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Sensor Networks
I processor + sensors + radio
I 2 AA batteries, on/off switch
I 3 LEDs for debugging
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Sensor Networks

While (batteries supply power)

I Collect, aggregate and reduce data
I log into memory

In spite of numerous fault modes

I Permanent sensor failures, node failures
I restarts, radio failures
I transient faults, reconfigurations
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Distributed Systems

Definition (Classical System, a.k.a. Non
stabilizing)
Starting from a particular initial configuration, the system
immediately exhibits correct behavior.

Definition (Self-stabilizing System)
Starting from any initial configuration, the system
eventually reaches a configuration from with its behavior
is correct.

I Self-stabilization permits to recover from transient
failures
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Self-stabilization

“Correct”

Time

Configurations

Stabilization Time
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Complexity Criteria

Maximize useful lifetime of system
I “maximise useful”: correct quickly from illegitimate

state
I Self-stabilization, scalability

I “maximise lifetime”: use minimal energy to preserve
batteries

I local vs. global preserving
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System Specifics

I only one radio frequency

I no collision detect

I access technique: CSMA/CA

I use CRC to detect collision

I no directional send/receive

I msg. are small (30 bytes)

I radio range about 1 meter

I number of neighbors < 10

I could be large number of
nodes (perhaps > 100000)

I unique node IDs (probably)

I cost a few $ (someday)

I slow processor (4 MHz)

I limited memory (4 KB RAM)

I item nodes have real-time
clocks ≡ drift between 1
msec and 100 msec per
second

I several power modes
available
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The Model(s)

a b

c

d

e

f

gh

i j

k

l

a b

c

d

e

f

gh

i j

k

l

a b

c

d

e

f

gh

i j

k

l

a b

c

d

e

f

gh

i j

k

l

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

The Model(s)

a b

c

d

e

f

gh

i j

k

l

a b

c

d

e

f

gh

i j

k

l

a b

c

d

e

f

gh

i j

k

l

a b

c

d

e

f

gh

i j

k

l

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

The Model(s)

a b

c

d

e

f

gh

i j

k

l

a b

c

d

e

f

gh

i j

k

l

a b

c

d

e

f

gh

i j

k

l

a b

c

d

e

f

gh

i j

k

l



Sensor Networks and Self-stabilization TDMA Clustering Conclusion

The Model(s)

a b

c

d

e

f

gh

i j

k

l

a b

c

d

e

f

gh

i j

k

l

a b

c

d

e

f

gh

i j

k

l

a b

c

d

e

f

gh

i j

k

l

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

The Model(s)

Self-stabilizing model

I Read neighborhood state,
I compute and update local state

Sensor Network model
I Read local state,
I compute and broadcast to neighborhood
I Collisions may appear
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Self-stabilization in Sensor Networks
Transform (i.e. Simulate) the self-stabilizing
model into the sensor networks model

I Pros: reuse existing SS algorithms
I Cons: potentially inefficient, overhead

I [Herman 03] Cached Sensornet Transform

Design self-stabilizing algorithms for the sensor
networks model

I Pros: potentially efficient
I Cons: ignore previous SS work

I [Herman 03] Unison with collisions
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Cached Sensornet Transform

Basic Algorithm

I Each node p has a variable vp

I Each neighbor q of p has a variable cqvp
I cqvp is the cached value of vp at q

I Whenever p assigns vp, p also broadcasts the new
value to the neighborhood

I Whenever a neighbor q of p receives vp, q updates cqvp

accordingly
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Cached Sensornet Transform

Definition (Cache coherence)
For all neighbors p and q, cqvp = vp

Lemma (Closure)
If started from a cache coherent state, and without collisions,
the self-stabilizing model is simulated by replacing all
occurrences of cqvp by vp

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Example

Lemma (Closure)
If started from a cache coherent state, and without collisions,
the self-stabilizing model is simulated by replacing all
occurrences of cqvp by vp

a bc
cbva

cavb

ccva

cavc
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Cached Sensornet Transform

Periodic retransmit
I Each node p periodically broadcasts vp to its

neighborhood

Lemma (Convergence)
If started from an arbitrary state, and without collisions, a
cache coherent state is eventually reached
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Cached Sensornet Transform

Message Corruption

I Each neighbor q of p has a Boolean variable bqvp

I If q receives vp correctly, bqvp becomes true
I G→ A becomes

for all neighbors q of p, bpvq and G→
A; for all neighbors q of p, bpvq becomes false
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Example
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Cached Sensornet Transform

Periodic Retransmit

Message Corruption

Lemma (Self-stabilization)
If started from an arbitrary state, the self-stabilizing model is
eventually simulated
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Self-stabilizing Unison

Specification

I Each node p has a clock variable vp

I For every neighbors p and q, |vp − vq| 6 1

Self-stabilizing Unison

I for every neighbor q, vq > vp → vp := vp + 1
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Example

Self-stabilizing Unison

I for every neighbor q, vq > vp → vp := vp + 1

non activatable activatable legitimate

7 2 0 8 1 1
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Example

Self-stabilizing Unison

I for every neighbor q, vq > vp → vp := vp + 1
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7 2 0 8 2 1



Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Example

Self-stabilizing Unison

I for every neighbor q, vq > vp → vp := vp + 1

non activatable activatable legitimate

7 2 1 8 2 1

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Example

Self-stabilizing Unison

I for every neighbor q, vq > vp → vp := vp + 1

non activatable activatable legitimate

7 2 2 8 2 1

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Example

Self-stabilizing Unison

I for every neighbor q, vq > vp → vp := vp + 1

non activatable activatable legitimate
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Example

Self-stabilizing Unison

I for every neighbor q, vq > vp → vp := vp + 1

non activatable activatable legitimate

7 2 2 8 2 3
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Example

Self-stabilizing Unison

I for every neighbor q, vq > vp → vp := vp + 1

non activatable activatable legitimate

7 3 3 8 3 3

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Example

Self-stabilizing Unison

I for every neighbor q, vq > vp → vp := vp + 1

non activatable activatable legitimate

7 4 4 8 4 4
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Example

Self-stabilizing Unison

I for every neighbor q, vq > vp → vp := vp + 1

non activatable activatable legitimate

7 5 5 8 5 5
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Example

Self-stabilizing Unison

I for every neighbor q, vq > vp → vp := vp + 1

non activatable activatable legitimate

7 6 6 8 6 6
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Example

Self-stabilizing Unison
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Example

Self-stabilizing Unison

I for every neighbor q, vq > vp → vp := vp + 1

non activatable activatable legitimate
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Example
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Unison with Collisions

Specification

I Each node p has a clock variable vp

I For every neighbors p and q, |vp − vq| 6 1

Self-stabilizing Unison

with Collisions

I for every neighbor q, vq > vp → vp := vp + 1

I for every neighbor q, cpvq > vp → vp := vp + 1
I Only correctly received messages update cached

variables
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Example

non activatable activatable legitimate

lower than value strictly greater

2 21
4
1

2
0
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Example

non activatable activatable legitimate
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4
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2
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Example

non activatable activatable legitimate

lower than value strictly greater

2 43
4
1

2
0
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Example

non activatable activatable legitimate
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Example

non activatable activatable legitimate

lower than value strictly greater
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Unison with Collisions

Cache coherence weakening

I For every neighbors p and q, cpvq 6 vq

Self-stabilizing Unison with collisions

I Unison and Weak cache coherence are preserved by
program executions

I Unison and Weak cache coherence eventually hold
I Some extra work is expected to get bounded clock

values
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Self-stabilization in Sensor Networks

Transform (i.e. Simulate) the self-stabilizing
model into the sensor networks model

I [Herman 03] Cached Sensornet Transform
I Overhead is not upper bounded

Design self-stabilizing algorithms for the sensor
networks model

I [Herman 03] Unison with collisions
I Proof in the model is specific to the problem
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Towards an Intermediate Model
An atomic step at a node

I Compute new state, write new state at all neighbors
(no collision)

Hypothesis

I Global clock, unique IDs

Solution
I TDMA to avoid collisions

I assume synchronised, real-time clocks (to enable
TDMA slotted time)

I but TDMA implemented using CSMA/CA as basic,
underlying model
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Solution
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I assume synchronised, real-time clocks (to enable
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TDMA Scheduling

1 2 3 4 5 1 2 3 4 5 1 2 . . .

I Algorithm messages are transmitted during the
“overhead” periods

I TDMA slot assignment is the output of our algorithm
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Self-stabilizing TDMA for Sensors

I [Kulkarni, Arumugam 03] 2-D Grids
I nodes are aware of their positions
I Not suitable for dynamic/faulty networks

I [Herman,Tixeuil 04] General graphs of bounded
degree

I Randomized algorithm, self-stabilizing in expected
O(1) time, to assign TDMA slots

I Solution is a protocol stack based on variable
propagation, minimal coloring of N2, MIS
construction, and mapping colors↔ TDMA slots
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Example
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I both are minimal,
I but second

solution is better
for time-slot
assignment
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Overview
N2 minimal coloring→ TDMA schedule

N3 coloring + MIS→ N2 minimal coloring

N3 coloring→MIS

Variables propagation→ N3 coloring

CSMA/CA→ Variables propagation
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CSMA/CA→ Variables propagation

I Wait fixed delay
I to process received messages, and update local

variables
I Wait random delay

I to allow Aloha-style analysis for probability of
collisions among neighbors

I “Age” information to remove invalid data
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Shared variables→ N3 coloring
Previous L(1,0)& L(1,1) Coloring

I [Ghosh, Karaata 93] Planar graphs L(1,0)
I [Sur, Srimani 93] Bipartite graphs L(1,0)
I [Gradinariu,Tixeuil 00] General graphs L(1,0)
I [Gradinariu, Johnen 01] Colors of size n2 L(1,1)

Our algorithm
∃j ∈ N3

i , colorj = colori → colori := random(∆ \ {colorj|j ∈
N3

i })

I Stabilizes in expected O(1)

I Output an ID-based DAG of constant height
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N3 coloring→MIS

[Ikeda, Kamei, Kakugawa 02]

No parent in MIS→ join MIS
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N3 coloring + MIS→Minimal N2 coloring

MIS→ send colors to dominated nodes
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Minimal N2 coloring→ TDMA Schedule
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Minimal N2 coloring→ TDMA Schedule

2 0

3

1

4 2 0 4
5 5

5

5

5 3 3 3

5 1
5

5

5

5 3 3 35 1
5

5

1
5

5 3 3 31
5

1
5

5

1
5

5 3 3 31
5

1
5

1
5

1
5

5 3 3 31
5

1
5

1
5

1
5

1
5 3 3 31

5
1
5

1
5

1
5

1
5 3 1

3 31
5

1
5

1
5

1
5

1
5

1
3

1
3 31

5
1
5

1
5

1
5

1
5

1
3

1
3

1
3

1
5

1
5

1
5

1
5

1
5

1
3

1
3

1
3

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Minimal N2 coloring→ TDMA Schedule

2 0

3

1

4 2 0 4

5 5

5

5

5 3 3 3

5 1
5

5

5

5 3 3 3

5 1
5

5

1
5

5 3 3 31
5

1
5

5

1
5

5 3 3 31
5

1
5

1
5

1
5

5 3 3 31
5

1
5

1
5

1
5

1
5 3 3 31

5
1
5

1
5

1
5

1
5 3 1

3 31
5

1
5

1
5

1
5

1
5

1
3

1
3 31

5
1
5

1
5

1
5

1
5

1
3

1
3

1
3

1
5

1
5

1
5

1
5

1
5

1
3

1
3

1
3

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Minimal N2 coloring→ TDMA Schedule

2 0

3

1

4 2 0 4

5 5

5

5

5 3 3 35 1
5

5

5

5 3 3 3

5 1
5

5

1
5

5 3 3 3

1
5

1
5

5

1
5

5 3 3 31
5

1
5

1
5

1
5

5 3 3 31
5

1
5

1
5

1
5

1
5 3 3 31

5
1
5

1
5

1
5

1
5 3 1

3 31
5

1
5

1
5

1
5

1
5

1
3

1
3 31

5
1
5

1
5

1
5

1
5

1
3

1
3

1
3

1
5

1
5

1
5

1
5

1
5

1
3

1
3

1
3

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Minimal N2 coloring→ TDMA Schedule

2 0

3

1

4 2 0 4

5 5

5

5

5 3 3 35 1
5

5

5

5 3 3 35 1
5

5

1
5

5 3 3 3

1
5

1
5

5

1
5

5 3 3 3

1
5

1
5

1
5

1
5

5 3 3 31
5

1
5

1
5

1
5

1
5 3 3 31

5
1
5

1
5

1
5

1
5 3 1

3 31
5

1
5

1
5

1
5

1
5

1
3

1
3 31

5
1
5

1
5

1
5

1
5

1
3

1
3

1
3

1
5

1
5

1
5

1
5

1
5

1
3

1
3

1
3

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Minimal N2 coloring→ TDMA Schedule

2 0

3

1

4 2 0 4

5 5

5

5

5 3 3 35 1
5

5

5

5 3 3 35 1
5

5

1
5

5 3 3 31
5

1
5

5

1
5

5 3 3 3

1
5

1
5

1
5

1
5

5 3 3 3

1
5

1
5

1
5

1
5

1
5 3 3 31

5
1
5

1
5

1
5

1
5 3 1

3 31
5

1
5

1
5

1
5

1
5

1
3

1
3 31

5
1
5

1
5

1
5

1
5

1
3

1
3

1
3

1
5

1
5

1
5

1
5

1
5

1
3

1
3

1
3

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Minimal N2 coloring→ TDMA Schedule

2 0

3

1

4 2 0 4

5 5

5

5

5 3 3 35 1
5

5

5

5 3 3 35 1
5

5

1
5

5 3 3 31
5

1
5

5

1
5

5 3 3 31
5

1
5

1
5

1
5

5 3 3 3

1
5

1
5

1
5

1
5

1
5 3 3 3

1
5

1
5

1
5

1
5

1
5 3 1

3 31
5

1
5

1
5

1
5

1
5

1
3

1
3 31

5
1
5

1
5

1
5

1
5

1
3

1
3

1
3

1
5

1
5

1
5

1
5

1
5

1
3

1
3

1
3



Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Minimal N2 coloring→ TDMA Schedule

2 0

3

1

4 2 0 4

5 5

5

5

5 3 3 35 1
5

5

5

5 3 3 35 1
5

5

1
5

5 3 3 31
5

1
5

5

1
5

5 3 3 31
5

1
5

1
5

1
5

5 3 3 31
5

1
5

1
5

1
5

1
5 3 3 3

1
5

1
5

1
5

1
5

1
5 3 1

3 3

1
5

1
5

1
5

1
5

1
5

1
3

1
3 31

5
1
5

1
5

1
5

1
5

1
3

1
3

1
3

1
5

1
5

1
5

1
5

1
5

1
3

1
3

1
3

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Minimal N2 coloring→ TDMA Schedule

2 0

3

1

4 2 0 4

5 5

5

5

5 3 3 35 1
5

5

5

5 3 3 35 1
5

5

1
5

5 3 3 31
5

1
5

5

1
5

5 3 3 31
5

1
5

1
5

1
5

5 3 3 31
5

1
5

1
5

1
5

1
5 3 3 31

5
1
5

1
5

1
5

1
5 3 1

3 3

1
5

1
5

1
5

1
5

1
5

1
3

1
3 3

1
5

1
5

1
5

1
5

1
5

1
3

1
3

1
3

1
5

1
5

1
5

1
5

1
5

1
3

1
3

1
3

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Minimal N2 coloring→ TDMA Schedule

2 0

3

1

4 2 0 4

5 5

5

5

5 3 3 35 1
5

5

5

5 3 3 35 1
5

5

1
5

5 3 3 31
5

1
5

5

1
5

5 3 3 31
5

1
5

1
5

1
5

5 3 3 31
5

1
5

1
5

1
5

1
5 3 3 31

5
1
5

1
5

1
5

1
5 3 1

3 31
5

1
5

1
5

1
5

1
5

1
3

1
3 3

1
5

1
5

1
5

1
5

1
5

1
3

1
3

1
3

1
5

1
5

1
5

1
5

1
5

1
3

1
3

1
3

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Minimal N2 coloring→ TDMA Schedule

2 0

3

1

4 2 0 4

5 5

5

5

5 3 3 35 1
5

5

5

5 3 3 35 1
5

5

1
5

5 3 3 31
5

1
5

5

1
5

5 3 3 31
5

1
5

1
5

1
5

5 3 3 31
5

1
5

1
5

1
5

1
5 3 3 31

5
1
5

1
5

1
5

1
5 3 1

3 31
5

1
5

1
5

1
5

1
5

1
3

1
3 31

5
1
5

1
5

1
5

1
5

1
3

1
3

1
3

1
5

1
5

1
5

1
5

1
5

1
3

1
3

1
3

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Outline
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TDMA
Motivation
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Self-stabilizing Clustering
Simulation Results

Conclusion
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Motivation

Clusters for routing
MANET routing protocols are flat, thus not scalable
Cluster-heads have extra responsibility for the routing of
message

Cluster-heads should be stable
Handle departures and removals Handle node mobility
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Density

ρ(u) =
|{e = (v, w) ∈ E | w ∈ {u} ∪Nu and v ∈ Nu}|

|Nu|
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Cluster Head Heuristics
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Number of Cluster Heads

I Using stochastic geometry, it is possible to calculate
the mean density, and then upper bound the number
of cluster-heads

Po
Φ

(
ρ(0) > maxk=1,..,Φ(B0) ρ(Yk)

)
6
(

1 +
∑+∞

n=1
1
n
(λπR2)

n

n!

)
exp {−λπR2}
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Number of Cluster Heads

Upper bound of the number of clusters in function of the process intensity
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Self-stabilizing Clustering

Basic Idea
I Identify N and N2

I Compute and broadcast density
I Attach to neighbor with higher density
I use identifiers to break ties

I Can be O(Diameter) if graph is regular
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Faster Self-stabilizing Clustering

Basic Idea
I Identify N and N2

I Compute and broadcast density
I Random L(1, 1) coloring with δ2 colors

I This can be done in expected O(1) time
I Attach to neighbor with higher density
I use colors to break ties

I Expected constant stabilization time
I Use lexicographic order (density, color)
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Simulation Results

R = 0.05 R = 0.08 R = 0.1
With DAG No DAG With DAG No DAG With DAG No DAG

# clusters 61.0 61.4 19.2 19.5 11.7 11.7
ẽ(H(u)/C(u)) 2.6 2.6 3.1 3.1 3.2 3.2
average tree length 2.7 2.7 3.3 3.3 3.5 3.5
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Simulation Results

R = 0.05 R = 0.08 R = 0.1
With DAG No DAG With DAG No DAG With DAG No DAG

# clusters 52.8 1.0 29.3 1.0 18.5 1.0
ẽ(H(u)/C(u)) 3.4 29.1 4.1 19.1 3.6 6.5
average tree length 3.7 83.4 4.7 100.5 4.5 32.1
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How fast is the coloring ?

Model
Urns and balls
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How fast is the coloring ?

Model
Urns and balls

Expected stabilization time

E [N] = V0

Vi =
1

1 − pi,i

1 +

L−1∑
j=i+1

pi,jVj

 for i = L − 2, . . . , 0

with VL−1,L−1 = 1/(1 − pL−1,L−1).
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How fast is the coloring ?

Model
Urns and balls

What is missed by the model ?
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How fast is the coloring ?
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How fast is the coloring ?
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Influence of the color domain
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Influence of the color domain
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Improving Stability

I When two nodes compete for being cluster-heads
(same density), the former cluster-head wins

I Color is still used to break remaining ties
I Clusters merge if cluster-heads are 2 hops apart
I Still exp. Constant stabilization time

Sensor Networks and Self-stabilization TDMA Clustering Conclusion

Improving Stability
Random moves at random speeds

I Observe every 15 seconds for 2 minutes

Pedestrians (0-1.6 m/s)
I Original algorithm: 78% re-election
I “Stable enhanced” algorithm: 82% re-election

Cars (0-10 m/s)
I Original algorithm: 25% re-election
I “Stable enhanced” algorithm: 31% re-election
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Conclusion

I Self-stabilization is interesting for sensor networks
I Known SS solutions should be implemented in sensor

networks
I Sensor networks are interesting for self-stabilization

I Simple devices
I Small operating system

I Energy constraints and collisions make things
complicated
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Sensors in Action

Launch Movie


