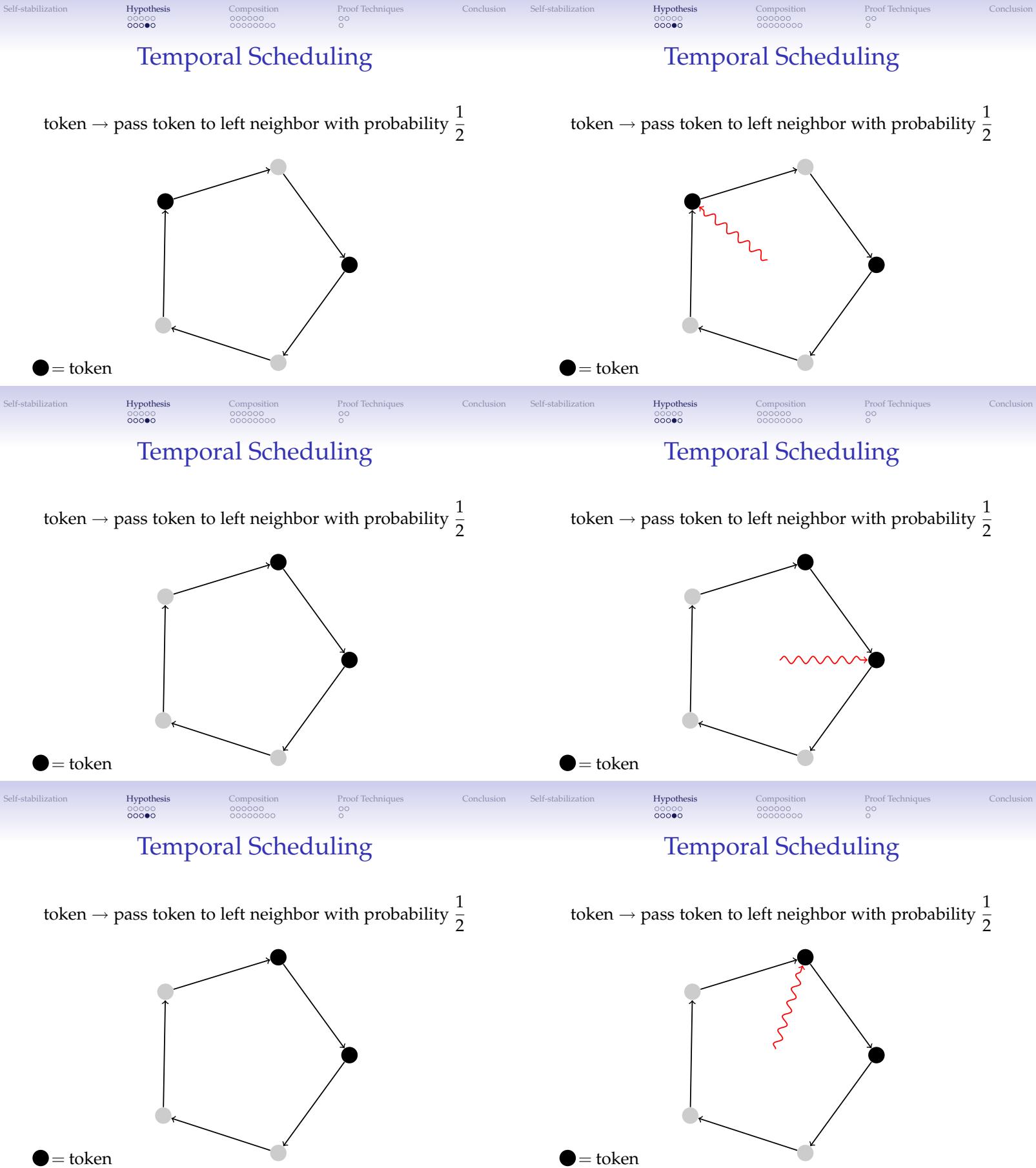
token  $\rightarrow$  pass token to left neighbor with probability  $\frac{1}{2}$



## Temporal Scheduling

token  $\rightarrow$  pass token to left neighbor with probability  $\frac{1}{2}$





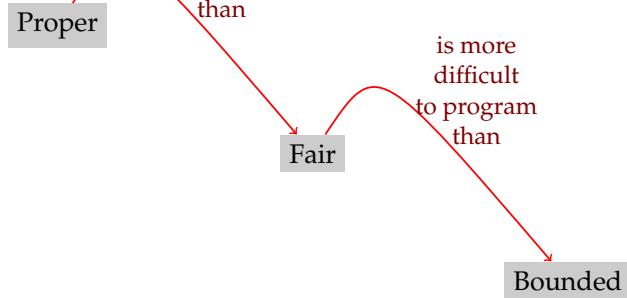
## Temporal Scheduling

token → pass token to left neighbor with probability  $\frac{1}{2}$



## Temporal Scheduling

is more difficult to program than



## Temporal Scheduling

is more difficult to program than



Self-stabilization

Hypothesis  
Atomicity  
Scheduling

Composition  
Fair Composition  
Crossover Composition

Proof Techniques  
Transfer Function  
Convergence stairs

Conclusion

## Fair Composition

### Basic idea

- ▶ Compose several self-stabilizing algorithms  $Al_1, Al_2, \dots, Al_k$  such that the results of algorithms  $Al_1, Al_2, \dots, Al_i$  can be reused by  $Al_{i+1}$
- ▶  $Al_{i+1}$  can not detect whether algorithms  $Al_1, Al_2, \dots, Al_i$  have stabilized, but behaves as if

|                    |                     |                                  |                             |            |                    |                     |                                   |                             |            |
|--------------------|---------------------|----------------------------------|-----------------------------|------------|--------------------|---------------------|-----------------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>●○○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○●○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|---------------------|----------------------------------|-----------------------------|------------|--------------------|---------------------|-----------------------------------|-----------------------------|------------|

## Fair Composition

### Basic idea

- Compose several self-stabilizing algorithms  $Al_1, Al_2, \dots, Al_k$  such that the results of algorithms  $Al_1, Al_2, \dots, Al_i$  can be reused by  $Al_{i+1}$
- $Al_{i+1}$  can not detect whether algorithms  $Al_1, Al_2, \dots, Al_i$  have stabilized, but behaves as if

### Example with $k = 2$

- Two simple algorithms server and client are combined to obtain a more complex algorithm
- The server algorithm ensures that some properties (used by the client) will be eventually verified

|                    |                     |                                   |                             |            |                    |                     |                                   |                             |            |
|--------------------|---------------------|-----------------------------------|-----------------------------|------------|--------------------|---------------------|-----------------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○●○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○●○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|---------------------|-----------------------------------|-----------------------------|------------|--------------------|---------------------|-----------------------------------|-----------------------------|------------|

## Fair Composition

### Definition ( $A$ -projection)

For a configuration  $c$  of  $S_1 \times S_2 \times \dots \times S_n$ , the  **$A$ -projection** of  $c$  is  $(a_1, \dots, a_n)$  of  $A_1 \times \dots \times A_n$

### Definition (Conditional Stabilization)

$Al_2$  is **self-stabilizing for task  $T_2$  given task  $T_1$**  if any fair computation of  $Al_2$  that has an  $A$ -projection in  $T_1$  has a suffix in  $T_2$

|                    |                     |                                   |                             |            |                    |                     |                                   |                             |            |
|--------------------|---------------------|-----------------------------------|-----------------------------|------------|--------------------|---------------------|-----------------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○●○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○●○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|---------------------|-----------------------------------|-----------------------------|------------|--------------------|---------------------|-----------------------------------|-----------------------------|------------|

## Fair Composition

### Definition (Fair composition)

$Al$  is a **fair composition** of  $Al_1$  and  $Al_2$  if, in  $Al$ , every process alternatively executes actions of  $Al_1$  and  $Al_2$

### Theorem

*If  $Al_2$  is self-stabilizing for  $T_2$  given  $T_1$ , and if  $Al_1$  is self-stabilizing for  $T_1$ , then the fair composition of  $Al_1$  and  $Al_2$  is self-stabilizing for  $T_2$*

$A_i \rightarrow B_i$

$Al_1 \quad Al_2$

## Example

- Assume the server algorithm  $Al_1$  solves a task defined by a set of legal executions  $T_1$ , and the client algorithm  $Al_2$  solves  $T_2$

$A_i$

- Let  $A_i$  be the set of states of process  $P_i$  for  $Al_1$ , and let  $S_i = A_i \times B_i$  be the set of states of process  $P_i$  for  $Al_2$ , where anytime  $P_i$  executes  $Al_2$ , it modifies the  $B_i$  part of  $A_i \times B_i$

$A_i \rightarrow B_i$

|                    |                     |                                   |                             |            |                    |                     |                                   |                             |            |
|--------------------|---------------------|-----------------------------------|-----------------------------|------------|--------------------|---------------------|-----------------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○●○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○●○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|---------------------|-----------------------------------|-----------------------------|------------|--------------------|---------------------|-----------------------------------|-----------------------------|------------|

## Fair Composition

### Definition (Fair composition)

$Al$  is a **fair composition** of  $Al_1$  and  $Al_2$  if, in  $Al$ , every process alternatively executes actions of  $Al_1$  and  $Al_2$

### Theorem

*If  $Al_2$  is self-stabilizing for  $T_2$  given  $T_1$ , and if  $Al_1$  is self-stabilizing for  $T_1$ , then the fair composition of  $Al_1$  and  $Al_2$  is self-stabilizing for  $T_2$*

$A_i \rightarrow B_i$

$Al_1 \quad Al_2$

|                    |                     |                                   |                             |            |                    |                     |                                   |                             |            |
|--------------------|---------------------|-----------------------------------|-----------------------------|------------|--------------------|---------------------|-----------------------------------|-----------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○●○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○●○○○<br>○○○○○○○○ | Proof Techniques<br>○○<br>○ | Conclusion |
|--------------------|---------------------|-----------------------------------|-----------------------------|------------|--------------------|---------------------|-----------------------------------|-----------------------------|------------|

## Fair Composition

### Definition (Fair composition)

$Al$  is a **fair composition** of  $Al_1$  and  $Al_2$  if, in  $Al$ , every process alternatively executes actions of  $Al_1$  and  $Al_2$

### Theorem

*If  $Al_2$  is self-stabilizing for  $T_2$  given  $T_1$ , and if  $Al_1$  is self-stabilizing for  $T_1$ , then the fair composition of  $Al_1$  and  $Al_2$  is self-stabilizing for  $T_2$*

$A_i \rightarrow B_i$

$Al_1 \quad Al_2$

Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

○○○○  
○○○○

○○○○●  
○○○○○○○

○○  
○

Conclusion

Self-stabilization

○○○○  
○○○○

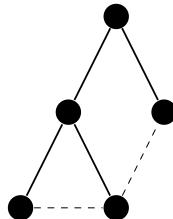
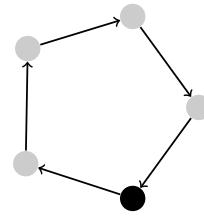
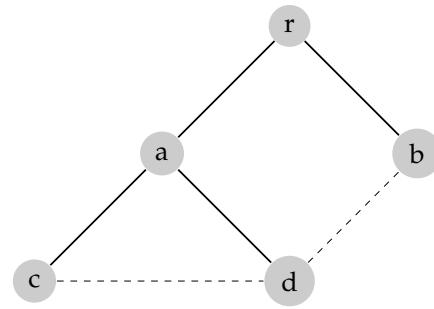
○○○○●  
○○○○○○○

○○  
○

Conclusion

## Example

- We are given two self-stabilizing algorithms, one for constructing a tree, one for mutual exclusion on a ring
- We wish to construct a self-stabilizing mutual exclusion algorithm on general graphs



Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

○○○○  
○○○○

○○○○●  
○○○○○○○

○○  
○

Conclusion

Self-stabilization

○○○○  
○○○○

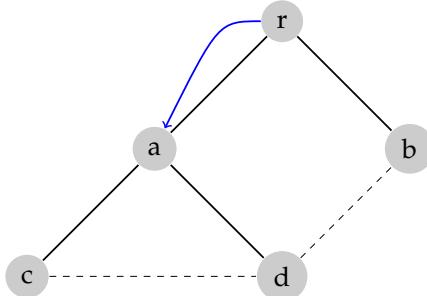
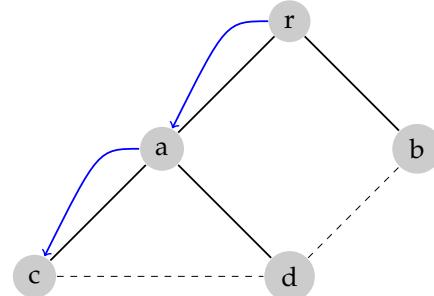
○○○○●  
○○○○○○○

○○  
○

Conclusion

## Example

## Example



Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

○○○○  
○○○○

○○○○●  
○○○○○○○

○○  
○

Conclusion

Self-stabilization

○○○○  
○○○○

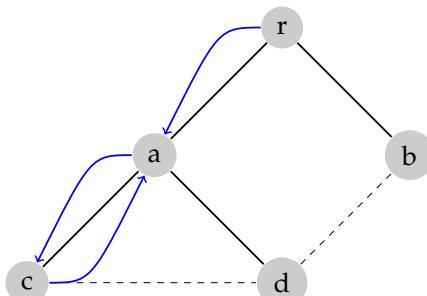
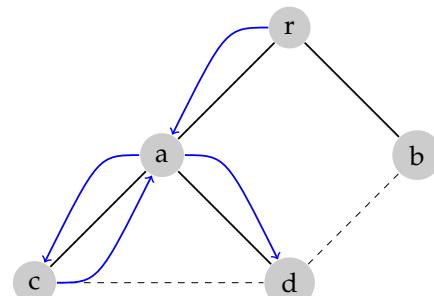
○○○○●  
○○○○○○○

○○  
○

Conclusion

## Example

## Example



Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

Hypothesis  
○○○○○  
○○○○○

Composition  
○○○○●○  
○○○○○○○

Proof Techniques  
○○  
○

Conclusion      Self-stabilization

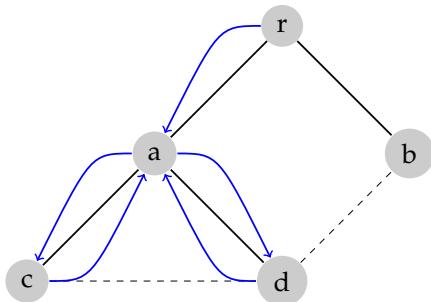
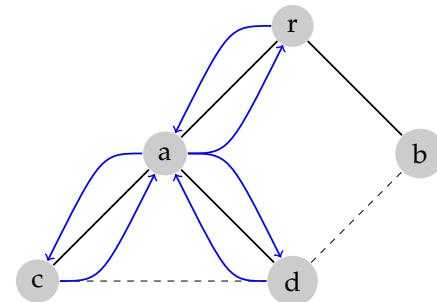
Hypothesis  
○○○○○  
○○○○○

Composition  
○○○○●○  
○○○○○○○

Proof Techniques  
○○  
○

Conclusion

## Example



Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

Hypothesis  
○○○○○  
○○○○○

Composition  
○○○○●○  
○○○○○○○

Proof Techniques  
○○  
○

Conclusion      Self-stabilization

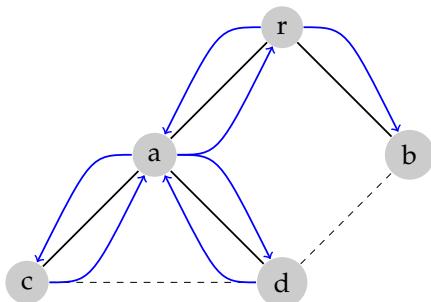
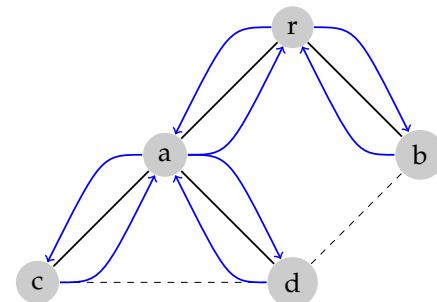
Hypothesis  
○○○○○  
○○○○○

Composition  
○○○○●○  
○○○○○○○

Proof Techniques  
○○  
○

Conclusion

## Example



Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

Hypothesis  
○○○○○  
○○○○○

Composition  
○○○○●○  
○○○○○○○

Proof Techniques  
○○  
○

Conclusion      Self-stabilization

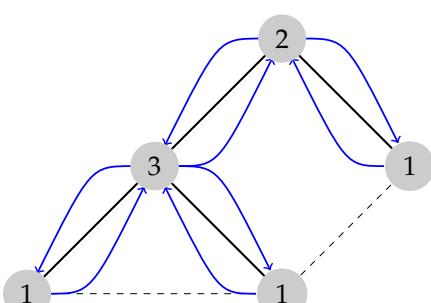
Hypothesis  
○○○○○  
○○○○○

Composition  
○○○○●○  
●○○○○○○

Proof Techniques  
○○  
○

Conclusion

## Example



## Crossover Composition

### Basic Idea

- We are given two algorithms  $Al_1$  and  $Al_2$
- $Al_1$  is correct with hypothesis  $H_1$  and  $Al_2$  is correct with hypothesis  $H_2$
- $H_2$  is more restrictive than  $H_1$

### Definition

Crossover Composition The **crossover composition** is such that  $Al_2$  is conditionally executed (only when  $Al_1$  is executed)  $Al_2$  is then correct with hypothesis  $H_1$

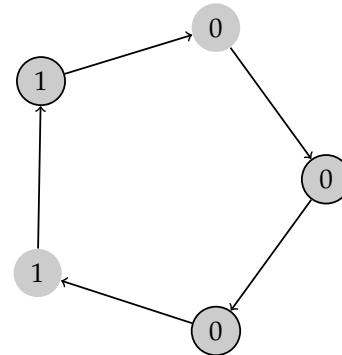
## Example

### Uniform Unidirectional ring

- Each node  $i$  has a variable  $v_i$
- Each node  $i$  has a token if  $v_i \neq v_{i-1} + 1 \pmod{SND(n)}$
- Each node  $i$  passes a token by executing  $v_i := v_{i-1} + 1 \pmod{SND(n)}$

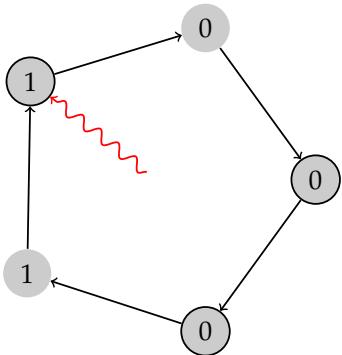
( $SND(n)$  : smallest non divisor of  $n$ )

►  $SND(n) = 2$

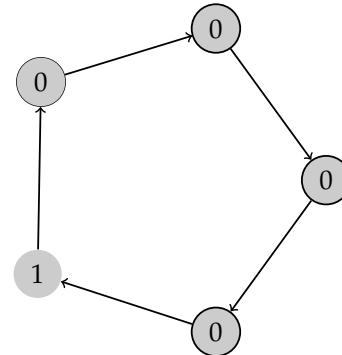


## Example

►  $SND(n) = 2$

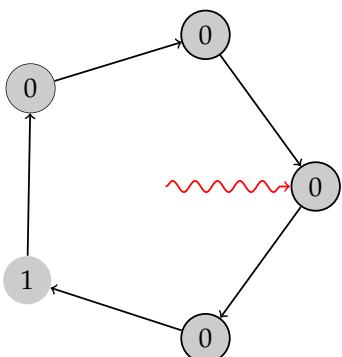


►  $SND(n) = 2$

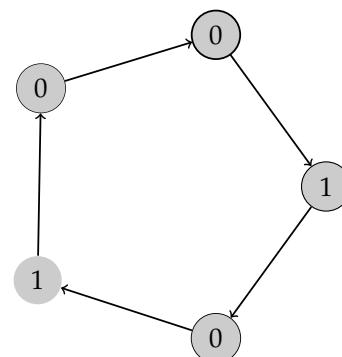


## Example

►  $SND(n) = 2$



►  $SND(n) = 2$





### Algorithm $Al_1$

- ▶ A node with the token is activatable
- ▶ An activated node always transmit the token
- ▶  $Al_1$  solves the token passing problem with an arbitrary distributed deamon (Hypothesis  $H_1$ )

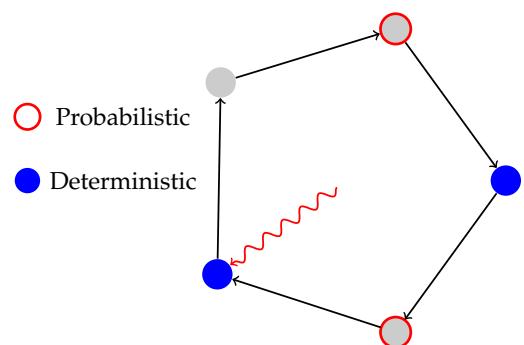
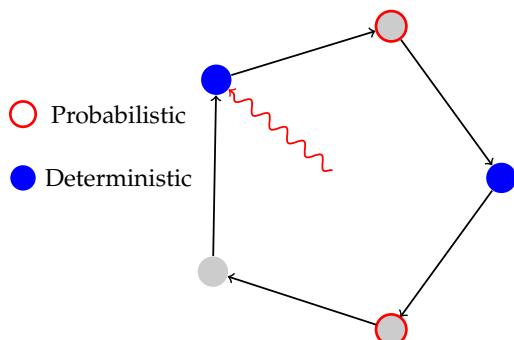
### Algorithm $Al_2$

- ▶ Each node with a token is activatable
- ▶ Each activated node transmits the token with probability  $\frac{1}{2}$
- ▶  $Al_2$  solves the self-stabilizing mutual exclusion problem using token passing and a bounded daemon (Hypothesis  $H_2$ )

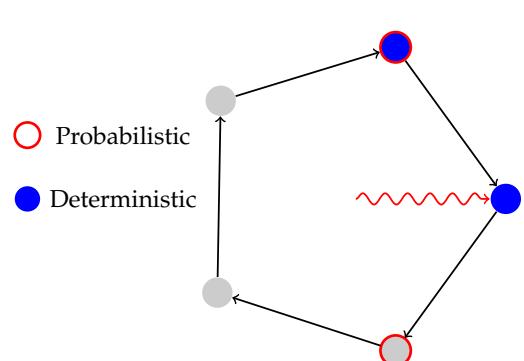


### Algorithm $Al_2$ composed with $Al_1$

- ▶ A node may have two tokens (one deterministic and one probabilistic)
- ▶ A node with a deterministic token is activatable
- ▶ An activated node passes the deterministic token, and (if it has it) the probabilistic token with probability  $\frac{1}{2}$



### Example



Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

○○○○○  
○○○○○

○○○○○○  
○○○○○○●○

○○  
○

Conclusion      Self-stabilization

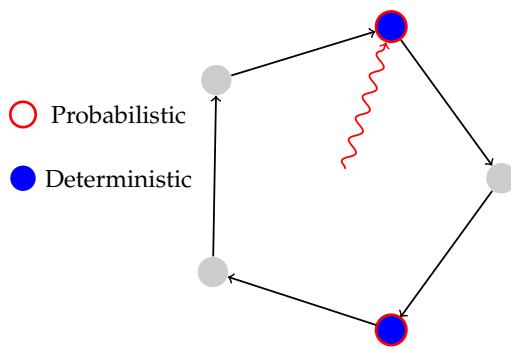
○○○○○  
○○○○○

○○○○○○  
○○○○○○●○

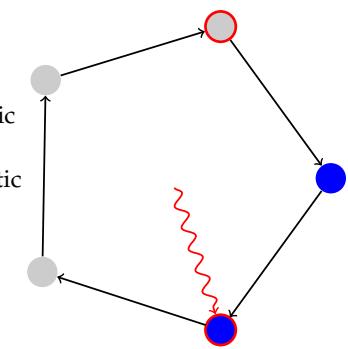
○○  
○

Conclusion

## Example



## Example



Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

○○○○○  
○○○○○

○○○○○○  
○○○○○○●○

○○  
○

Conclusion      Self-stabilization

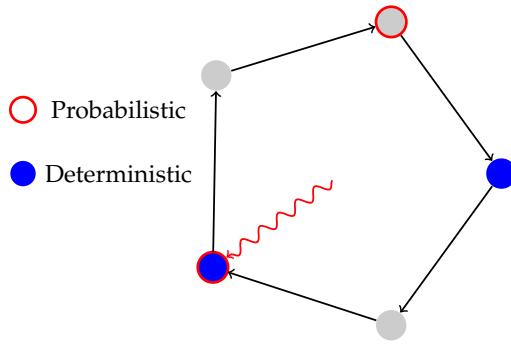
○○○○○  
○○○○○

○○○○○○  
○○○○○○●○

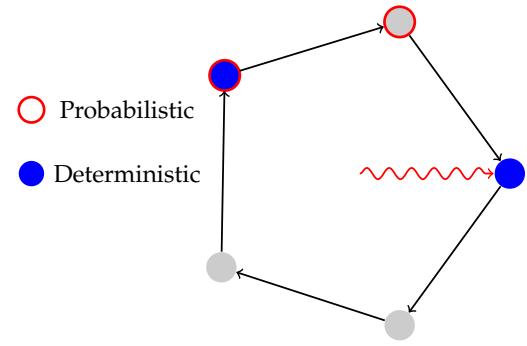
○○  
○

Conclusion

## Example



## Example



Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

○○○○○  
○○○○○

○○○○○○  
○○○○○○●○

○○  
○

Conclusion      Self-stabilization

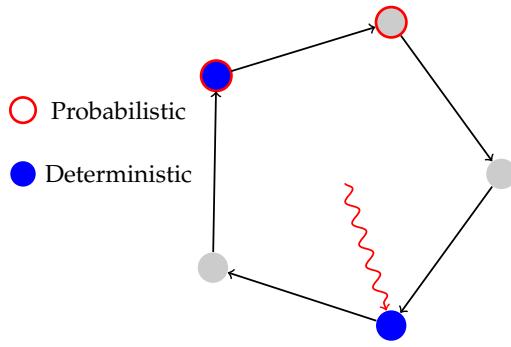
○○○○○  
○○○○○

○○○○○○  
○○○○○○●○

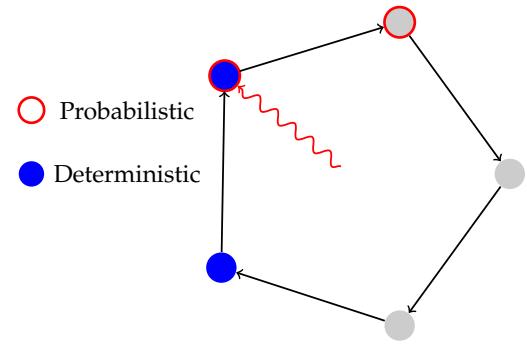
○○  
○

Conclusion

## Example



## Example



Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

○○○○○  
○○○○○

○○○○○○  
○○○○○○●○

○○  
○

Conclusion

Self-stabilization

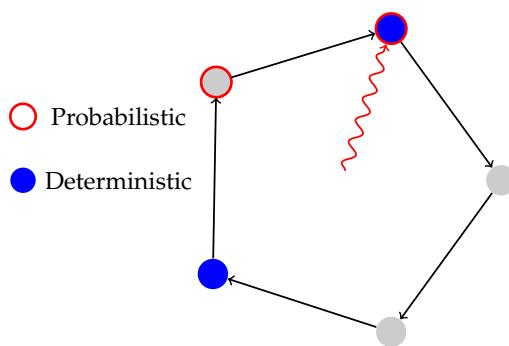
○○○○○  
○○○○○

○○○○○○  
○○○○○○●○

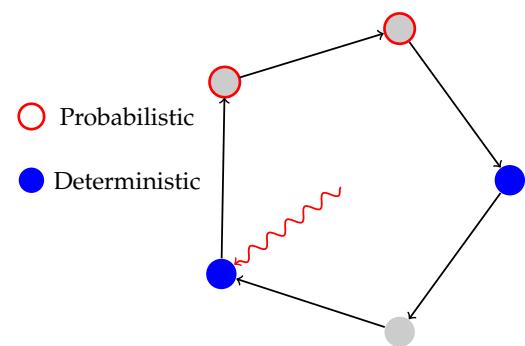
○○  
○

Conclusion

## Example



## Example



Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

○○○○○  
○○○○○

○○○○○○  
○○○○○○●○

○○  
○

Conclusion

Self-stabilization

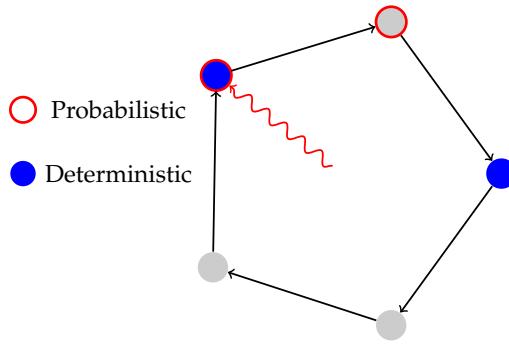
○○○○○  
○○○○○

○○○○○○  
○○○○○○●○

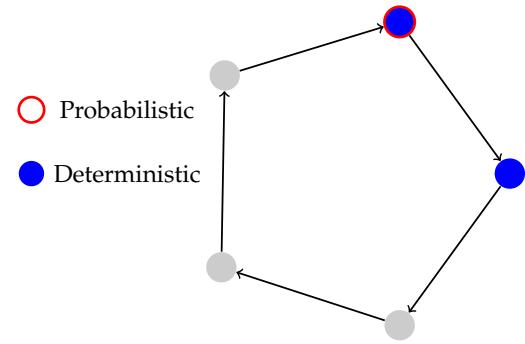
○○  
○

Conclusion

## Example



## Example



Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion      Self-stabilization      Hypothesis      Composition      Proof Techniques      Conclusion

○○○○○  
○○○○○

○○○○○○  
○○○○○○●○

○○  
○

Conclusion

Self-stabilization

○○○○○  
○○○○○

○○○○○○  
○○○○○○●○

○○  
○

Conclusion

## Example

- ▶  $Al_2$  composed with  $Al_1$  solves the self-stabilizing mutual exclusion problem with an arbitrary distributed deamon ( $H_1$ )
- ▶  $Al_2$  composed with  $Al_1$  does not solve a more complex problem, but handles less restrictive hypothesis

Self-stabilization

Hypothesis  
Atomicity  
Scheduling

Composition  
Fair Composition  
Crossover Composition

Proof Techniques  
Transfer Function  
Convergence stairs

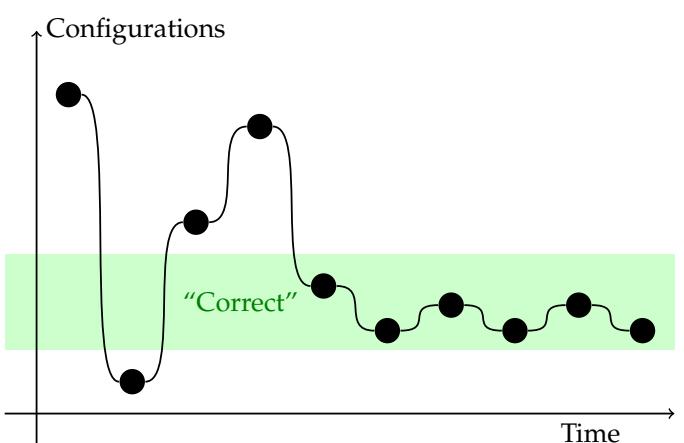
Conclusion

|                    |                     |                         |                         |            |                    |                     |                           |                          |            |
|--------------------|---------------------|-------------------------|-------------------------|------------|--------------------|---------------------|---------------------------|--------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○○○○○○○ | Proof Techniques<br>○●○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○○○○○○○○○ | Proof Techniques<br>○○●○ | Conclusion |
|--------------------|---------------------|-------------------------|-------------------------|------------|--------------------|---------------------|---------------------------|--------------------------|------------|

## Transfer Function

### Basic Idea

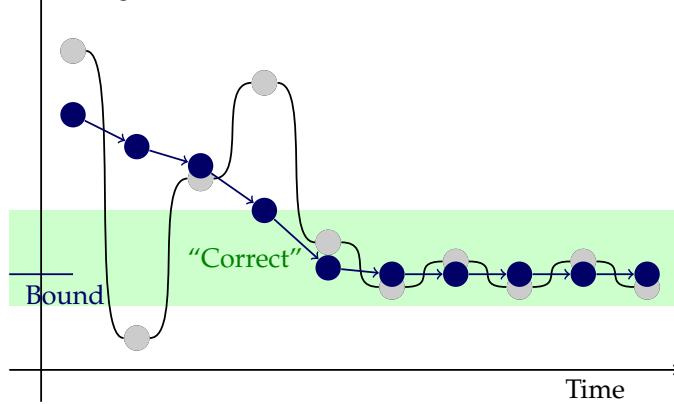
- $c_1 \rightarrow c_2 \rightarrow c_3 \rightarrow c_4 \rightarrow \dots \rightarrow c_i$
- $FP(c_1) > FP(c_2) > FP(c_3) > \dots > FP(c_i) = \text{bound}$
- Used to prove convergence
- Can be used to compute the number of steps to reach a legitimate configuration



|                    |                     |                         |                        |            |                    |                     |                           |                          |            |
|--------------------|---------------------|-------------------------|------------------------|------------|--------------------|---------------------|---------------------------|--------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○○○○○○○ | Proof Techniques<br>○○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○○○○○○○○○ | Proof Techniques<br>○○●○ | Conclusion |
|--------------------|---------------------|-------------------------|------------------------|------------|--------------------|---------------------|---------------------------|--------------------------|------------|

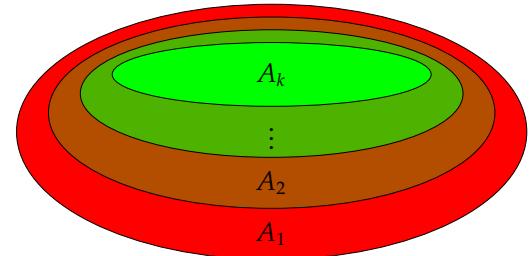
## Transfer Function

### Configurations



## Convergence stairs

- $A_i$  is a predicate
- $A_k$  is legitimate
- For any  $i$  between 1 and  $k$ ,  $A_{i+1}$  is a refinement of  $A_i$



|                    |                     |                         |                        |            |                    |                     |                           |                        |            |
|--------------------|---------------------|-------------------------|------------------------|------------|--------------------|---------------------|---------------------------|------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○○○○○○○ | Proof Techniques<br>○○ | Conclusion | Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○○○○○○○○○ | Proof Techniques<br>○○ | Conclusion |
|--------------------|---------------------|-------------------------|------------------------|------------|--------------------|---------------------|---------------------------|------------------------|------------|

## Self-stabilization

### Hypothesis

Atomicity  
Scheduling

### Composition

Fair Composition  
Crossover Composition

### Proof Techniques

Transfer Function  
Convergence stairs

## Conclusion

## Self-stabilization

### Pros

- The network need not be initialized
- When a fault is diagnosed, it is sufficient to identify, then remove or restart the faulty components
- The self-stabilization property does not depend on the nature of the fault
- The self-stabilization property does not depend on the extent of the fault

|                    |                     |                         |                         |            |
|--------------------|---------------------|-------------------------|-------------------------|------------|
| Self-stabilization | Hypothesis<br>○○○○○ | Composition<br>○○○○○○○○ | Proof Techniques<br>○○○ | Conclusion |
|--------------------|---------------------|-------------------------|-------------------------|------------|

## Self-stabilization

### Cons

- ▶ “Eventually” does not give any bound on the stabilization time
- ▶ A single failure may trigger a correcting action at every node in the network
- ▶ Faults must be sufficiently rare that they can be considered are transient
- ▶ Nodes never know whether the system is stabilized or not