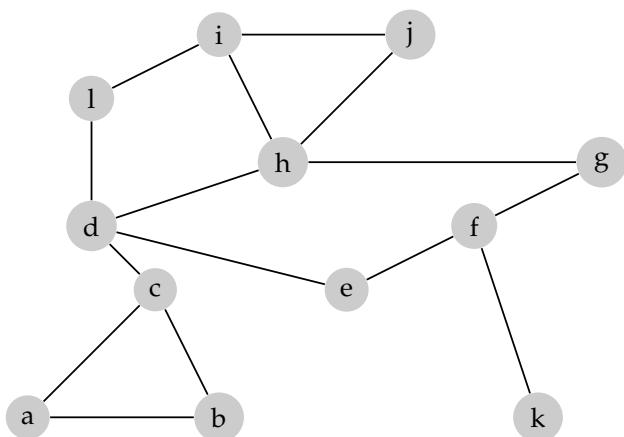
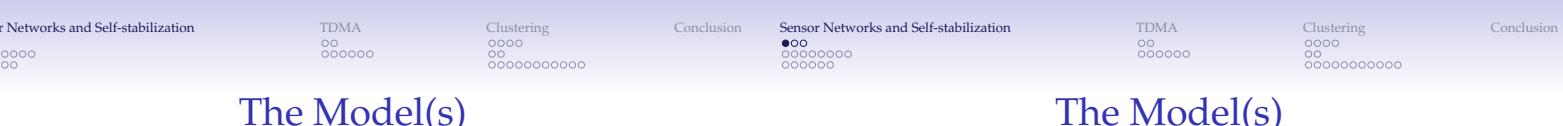
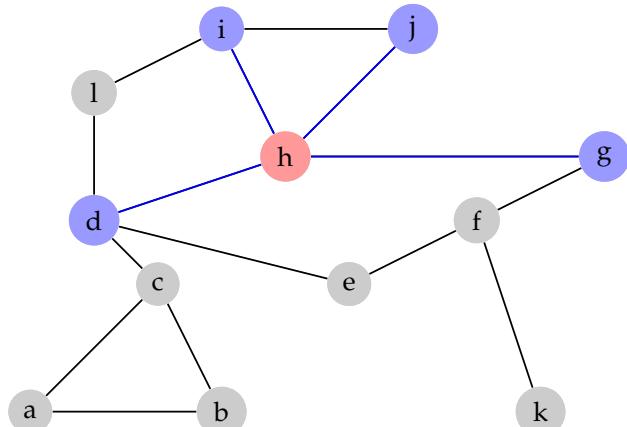
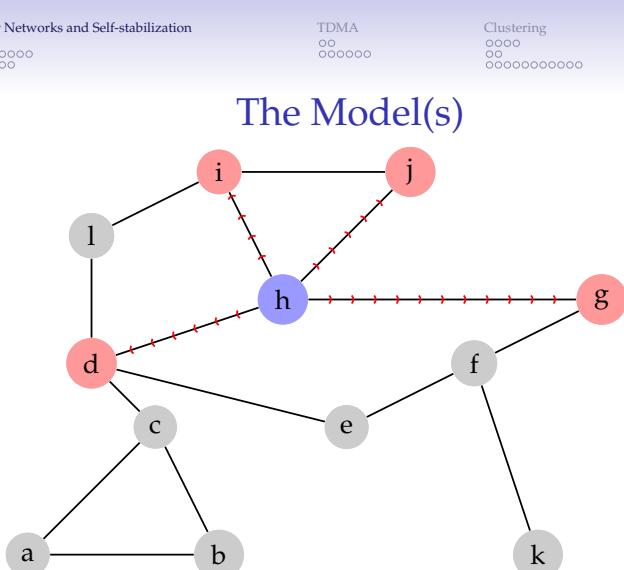
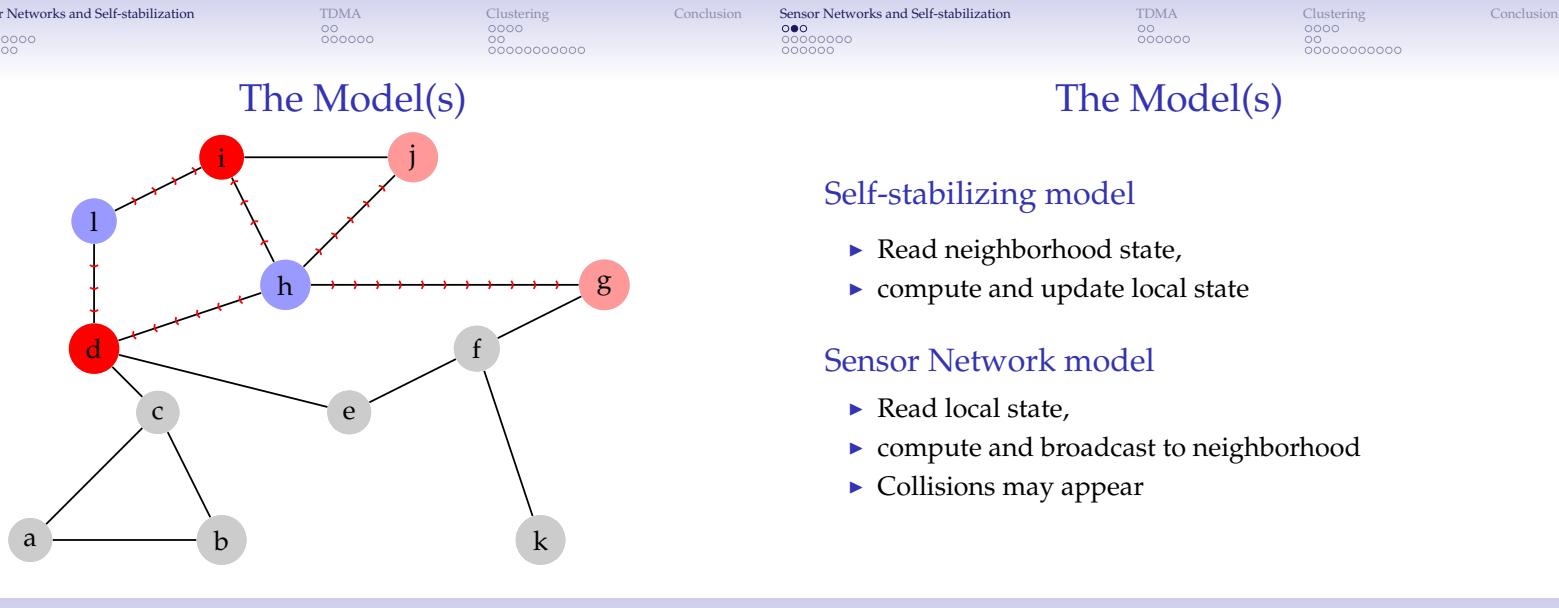


- ▶ only one radio frequency
- ▶ no collision detect
- ▶ access technique: CSMA/CA
- ▶ use CRC to detect collision
- ▶ no directional send/receive
- ▶ msg. are small (30 bytes)
- ▶ radio range about 1 meter
- ▶ number of neighbors < 10
- ▶ could be large number of nodes (perhaps > 100000)
- ▶ unique node IDs (probably)
- ▶ cost a few \$ (someday)
- ▶ slow processor (4 MHz)
- ▶ limited memory (4 KB RAM)
- ▶ item nodes have real-time clocks \equiv drift between 1 msec and 100 msec per second
- ▶ several power modes available





Self-stabilization in Sensor Networks

Transform (i.e. Simulate) the self-stabilizing model into the sensor networks model

- ▶ Pros: reuse existing SS algorithms
- ▶ Cons: potentially inefficient, overhead

Design self-stabilizing algorithms for the sensor networks model

- ▶ Pros: potentially efficient
- ▶ Cons: ignore previous SS work

Self-stabilization in Sensor Networks

Transform (i.e. Simulate) the self-stabilizing model into the sensor networks model

- ▶ Pros: reuse existing SS algorithms
- ▶ Cons: potentially inefficient, overhead
- ▶ [Herman 03] Cached Sensornet Transform

Design self-stabilizing algorithms for the sensor networks model

- ▶ Pros: potentially efficient
- ▶ Cons: ignore previous SS work
- ▶ [Herman 03] Unison with collisions

Self-stabilization in Sensor Networks Cached Sensornet Transform

Basic Algorithm

- ▶ Each node p has a variable v_p
- ▶ Each neighbor q of p has a variable $c_q v_p$
 - ▶ $c_q v_p$ is the cached value of v_p at q
- ▶ Whenever p assigns v_p , p also broadcasts the new value to the neighborhood
- ▶ Whenever a neighbor q of p receives v_p , q updates $c_q v_p$ accordingly

Definition (Cache coherence)

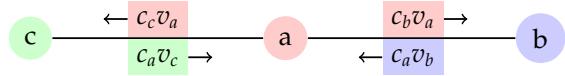
For all neighbors p and q , $c_q v_p = v_p$

Lemma (Closure)

If started from a cache coherent state, and without collisions, the self-stabilizing model is simulated by replacing all occurrences of $c_q v_p$ by v_p

Lemma (Closure)

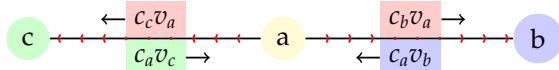
If started from a cache coherent state, and without collisions, the self-stabilizing model is simulated by replacing all occurrences of $c_q v_p$ by v_p



Example

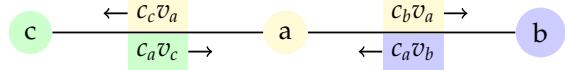
Lemma (Closure)

If started from a cache coherent state, and without collisions, the self-stabilizing model is simulated by replacing all occurrences of $c_q v_p$ by v_p



Lemma (Closure)

If started from a cache coherent state, and without collisions, the self-stabilizing model is simulated by replacing all occurrences of $c_q v_p$ by v_p



Cached Sensornet Transform

Example

Periodic retransmit

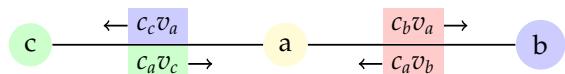
- ▶ Each node p periodically broadcasts v_p to its neighborhood

Lemma (Convergence)

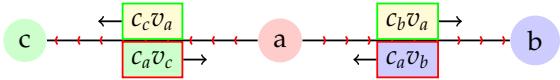
If started from an arbitrary state, and without collisions, a cache coherent state is eventually reached

Lemma (Convergence)

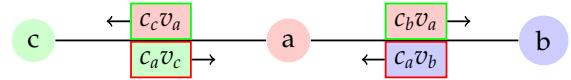
If started from an arbitrary state, and without collisions, a cache coherent state is eventually reached



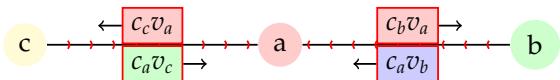
- If q receives v_p correctly, $b_q v_p$ becomes true
- $G \rightarrow A$ becomes
for all neighbors q of p , $b_p v_q$ and $G \rightarrow A$; for all neighbors q of p , $b_p v_q$ becomes false



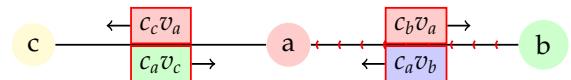
- If q receives v_p correctly, $b_q v_p$ becomes true
- $G \rightarrow A$ becomes
for all neighbors q of p , $b_p v_q$ and $G \rightarrow A$; for all neighbors q of p , $b_p v_q$ becomes false



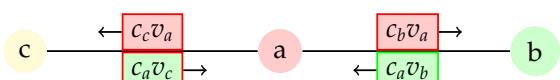
- If q receives v_p correctly, $b_q v_p$ becomes true
- $G \rightarrow A$ becomes
for all neighbors q of p , $b_p v_q$ and $G \rightarrow A$; for all neighbors q of p , $b_p v_q$ becomes false



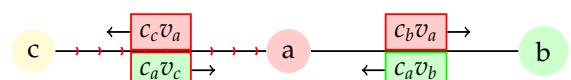
- If q receives v_p correctly, $b_q v_p$ becomes true
- $G \rightarrow A$ becomes
for all neighbors q of p , $b_p v_q$ and $G \rightarrow A$; for all neighbors q of p , $b_p v_q$ becomes false



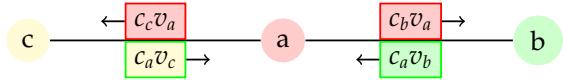
- If q receives v_p correctly, $b_q v_p$ becomes true
- $G \rightarrow A$ becomes
for all neighbors q of p , $b_p v_q$ and $G \rightarrow A$; for all neighbors q of p , $b_p v_q$ becomes false



- If q receives v_p correctly, $b_q v_p$ becomes true
- $G \rightarrow A$ becomes
for all neighbors q of p , $b_p v_q$ and $G \rightarrow A$; for all neighbors q of p , $b_p v_q$ becomes false



- If q receives v_p correctly, $b_q v_p$ becomes true
- $G \rightarrow A$ becomes
for all neighbors q of p , $b_p v_q$ and $G \rightarrow A$; for all neighbors q of p , $b_p v_q$ becomes false



Periodic Retransmit

Message Corruption

Lemma (Self-stabilization)

If started from an arbitrary state, the self-stabilizing model is eventually simulated

Self-stabilizing Unison

Self-stabilizing Unison

Specification

- ▶ Each node p has a clock variable v_p
- ▶ For every neighbors p and q , $|v_p - v_q| \leq 1$

Specification

- ▶ Each node p has a clock variable v_p
- ▶ For every neighbors p and q , $|v_p - v_q| \leq 1$

Self-stabilizing Unison

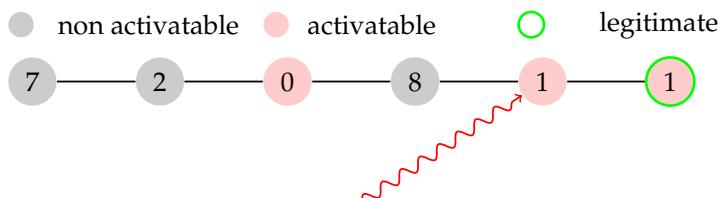
- ▶ for every neighbor q , $v_q \geq v_p \rightarrow v_p := v_p + 1$

Example

Example

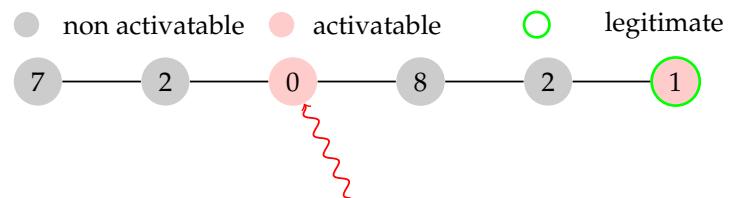
Self-stabilizing Unison

- ▶ for every neighbor q , $v_q \geq v_p \rightarrow v_p := v_p + 1$



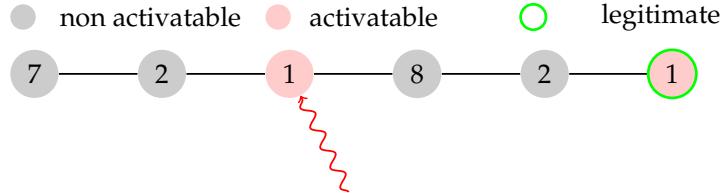
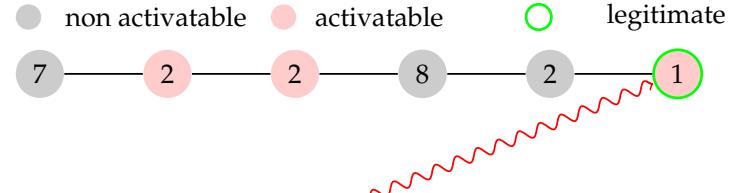
Self-stabilizing Unison

- ▶ for every neighbor q , $v_q \geq v_p \rightarrow v_p := v_p + 1$



Self-stabilizing Unison

- ▶ for every neighbor q , $v_q \geq v_p \rightarrow v_p := v_p + 1$

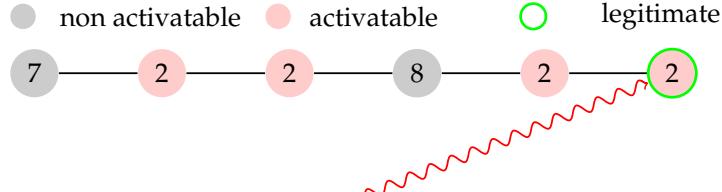
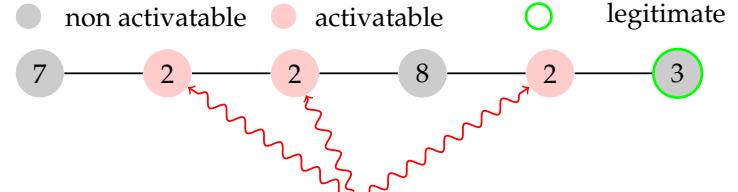


Networks and Self-stabilization

TDMA
○○
○○○○○○

Self-stabilizing Unison

- ▶ for every neighbor q , $v_q \geq v_p \rightarrow v_p := v_p + 1$

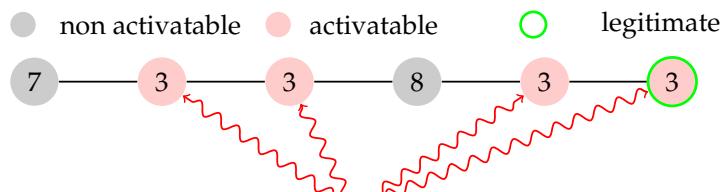
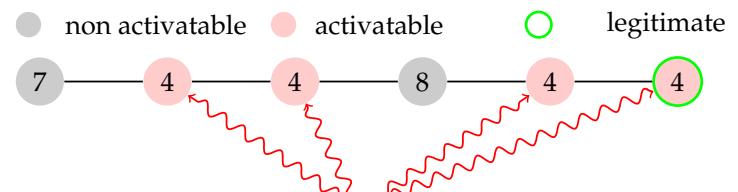


Sensor Networks and Self-stabilization

TDMA
○○
○○○○○○

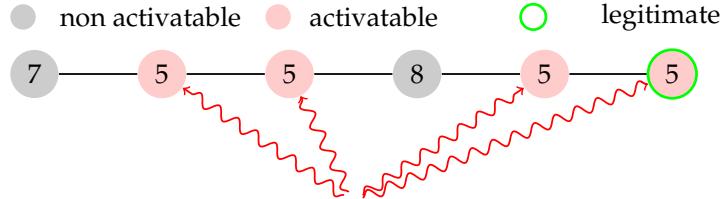
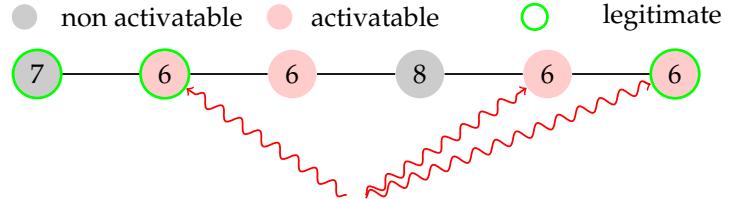
Self-stabilizing Unison

- ▶ for every neighbor q , $v_q \geq v_p \rightarrow v_p := v_p + 1$



Self-stabilizing Unison

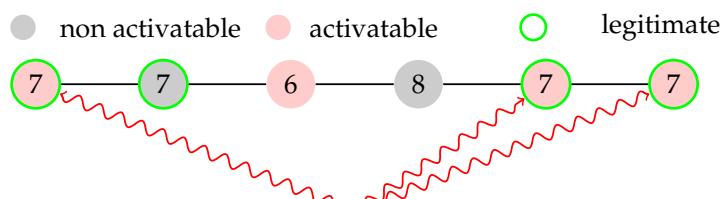
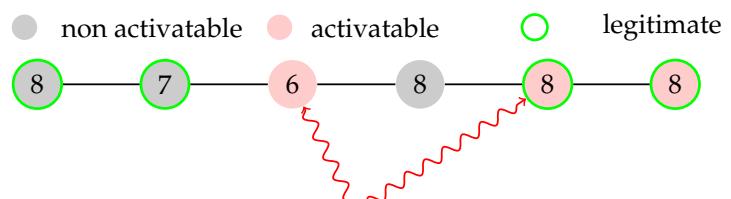
- ▶ for every neighbor q , $v_q \geq v_p \rightarrow v_p := v_p + 1$



Networks and Self-stabilization

TDMA
○○
○○○○○○

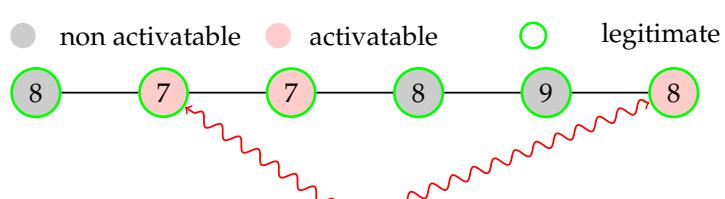
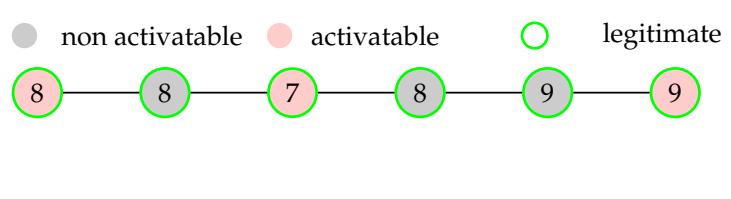
- ▶ for every neighbor q , $v_a \geq v_p \rightarrow v_p := v_p + 1$



Sensor Networks and Self-stabilization

TDMA
○○
○○○○○

Self-stabilizing Unison



Specification

- ▶ Each node p has a clock variable v_p
- ▶ For every neighbors p and q , $|v_p - v_q| \leq 1$

Self-stabilizing Unison

- ▶ for every neighbor q , $v_q \geq v_p \rightarrow v_p := v_p + 1$

Classification

- ▶ Each node p has a clock variable v_p
- ▶ For every neighbors p and q , $|v_p - v_q| \leq 1$

Self-stabilizing Unison with Collisions

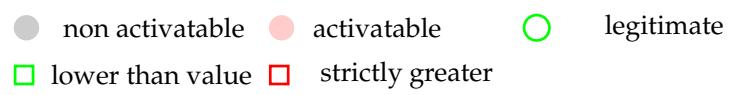
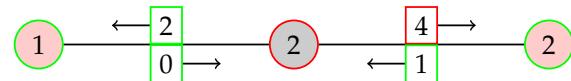
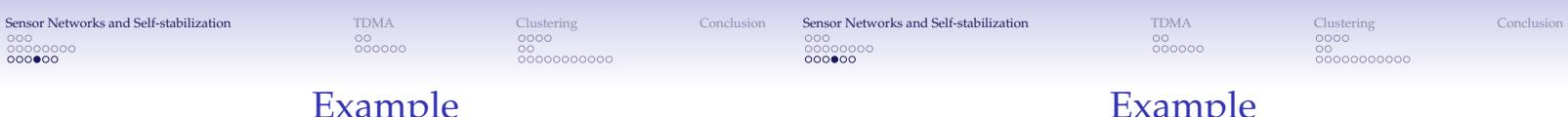
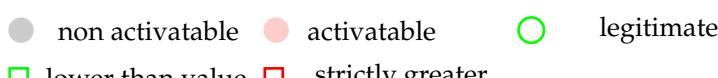
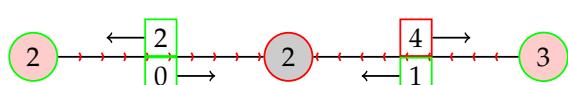
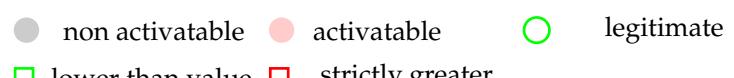
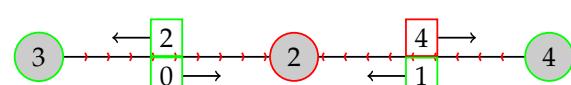
- ▶ for every neighbor q , $c_p v_q \geq v_p \rightarrow v_p := v_p + 1$

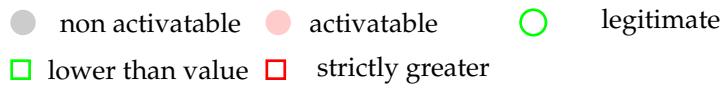
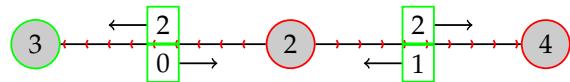
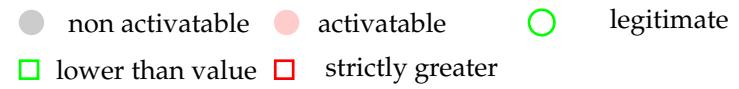
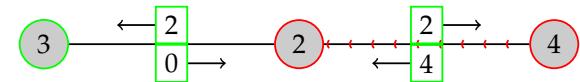
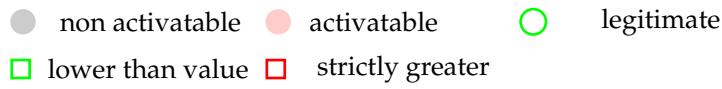
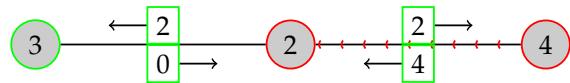
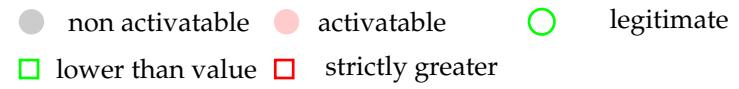
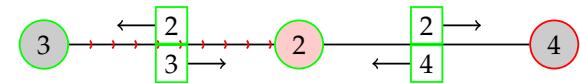
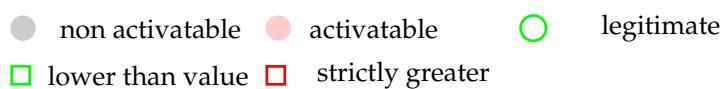
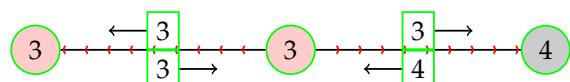
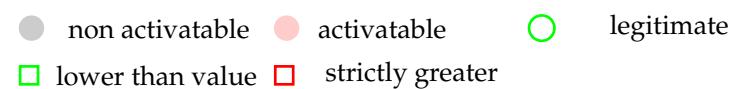
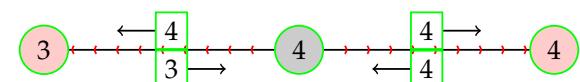
Specification

- ▶ Each node p has a clock variable v_p
- ▶ For every neighbors p and q , $|v_p - v_q| \leq 1$

Self-stabilizing Unison with Collisions

- for every neighbor q , $c_p v_q \geq v_p \rightarrow v_p := v_p + 1$
- Only correctly received messages update cached variables





Unison with Collisions

Cache coherence weakening

- For every neighbors p and q , $c_p v_q \leq v_q$

Self-stabilizing Unison with collisions

- Unison and Weak cache coherence are preserved by program executions
- Unison and Weak cache coherence eventually hold
- Some extra work is expected to get bounded clock values

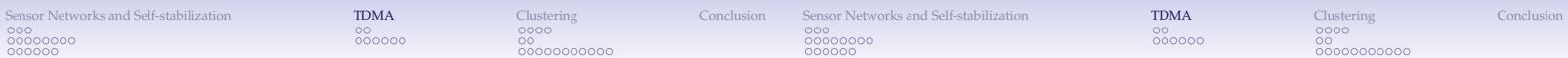
Self-stabilization in Sensor Networks

Transform (i.e. Simulate) the self-stabilizing model into the sensor networks model

- [Herman 03] Cached Sensornet Transform
- Overhead is not upper bounded

Design self-stabilizing algorithms for the sensor networks model

- [Herman 03] Unison with collisions
- Proof in the model is specific to the problem



Outline

Sensor Networks and Self-stabilization

- Model(s)
- Cached Sensornet
- Self-stabilizing Unison

TDMA

- Motivation
- Algorithm stack

Clustering

- Density
- Self-stabilizing Clustering
- Simulation Results

Conclusion

Towards an Intermediate Model

An atomic step at a node

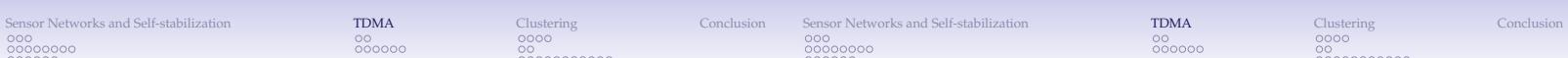
- Compute new state, write new state at all neighbors (no collision)

Hypothesis

- Global clock, unique IDs

Solution

- TDMA to avoid collisions

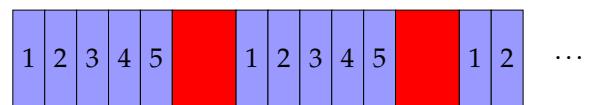


Towards an Intermediate Model

Solution

- TDMA to avoid collisions
- assume synchronised, real-time clocks (to enable TDMA slotted time)
- but TDMA implemented using CSMA/CA as basic, underlying model

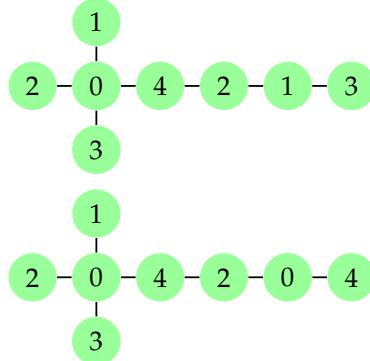
TDMA Scheduling



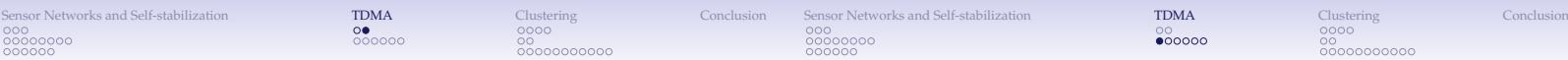
- Algorithm messages are transmitted during the "overhead" periods
- TDMA slot assignment is the output of our algorithm

Self-stabilizing TDMA for Sensors

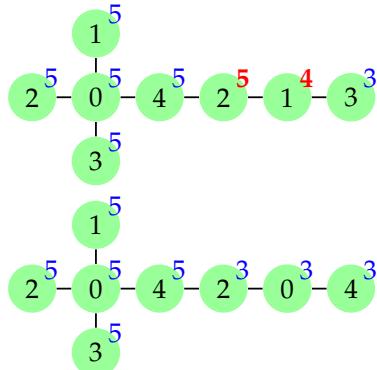
- ▶ [Kulkarni, Arumugam 03] 2-D Grids
 - ▶ nodes are aware of their positions
 - ▶ Not suitable for dynamic/faulty networks
- ▶ [Herman, Tixeuil 04] General graphs of bounded degree
 - ▶ Randomized algorithm, self-stabilizing in expected $O(1)$ time, to assign TDMA slots
 - ▶ Solution is a protocol stack based on variable propagation, minimal coloring of N^2 , MIS construction, and mapping colors \leftrightarrow TDMA slots



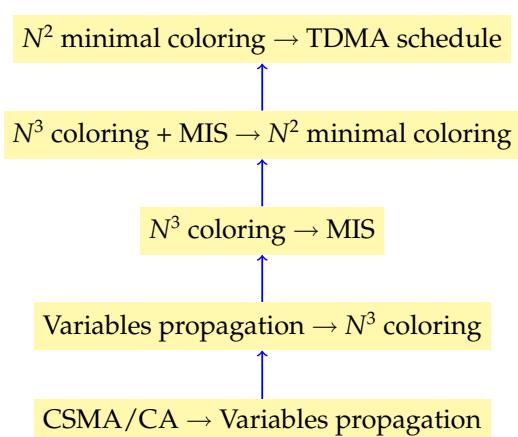
- ▶ both are minimal,
- ▶ but second solution is better for time-slot assignment



Example



- ▶ both are minimal,
- ▶ but second solution is better for time-slot assignment



CSMA/CA → Variables propagation

- ▶ Wait fixed delay
 - ▶ to process received messages, and update local variables
- ▶ Wait random delay
 - ▶ to allow Aloha-style analysis for probability of collisions among neighbors
- ▶ “Age” information to remove invalid data

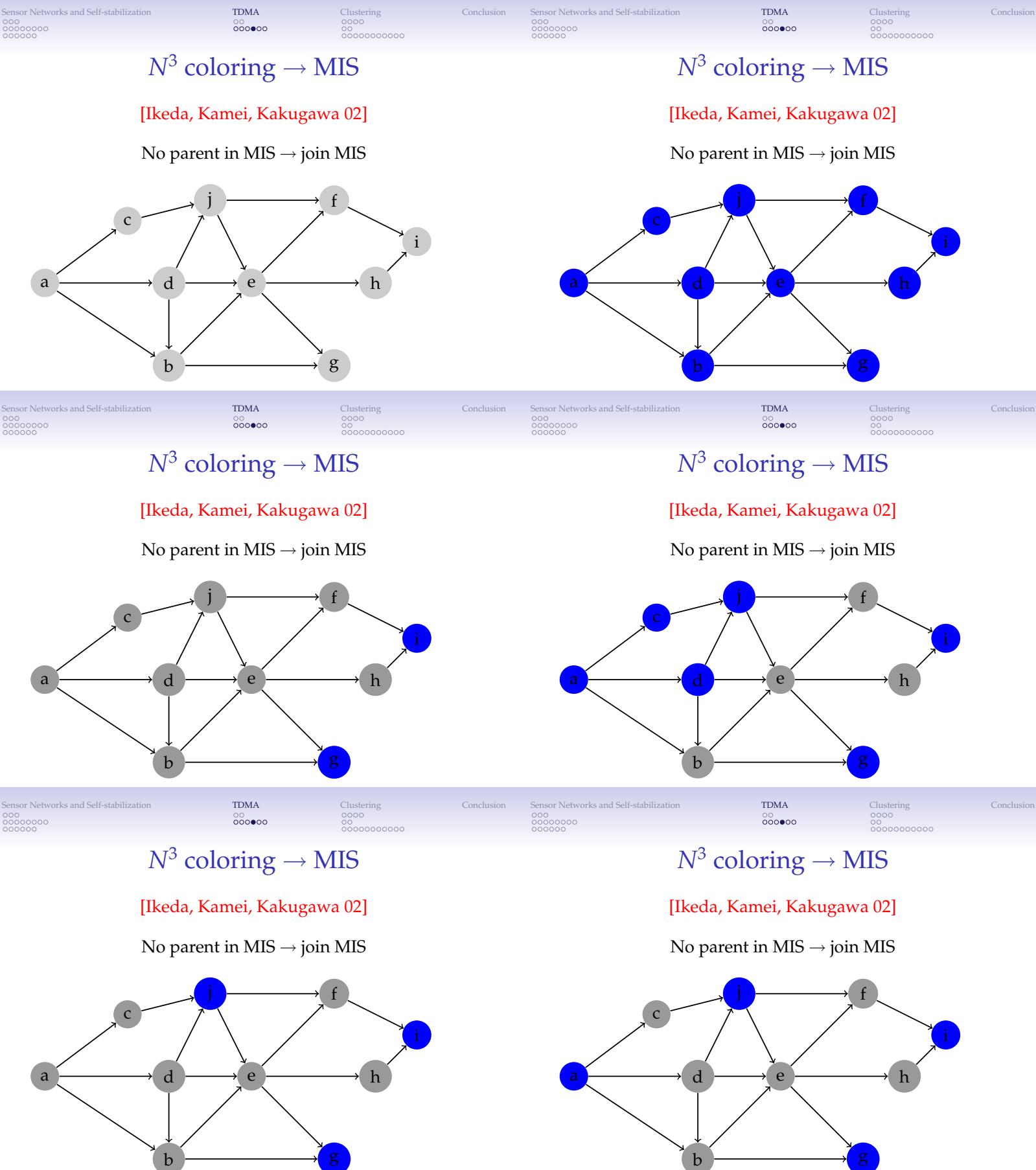
Shared variables $\rightarrow N^3$ coloring

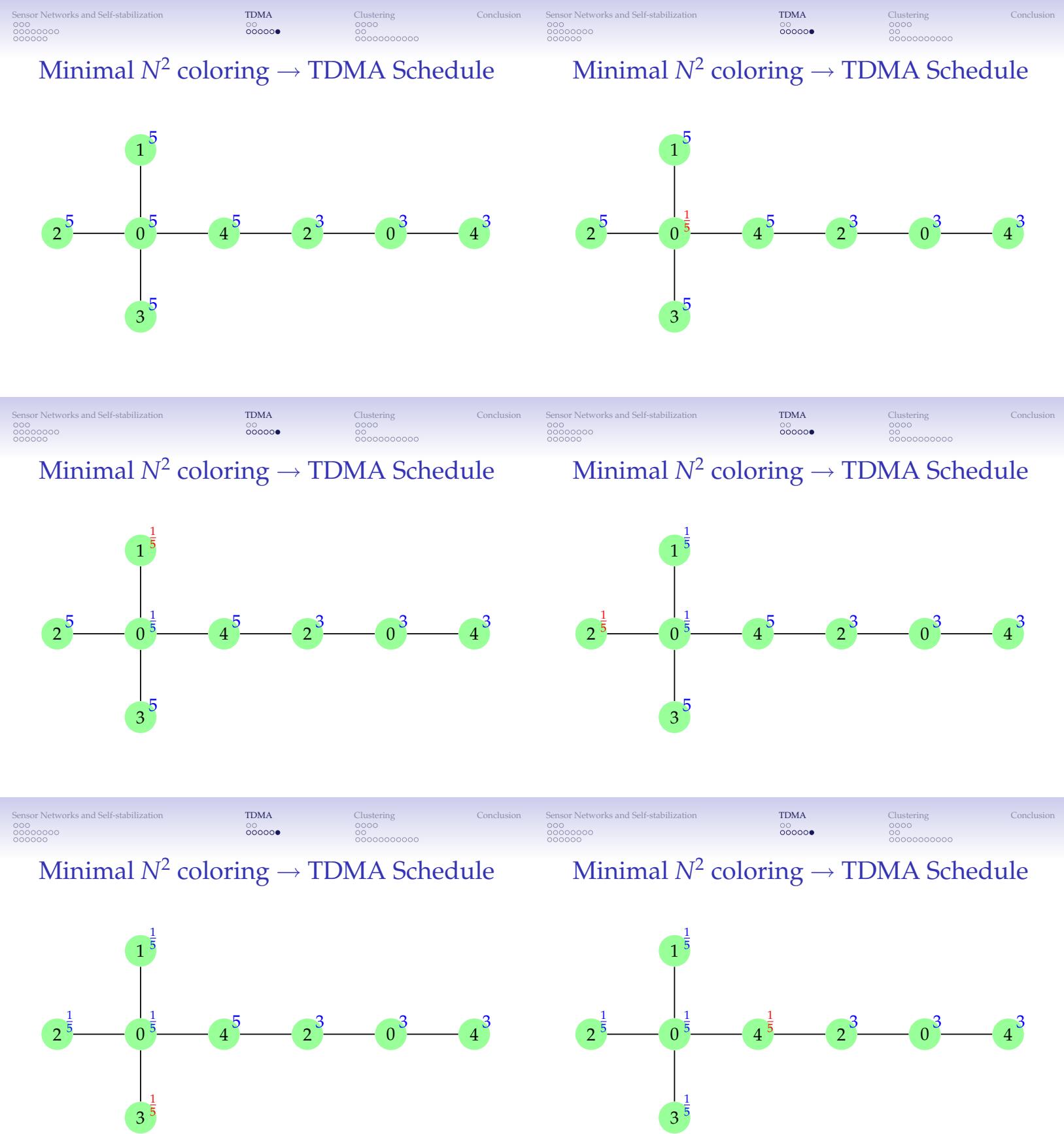
- ▶ [Ghosh, Karaata 93] Planar graphs L(1,0)
- ▶ [Sur, Srimani 93] Bipartite graphs L(1,0)
- ▶ [Gradinariu, Tixeuil 00] General graphs L(1,0)
- ▶ [Gradinariu, Johnen 01] Colors of size n^2 L(1,1)

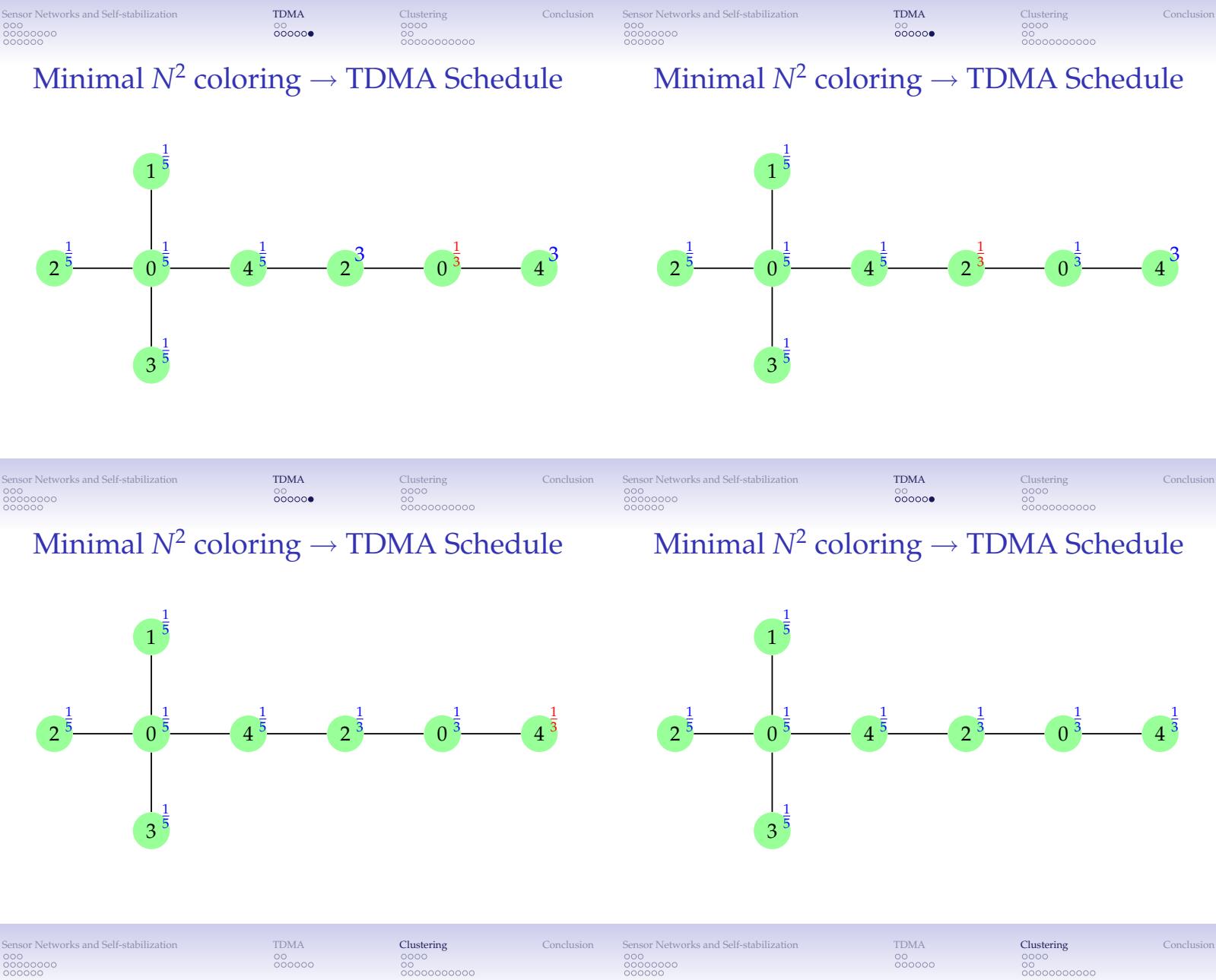
Our algorithm

$$\exists j \in N_i^3, \text{color}_j = \text{color}_i \rightarrow \text{color}_i := \text{random}(\Delta \setminus \{\text{color}_j | j \in N_i^3\})$$

- ▶ Stabilizes in expected $O(1)$
- ▶ Output an ID-based DAG of constant height







Outline

Model(s)

Cached Sensorsnet

Self-stabilizing Unison

TDMA

Motivation

Algorithm stack

Clustering

Density

Self-stabilizing Clustering

Simulation Results

Motivation

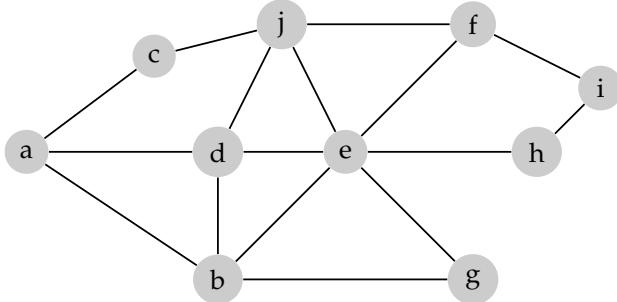
Clusters for routing

MANET routing protocols are flat, thus not scalable
Cluster-heads have extra responsibility for the routing of message

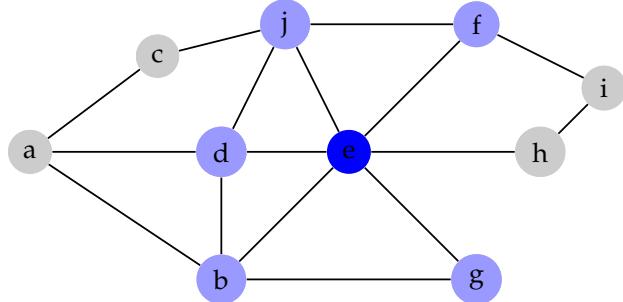
Cluster-heads should be stable

Handle departures and removals Handle node mobility

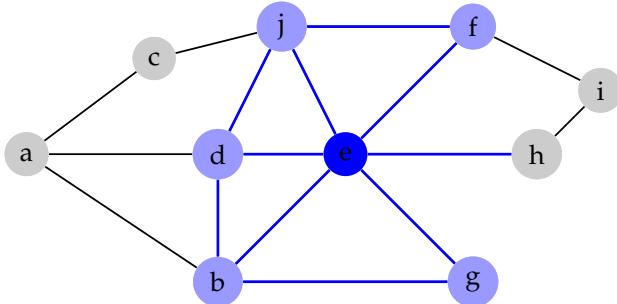
$$\rho(u) = \frac{|\{e = (v, w) \in E \mid w \in \{u\} \cup N_u \text{ and } v \in N_u\}|}{|N_u|}$$



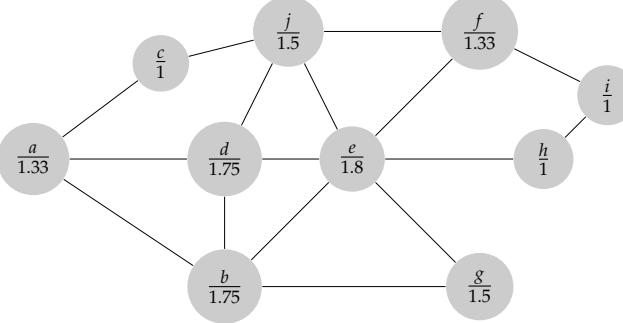
$$\rho(u) = \frac{| \{e = (v, w) \in E \mid w \in \{u\} \cup N_u \text{ and } v \in N_u\} |}{|N_u|}$$



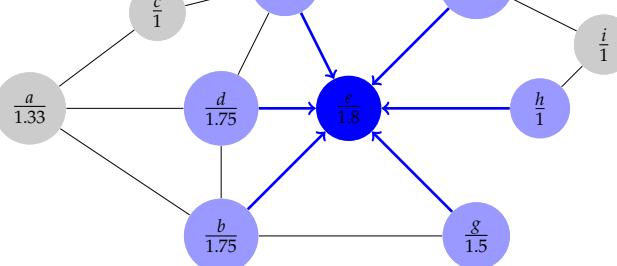
$$\rho(u) = \frac{|\{e = (v, w) \in E \mid w \in \{u\} \cup N_u \text{ and } v \in N_u\}|}{|N_u|}$$



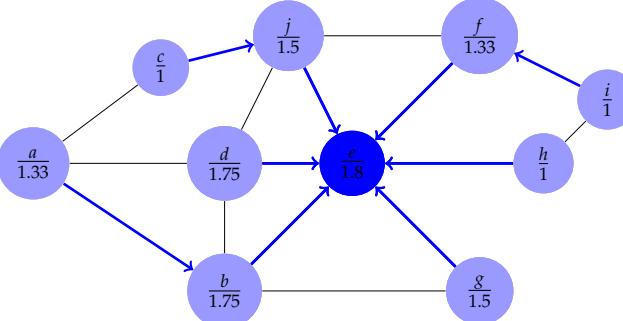
$$c \quad \frac{j}{1.5} \quad \frac{f}{1.33}$$



i *f*

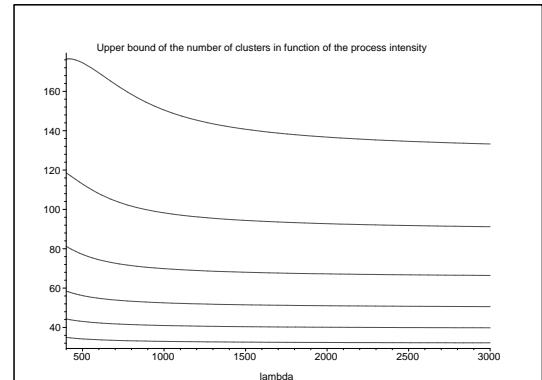
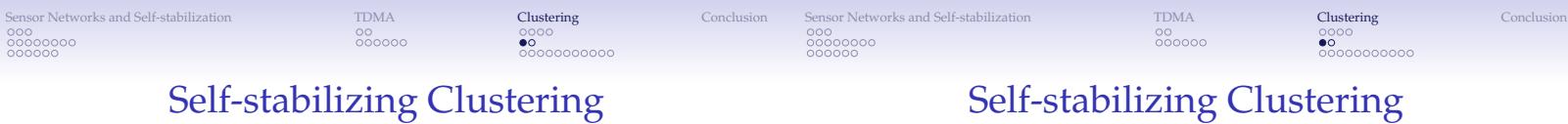


i *f*



- Using stochastic geometry, it is possible to calculate the mean density, and then upper bound the number of cluster-heads

$$\begin{aligned} & \mathbb{P}_{\Phi}^o \left(\rho(0) > \max_{k=1, \dots, \Phi(B_0)} \rho(Y_k) \right) \\ & \leq \left(1 + \sum_{n=1}^{+\infty} \frac{1}{n} \frac{(\lambda \pi R^2)^n}{n!} \right) \exp \{ -\lambda \pi R^2 \} \end{aligned}$$



Self-stabilizing Clustering

Self-stabilizing Clustering

Basic Idea

- ▶ Identify N and N^2
- ▶ Compute and broadcast density
- ▶ Attach to neighbor with higher density
- ▶ use identifiers to break ties

Basic Idea

- ▶ Identify N and N^2
- ▶ Compute and broadcast density
- ▶ Attach to neighbor with higher density
- ▶ use identifiers to break ties
- ▶ **Can be $O(\text{Diameter})$ if graph is regular**

Faster Self-stabilizing Clustering

Faster Self-stabilizing Clustering

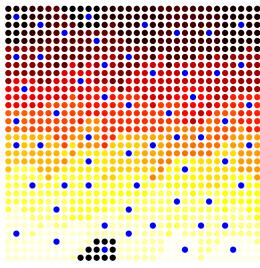
Basic Idea

- ▶ Identify N and N^2
- ▶ Compute and broadcast density
- ▶ Random $L(1, 1)$ coloring with δ^2 colors
 - ▶ This can be done in expected $O(1)$ time
- ▶ Attach to neighbor with higher density
- ▶ use **colors** to break ties

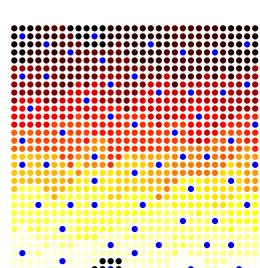
Basic Idea

- ▶ Identify N and N^2
- ▶ Compute and broadcast density
- ▶ Random $L(1, 1)$ coloring with δ^2 colors
 - ▶ This can be done in expected $O(1)$ time
- ▶ Attach to neighbor with higher density
- ▶ use **colors** to break ties
- ▶ **Expected constant stabilization time**
- ▶ Use lexicographic order (density, color)

Simulation Results

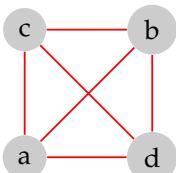


$R = 0.05$		$R = 0.08$		$R = 0.1$	
With DAG	No DAG	With DAG	No DAG	With DAG	No DAG
61.0	61.4	19.2	19.5	11.7	11.7
2.6	2.6	3.1	3.1	3.2	3.2
2.7	2.7	3.3	3.3	3.5	3.5

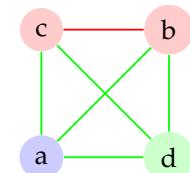


	$R = 0.05$		$R = 0.08$		$R = 0.1$	
	With DAG	No DAG	With DAG	No DAG	With DAG	No DAG
# clusters	52.8	1.0	29.3	1.0	18.5	1.0
$\bar{c}(\mathcal{H}(u)/\mathcal{C}(u))$	3.4	29.1	4.1	19.1	3.6	6.5

How fast is the coloring?

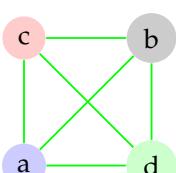


4 0 0 0



0 1 2 1

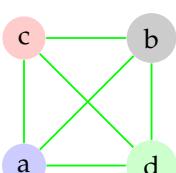
How fast is the coloring?



1 1 1 1

How fast is the coloring?

Model Urns and balls



1 1 1 1

Model Urns and balls

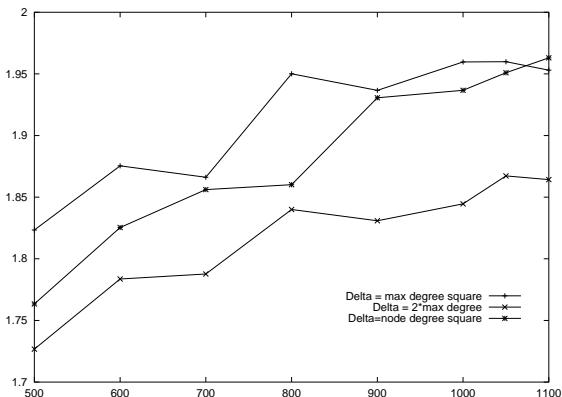
Expected stabilization time

$$\mathbb{E}[N] = V_0$$

$$V_i = \frac{1}{1-p_{i,i}} \left(1 + \sum_{j=i+1}^{L-1} p_{i,j} V_j \right) \text{ for } i = L-2, \dots, 0$$

with $V_{L-1,L-1} = 1/(1 - p_{L-1,L-1})$.

Influence of the color domain



Improving Stability

Random moves at random speeds

- ▶ Observe every 15 seconds for 2 minutes

Pedestrians (0-1.6 m/s)

- ▶ Original algorithm: 78% re-election
- ▶ “Stable enhanced” algorithm: 82% re-election

Cars (0-10 m/s)

- ▶ Original algorithm: 25% re-election
- ▶ “Stable enhanced” algorithm: 31% re-election

Conclusion

Sensors in Action

- ▶ Self-stabilization is interesting for sensor networks
 - ▶ Known SS solutions should be implemented in sensor networks
- ▶ Sensor networks are interesting for self-stabilization
 - ▶ Simple devices
 - ▶ Small operating system
- ▶ Energy constraints and collisions make things complicated

Launch Movie