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Self-stabilization Memory Corruption

Configurations
» Example of a sequential program:

int x = 0;

if( x == ) |
// code assuming x equals 0

}

“Correct” else |

// code assuming x does not equal 0

}

| Time

Stabilization Time
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Distributed Systems Distributed Systems
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Distributed Systems

» Locality of information
» Locality of time
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Distributed Systems

» Locality of information
» Locality of time
» = non-determinism

Definition (Configuration)
Product of the local states of the system components.

Definition (Execution)

Interleaving of the local executions of the system
components.
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Self-stabilization

Definition (Self-stabilizing System)
Starting from any initial configuration, the system

eventually reaches a configuration from with its behavior
is correct.

» defined by Dijkstra in 1974
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Distributed Systems

» Locality of information
» Locality of time

» = non-determinism
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Distributed Systems

Definition (Classical System, a.k.a. Non
stabilizing)

Starting from a particular initial configuration, the system
immediately exhibits correct behavior.

Definition (Self-stabilizing System)

Starting from any initial configuration, the system

eventually reaches a configuration from with its behavior
is correct.

Self-stabilization Hypothesis Composition Proof Techniques Conclusion

Self-stabilization

Definition (Self-stabilizing System)
Starting from any initial configuration, the system

eventually reaches a configuration from with its behavior
is correct.

» defined by Dijkstra in 1974

» advocated by Lamport in 1984 to addesss
fault-tolerant issues
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» Example of “stabilizing” sequential program

0 iconst_0
1 istore_1
2 goto 7

5 iconst_0
6 istore_1

7 iload_1

8 iload_1

9 if_icmpeqgq 5
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Communications

» Message Passing

Conclusion Self-stabilization Hypothesis
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Atomicity

» Example of “stabilizing” sequential program

int x = 0;
while( x == x ) {
x = 0;
// code assuming x equals 0
Conclusion Self-stabilization Hypothesis Composition Proof Techniques
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Atomicity

» Example of “stabilizing” sequential program

0 iconst_0
istore_1
goto 7
iconst_0
istore_1
iload_1
iload_1
if_icmpeqg 5

1
2
5
6
7
8
9
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» Shared Registers
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Communications Communications

» Shared Memory
€ Message Passing
. ‘ b Shared Registers
d Shared Memory
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Communications Communications

is more is more
difficult difficult
O program 0 program
. than . than
Message Passing . Message Passing )
1S more 1S more
difficult difficult
(0} program O program
. than . than
Shared Registers Shared Registers
uses mo
resources
than
Shared Memory Shared Memory
uses mo
resources

than
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Example

Definition (Shared Memory)

In one atomic step, read the states of all neighbors and
write own state

Definition (Guarded command)

» Guard — Action

Example

Definition (Shared Memory)

In one atomic step, read the states of all neighbors and
write own state

Definition (Guarded command)

» Guard — Action
» Guard: predicate on the states of the neighborhood
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Example
1] —— 1
Definition (Shared Memory) ) /
In one atomic step, read the states of all neighbors and
write own state 1
Definition (Guarded command) 1 > /
» Guard — Action \2\ 2 /
» Guard: predicate on the states of the neighborhood
» Action: executed if Guard evaluates to true / \
3 3 3
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2 2 2 2
\ \
true — Distance; := Minjeeighbors, { Distance; 4 1} true — Distance; := Minjeneighbors, { Distance; + 1}
\ \ \ \
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true — Distance; := Minjeneighbors, { Distance; + 1}
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Example
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true — Distance; := Minjeneighbors, { Distance; + 1}
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3 ————— 4 3
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Scheduling Spatial Scheduling
true — color; := Min {A \ {colorj|j € Neighborsi}}

Definition (Scheduler a.k.a. Daemon)

The daemon chooses among activatable processors those A={{0 (1)}

that will execute their actions.

» The daemon can be seen as an adversary whose role
is to prevent stabilization 5 b
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Spatial Scheduling Spatial Scheduling

true — color; := Min {A \ {color;|j € Neighbors,} } true — color; := Min {A \ {color;|j € Neighbors,} }

A={(0 (1)

A={(0 (1}
a b a b
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Spatial Scheduling Spatial Scheduling

true — color; := Min {A \ {color;|j € Neighbors,} } true — color; := Min {A \ {color;|j € Neighbors,} }

A={lo) 60 A={(0 (1)}
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Spatial Scheduling

true — color; := Min { A\ {color;j € Neighbors} }

A={(0)- @
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Spatial Scheduling

true — color; := Min {A \ {colorj|j € Neighborsi}}

a={(0) @
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Spatial Scheduling

Distributed
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Central
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Spatial Scheduling

true — color; := Min {A \ {colorjj € Neighbors}}

2r={0) @
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true — color; := Min {A \ {colorj|j € Ne1ghborsi}}
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Spatial Scheduling

is more is more
difficult difficult
to program, to program

than than

Distributed

Synchronous Central
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Temporal Scheduling
is more is more 1
difficult difficult token — pass token to left neighbor with probability 5

to program to program

than Distributed than /
uses more >

Synchronous  resources resources Central
than than \

@ = token
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Temporal Scheduling Temporal Scheduling

token — pass token to left neighbor with probability % token — pass token to left neighbor with probability %
. = token . = token
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Temporal Scheduling Temporal Scheduling

token — pass token to left neighbor with probability % token — pass token to left neighbor with probability %

—/ —/

@ = token @ = token

Proof Techniques Conclusion
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Temporal Scheduling Temporal Scheduling

1 1
token — pass token to left neighbor with probability 5 token — pass token to left neighbor with probability 5

T

@ = token @ = token
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Temporal Scheduling Temporal Scheduling

token — pass token to left neighbor with probability % token — pass token to left neighbor with probability %

T T

‘ = token . = token
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token — pass token to left neighbor with probability 5 token — pass token to left neighbor with probability 5
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@ = token @ = token
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Temporal Scheduling
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token — pass token to left neighbor with probability 5
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Temporal Scheduling

Proper

Fair

Bounded
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Fair Composition

Basic idea

» Compose several self-stabilizing algorithms
Al, AL, ... Al such that the results of algorithms
Al Aly, ... Al; can be reused by Al

» Aliq1 can not detect whether algorithms
Aly, Al,, ... Al have stabilized, but behaves as if
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Fair Composition Example
Basic idea
» Compose several self-stabilizing algorithms > Assume the server algorithm All solves a task )
Aly, Al,, ... Al such that the results of algorithms defined by a set of legal executions T3, and the client
Al Al, ... Al; can be reused by Al 1 algorithm Al solves T,
» Al can not detect whether algorithms A;

Aly, Al,, ... Al have stabilized, but behaves as if
» Let A; be the set of states of process P; for Al;, and let

Example with k = 2 S; = A; x B; be the set of states of process P; for Al,,
where anytime P; executes Al, it modifies the B; part
» Two simple algorithms server and client are of A; x B;
combined to obtain a more complex algorithm A _ B
» The server algorithm ensures that some properties . .
(used by the client) will be eventually verified
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Fair Composition Fair Composition

Definition (Fair composition)
Al is a fair composition of Al; and Al if, in Al, every

Definition (A-projection) process alternatively executes actions of Al; and Al,

For a configuration c of S; x S, x - - - x S,,, the A-projection

ofcis (ay,...,a,) of Ay X -+ X A, Theorem o ] ] ]
o o o If Al, is self-stabilizing for T, given Ty, and if Al; is

Definition (Conditional Stabilization) self-stabilizing for Ty, then the fair composition of Aly and Al,

Al, is self-stabilizing for task T, given task T if any fair is self-stabilizing for T,

computation of Al, that has an A-projection in T; has a

suffix in T, A; - B;
Al Al
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Fair Composition Fair Composition
Definition (Fair composition) Definition (Fair composition)
Al is a fair composition of Al; and Al if, in Al, every Al is a fair composition of Al; and Al, if, in Al, every
process alternatively executes actions of Al; and Al, process alternatively executes actions of Al; and Al,
Theorem Theorem
If Al, is self-stabilizing for T, given Ty, and if Al; is If Al, is self-stabilizing for T, given Ty, and if Al; is
self-stabilizing for T, then the fair composition of Al and Al, self-stabilizing for Ty, then the fair composition of Al and Al,
is self-stabilizing for T is self-stabilizing for T,

Ai — B,' A,- — Bi

Al AL Al Al
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Example

» We are given two self-stabilizing algorithms, one for
constructing a tree, one for mutual exclusion on a
ring

» We wish to construct a self-stabilizing mutual
exclusion algorithm on general graphs
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Crosssover Composition

Basic Idea

» We are given two algorithms Al; and Al,

» Al is correct with hypothesis H; and Al, is correct
with hypothesis H,

» H, is more restrictive than H;

Definition

Crossover Composition The crossover composition is
such that Al, is conditionnaly executed (only when Al is
executed) Al is then correct with hypothesis H;
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Example

Uniform Unidirectionnal ring

» Each node i has a variable v;

Conclusion Self-stabilization Hypothesis Composition Proof Techniques Conclusion
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Example

» SND(n) =2

» Each node i has a token if v; #v; 1 +1 mod SND(n)
» Each node i passes a token by executing v; := v;_1 + 1 a

mod SND(n)

(SND(n) : smallest non divisor of n)

Self-stabilization Hypothesis Composition Proof Techniques
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Example

» SND(n) =2
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Example

» SND(n) =2

Conclusion Self-stabilization Hypothesis Composition Proof Techniques Conclusion
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Example

» SND(n) =2

Conclusion Self-stabilization f Techniques Conclusion
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Example Example
Algorithm Al,

Algorithm Al

) _ _ » Each node with a token is activatable
> Anode with the token is activatable » Each activated node transmists the token with
» An activated node always transmit the token probability 1
» Al solves the token passing problem with an

» Al solves the self-stabilizing mutual exclusion
arbitrary distributed deamon (Hypothesis H;)

problem using token passing and a bounded daemon
(Hypothesis H»)
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Example Example
Algorithm Al, composed with Al
» A node may have two tokens (one deterministic and O Probabilistic
one probabilistic)
» A node with a deterministic token is activatable @ Deterministic
» An activated node passes the deterministic token, ﬁ
and (if it has it) the probabilistic token with
probability §
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(O Probabilistic \—LLLLL (O Probabilistic

@ Deterministic @ Deterministic \y
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O Probabilistic O Probabilistic

@ Deterministic @ Deterministic

Self-stabilization Hypothesis Composition Proof Techniques Conclusion Self-stabilization Hypothesis Composition Proof Techniques Conclusion

00000080 000000e0

Example Example

(O Probabilistic O Probabilistic

@ Deterministic @ Deterministic ANNNNNY
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(O Probabilistic O Probabilistic

@ Deterministic @ Deterministic
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O Probabilistic
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Example

» Al, composed with Al; solves the self-stabilizing
mutual exclusion problem with an arbitrary
distributed deamon (H;)

» Al, composed with Al; does not solve a more
complex problem, but handles less restrictive
hypothesis

Conclusion

Conclusion

Conclusion
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@ Deterministic
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@ Deterministic
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Transfer Function

Basic Idea
» C]*}C2*>C3*>C4H---

» FP(cy) > FP(cy) > FP(c3) > ... > FP(c¢;) = bound

‘}Cf

» Used to prove convergence

» Can be used to compute the number of steps to reach
a legitimate configuration
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Configurations
“ A
Correct
Bound
Time
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Transfer Function

Configurations
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Correct
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Convergence stairs

» A;is a predicate
> Ay is legitimate
» For any i between 1 and k, A;; is a refinement of A;
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Self-stabilization

Pros

» The network need not be initialized

» When a fault is diagnosed, it is sufficient to identify,
then remove or restart the faulty components

» The self-stabilization property does not depend on
the nature of the fault

» The self-stabilization property does not depend on
the extent of the fault
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Self-stabilization

Cons
» “Eventually” does not give any bound on the
stabilization time
» A single failure may trigger a correcting action at
every node in the network
» Faults must be sufficiently rare that they can be
considered are transient

» Nodes never know whether the system is stabilized
or not



