
Discovering Network Topology in
the Presence of Byzantine Faults?

Mikhail Nesterenko1?? and Sébastien Tixeuil2? ? ?

1 Computer Science Department, Kent State University Kent, OH, 44242, USA,
mikhail@cs.kent.edu

2 LRI-CNRS UMR 8623 & INRIA Grand Large
Université Paris Sud, France, tixeuil@lri.fr

Abstract. We study the problem of Byzantine-robust topology discov-
ery in an arbitrary asynchronous network. We formally state the weak
and strong versions of the problem. The weak version requires that ei-
ther each node discovers the topology of the network or at least one node
detects the presence of a faulty node. The strong version requires that
each node discovers the topology regardless of faults.

We focus on non-cryptographic solutions to these problems. We explore
their bounds. We prove that the weak topology discovery problem is
solvable only if the connectivity of the network exceeds the number of
faults in the system. Similarly, we show that the strong version of the
problem is solvable only if the network connectivity is more than twice
the number of faults.

We present solutions to both versions of the problem. The presented
algorithms match the established graph connectivity bounds. The algo-
rithms do not require the individual nodes to know either the diameter
or the size of the network. The message complexity of both programs is
low polynomial with respect to the network size. We describe how our
solutions can be extended to add the property of termination, handle
topology changes and perform neighborhood discovery.

1 Introduction

In this paper, we investigate the problem of Byzantine-tolerant distributed topol-
ogy discovery in an arbitrary network. Each node is only aware of its neighboring
peers and it needs to learn the topology of the entire network.

? Some of the results in this article were presented at the 13th Colloquium on Struc-
tural Information and Communication Complexity, Chester, UK in July 2006

?? This author was supported in part by DARPA contract OSU-RF#F33615-01-C-1901
and by NSF CAREER Award 0347485. Part of this work was done while the author
was visiting Paris Sud University.

? ? ? This author was supported in part by the FNS grants FRAGILE and SR2I from ACI
“Sécurité et Informatique”, and ANR grant SOGEA from ARA program “Sécurité,
Systèmes Embarqués et Intelligence Ambiante”. Part of this work was done while
the author was visiting Kent State University.

Topology discovery is an essential problem in distributed computing (e.g.
see [21]). It has direct applicability in practical systems. For example, link-state
based routing protocols such as OSPF use topology discovery mechanisms to
compute the routing tables. Recently, the problem has come to the fore with
the introduction of ad hoc wireless sensor networks, such as Berkeley motes [8],
where topology discovery is indispensable for routing decisions.

As reliability demands on distributed systems increase, the interest in de-
veloping robust topology discovery programs grows. One of the strongest fault
models is Byzantine [11]: the faulty node behaves arbitrarily. This model en-
compasses rich set of fault scenarios. Moreover, Byzantine fault tolerance has
security implications, as the behavior of an intruder can be modeled as Byzan-
tine. One approach to deal with Byzantine faults is by enabling the nodes to use
cryptographic operations such as digital signatures or certificates. This limits the
power of a Byzantine node as a non-faulty node can verify the validity of received
topology information and authenticate the sender across multiple hops. However,
this option may not be available. For example, wireless sensors may not have
the capacity to manipulate digital signatures. Another way to limit the power of
a Byzantine process is to assume synchrony: all processes proceed in lock-step.
Indeed, if a process is required to send a message with each pulse, a Byzantine
process cannot refuse to send a message without being detected. However, the
synchrony assumption may be too restrictive for practical systems.

Our contribution. In this study we explore the fundamental properties of
topology discovery. We select the weakest practical programming model, estab-
lish the limits on the solutions and present the programs matching those limits.

Specifically, we consider arbitrary networks of arbitrary topology where up to
fixed number of nodes k is faulty. The execution model is asynchronous. We are
interested in solutions that do not use cryptographic primitives. The solutions
should be terminating and the individual processes should not be aware of the
network parameters such as network diameter or its total number of nodes.

We state two variants of the topology discovery problem: weak and strong.
In the former — either each non-faulty node learns the topology of the network
or one of them detects a fault; in the latter — each non-faulty node has to learn
the topology of the network regardless of the presence of faults.

As negative results we show that any solution to the weak topology discovery
problem can not ascertain the presence of an edge between two faulty nodes.
Similarly, any solution to the strong variant can not determine the presence
of a edge between a pair of nodes at least one of which is faulty. Moreover, the
solution to the weak variant requires the network to be at least (k+1)-connected.
In case of the strong variant the network must be at least (2k + 1)-connected.

The main contribution of this study are the algorithms that solve the two
problems: Detector and Explorer. The algorithms match the respective connec-
tivity lower bounds. To the best of our knowledge, these are the first asyn-
chronous Byzantine-robust solutions to the topology discovery problem that do
not use cryptographic operations. Explorer solves the stronger problem. How-

2

ever, Detector has better message complexity. Detector either determines topol-
ogy or signals fault in O(δn3) messages where δ and n are the maximum neigh-
borhood size and the number of nodes in the system respectively. Explorer fin-
ishes in O(n4) messages. We extend our algorithms to (a) terminate (b) handle
topology changes (c) discover neighbors if ports are known (d) discover a fixed
number of routes instead of complete topology and (e) reliably propagate arbi-
trary information instead of topological data.

Related work. A number of researchers employ cryptographic operations to
counter Byzantine faults. Avromopolus et al [2] consider the problem of secure
routing. Therein see the references to other secure routing solutions that rely
on cryptography. Perrig et al [19] survey robust routing methods in ad hoc
sensor networks. The techniques covered there also assume that the processes
are capable of cryptographic operations.

A naive approach of solving the topology discovery problem without cryp-
tography would be to use a Byzantine-resilient broadcast [3, 6, 9, 18]: each node
advertises its neighborhood. However all existing solutions for arbitrary topology
known to us require that the graph topology is a priori known to the nodes.

Let us survey the non-cryptography based approaches to Byzantine fault-
tolerance. Most programs described in the literature [1, 13, 12, 16] assume com-
pletely connected networks and can not be easily extended to deal with arbitrary
topology. Dolev [6] considers Byzantine agreement on arbitrary graphs. He states
that for agreement in the presence of up to k Byzantine nodes, it is necessary
and sufficient that the network is (2k+1)-connected and the number of nodes in
the system is at least 3k + 1. However, his solution requires that the nodes are
aware of the topology in advance. Also, this solution assumes the synchronous
execution model. Recently, the problem of Byzantine-robust reliable broadcast
has attracted attention [3, 9, 18]. However, in all cases the topology is assumed
to be known. Bhandari and Vaidya [3] and Koo [9] assume two-dimensional grid.
Pelc and Peleg [18] consider arbitrary topology but assume that each node knows
the exact topology a priori. A notable class of algorithms tolerates Byzantine
faults locally [15, 17, 20]. Yet, the emphasis of these algorithms is on containing
the fault as close to its source as possible. This is only applicable to the prob-
lems where the information from remote nodes is unimportant such as vertex
coloring, link coloring or dining philosophers. Thus, local containment approach
is not applicable to topology discovery.

Masuzawa [14] considers the problem of topology discovery and update. How-
ever, Masuzawa is interested in designing a self-stabilizing solution to the prob-
lem and thus his fault model is not as general as Byzantine: he considers only
transient and crash faults.

The rest of the paper is organized as follows. After stating our programming
model and notation in Section 2, we formulate the topology discovery problems,
as well as state the impossibility results in Section 3. We present Detector and

3

Explorer in Sections 4 and 5 respectively. We discuss the composition of our
programs and their extensions in Section 6 and conclude the paper in Section 7.

2 Notation, Definitions and Assumptions

Graphs. A distributed system (or program) consists of a set of processes and
a neighbor relation between them. This relation is the system topology. The
topology forms a graph G. Denote n and e to be the number of nodes3 and edges
in G respectively. Two processes are neighbors if there is an edge in G connecting
them. A set P of neighbors of process p is neighborhood of p. In the sequel we use
small letters to denote singleton variables and capital letters to denote sets. In
particular, we use a small letter for a process and a matching capital one for this
process’ neighborhood. Since the topology is symmetric, if q ∈ P then p ∈ Q.
Denote δ to be the maximum number of nodes in a neighborhood.

A node-cut of a graph is the set of nodes U such that G \ U is disconnected
or trivial. A node-connectivity (or just connectivity) of a graph is the minimum
cardinality of a node-cut of this graph. In this paper we make use of the following
fact about graph connectivity that follows from Menger’s theorem (see [22]): if
a graph is k-connected (where k is some constant) then for every two vertices u
and v there exists at least k internally node-disjoint paths connecting u and v
in this graph.

Program model. A process contains a set of variables. When it is clear from
the context, we refer to a variable var of process p as var.p. Every variable ranges
over a fixed domain of values. For each variable, certain values are initial. Each
pair of neighbor processes share a pair of special variables called channels. We
denote Ch.b.c the channel from process b to process c. Process b is the sender
and c is the receiver. The value for a channel variable is chosen from the domain
of (potentially infinite) sequences of messages.

A state of the program is the assignment of a value to every variable of each
process from its corresponding domain. A state is initial if every variable has
initial value. Each process contains a set of actions. An action has the form
〈name〉 : 〈guard〉 −→ 〈command〉. A guard is a boolean predicate over the vari-
ables of the process. A command is sequence of assignment and branching state-
ments. A guard may be a receive-statement that accesses the incoming channel.
A command may contain a send-statement that modifies the outgoing channel.
A parameter is used to define a set of actions as one parameterized action. For
example, let j be a parameter ranging over values 2, 5 and 9; then a parameter-
ized action ac.j defines the set of actions ac.(j = 2)][ac.(j = 5)][ac.(j = 9).
Either guard or command can contain quantified constructs [5] of the form:
(〈quantifier〉〈bound variables〉 : 〈range〉 : 〈term〉), where range and term are
boolean constructs.

Semantics. An action of a process of the program is enabled in a certain state
3 We use terms process and node interchangeably.

4

if its guard evaluates to true. An action containing receive-statement is enabled
when appropriate message is at the head of the incoming channel. The execution
of the command of an action updates variables of the process. The execution of
an action containing receive-statement removes the received message from the
head of the incoming channel and inserts the value the message contains into
the specified variables. The execution of send-statement appends the specified
message to the tail of the outgoing message.

A computation of the program is a maximal fair sequence of states of the
program such that the first state s0 is initial and for each state si the state si+1

is obtained by executing the command of an action whose state is enabled in
si. That is, we assume that the action execution is atomic. The maximality of
a computation means that the computation is either infinite or it terminates
in a state where none of the actions are enabled. The fairness means that if
an action is enabled in all but finitely many states of an infinite computation
then this action is executed infinitely often. That is, we assume weak fairness
of action execution. Notice that we define the receive statement to appear as a
standalone guard of an action. This means, that if a message of the appropriate
type is at the head of the incoming channel, the receive action is enabled. Due
to weak fairness assumption, this leads to fair message receipt assumption: each
message in the channel is eventually received. Observe that our definition of a
computation considers asynchronous computations.

To reason about program behavior we define boolean predicates on program
states. A program invariant is a predicate that is true in every initial state of the
program and if the predicate holds before the execution of the program action,
it also holds afterwards. Notice that by this definition a program invariant holds
in each state of every program computation.

Faults. Throughout a computation, a process may be either Byzantine (faulty)
or non-faulty. A Byzantine process contains an action that assigns to each local
variable an arbitrary value from its domain. This action is always enabled. Yet,
the weak fairness assumption does not apply to this action. That is, we consider
computations where a faulty process does not execute any actions. Observe that
we allow a faulty node to send arbitrary messages. We assume, however, that
messages sent by such a node conform to the format specified by the algorithm:
each message carries the specified number of values, and the values are drawn
from appropriate domains. This assumption is not difficult to implement as mes-
sage syntax checking logic can be incorporated in receive-action of each process.
We assume oral record [11] of message transmission: the receiver can always cor-
rectly identify the message sender. The channels are reliable: the messages are
delivered in FIFO order and without loss or corruption. Throughout the paper
we assume that the maximum number of faulty nodes in the system is bounded
by some constant k.

Graph exploration. The processes discover the topology of the system by
exchanging messages. Each message contains the identifier of the process and

5

its neighborhood. Process p explored process q if p received a message with
(q, Q). When it is clear from the context, we omit the mention of p. An explored
subgraph of a graph contains only explored processes. A Byzantine process may
potentially circulate information about the processes that do not exist in the
system altogether. A process is fake if it does not exist in the system, a process
is real otherwise.

3 The Topology Discovery Problem: Statement and
Solution Bounds

Problem statement.

Definition 1 (Weak Topology Discovery Problem). A program is a so-
lution to the weak topology discovery problem if each of the program’s com-
putation satisfies the following properties: termination — either all non-faulty
processes determine the system topology or at least one process detects a fault;
safety — for each non-faulty process, the determined topology is a subset of the
actual system topology; validity — the fault is detected only if there are faulty
processes in the system.

Definition 2 (Strong Topology Discovery Problem). A program is a so-
lution to the strong topology discovery problem if each of the program’s compu-
tations satisfies the following properties: termination — all non-faulty processes
determine the system topology; safety — the determined topology is a subset of
the actual system topology.

According to the safety property of both problem definitions each non-faulty
process is only required to discover a subset of the actual system topology. How-
ever, the desired objective is for each node to discover as much of it as possible.
The following definitions capture this idea. A solution to a topology discovery
problem is complete if every non-faulty process always discovers the complete
topology of the system. A solution to the problem is node-complete if every
non-faulty process discovers all nodes of the system. A solution is adjacent-edge
complete if every non-faulty node discovers each edge adjacent to at least one
non-faulty node. A solution is two-adjacent-edge complete if every non-faulty
node discovers each edge adjacent to two non-faulty nodes.

Solution bounds. To simplify the presentation of the negative results in this
section we assume more restrictive execution semantics. Each channel contains at
most one message. The computation is synchronous and proceeds in rounds. In
a single round, each process consumes all messages in its incoming channels and
outputs its own messages into the outgoing channels. Notice that the negative
results established for this semantics apply for the more general semantics used
in the rest of the paper.

Theorem 1. There does not exist a complete solution to the weak topology
discovery problem.

6

Proof: Assume there exists a complete solution to the problem. Consider
k ≥ 2 and topology G1 that is not completely connected. Let none of the nodes
in G1 be faulty. By the validity property, none of the nodes may detect a fault
in such topology. Consider a computation s1 of the solution program where each
node discovers G1. Let p ∈ G1, q 6= p, and r 6= p be three nodes in G1, with q
and r being non-neighbor nodes in G1. Since G1 is not completely connected we
can always find two such nodes.

We form topology G2 by connecting q and r in G1. Let q and r be faulty
in G2. We construct a computation s2 which is identical to s1. That is, q and
r, being faulty, in every round output the same messages as in s1. Since s2 is
otherwise identical to s1, process p determines that the topology of the system
is G1 6= G2. Thus, the assumed solution is not complete. 2

Theorem 2. There exists no node- and adjacent-edge complete solution to the
weak topology problem if the connectivity of the graph is lower or equal to the
total number of faults k.

Proof: Assume the opposite. Let there be a node- and adjacent-edge complete
program that solves the problem for graphs whose connectivity is k or less. Let
G1 and G2 be two graphs of connectivity k.

This means that G1 and G2 contain the respective cut node sets A1 and
A2 whose cardinality is k. Rename the processes in G2 such that A1 = A2. By
definition A1 separates G1 into two disconnected sets B1 and C1. Similarly, A2

separates G2 into B2 and C2. Assume that B1 6⊆ B2. Since A1 = A2 we can form
graph G3 as A1 ∪B2 ∪ C1.

Let s1 be any computation of the assumed program in the system of topology
G1 and no faulty nodes. Since the program solves the weak topology problem, the
computation has to comply with all the properties of the problem. By validity
property, no fault is detected in s1. By termination property, each node in G1,
including some node p ∈ C1, eventually discovers the system topology.

By safety property the topology discovered by p is a subset of G1. Since
the solution is complete the discovered topology is G1 exactly. Let s2 be any
computation of the assumed program in the system of topology G2 and no
faulty nodes. Again, none of the nodes detects a fault and all of them discover
the complete topology of G2 in s2.

We construct a new computation s3 of the assumed program as follows. The
system topology for s3 is G3 where all nodes in A1 are faulty. Each faulty node
q ∈ A1 behaves as follows. In the channels connecting q to the nodes of C1 ⊂ G3,
each round q outputs the messages as in s1. Similarly, in the channels connecting
q to the nodes of B2 ⊂ G3, q outputs the messages as in s2. The non-faulty nodes
of B2 and C1 behave as in s1 and s2 respectively.

Observe that for the nodes of B2, the topology and communication is indis-
tinguishable from that of s2. Similarly, for the nodes of C1 the topology and
communication is indistinguishable from that of s1. Notice that this means that
none of the non-faulty nodes detect a fault in the system. Moreover, node p ∈ C1

decides that the system topology is the subset of G1. Yet, by construction,

7

G1 6= G3. Specifically, B1 6⊆ B2. Moreover, none of the nodes in B2 are faulty. If
this is the case then either s3 violates the safety property of the problem or the
assumed solution is not adjacent-edge complete. The theorem follows. 2

Observe that for (k+1)-connected graphs an adjacent-edge complete solution
is also node complete.

Theorem 3. There does not exist an adjacent-edge complete solution to the
strong topology discovery problem.

Proof: Assume such a solution exists. Consider system graph G1 that is not
completely connected. Let p ∈ G1 be an arbitrary node. Let q 6= p and r 6= p be
two non-neighbor nodes of G1. We form topology G2 by connecting q and r in
G1.

We construct computations s1 and s2 as follows. Let s1 and s2 be executed
on G1 and G2 respectively. And let q be faulty in s1 and r be faulty in s2. Set
the output of q in each round to be identical in s1 and s2. Similarly, set the
output of r to be identical in both computations as well. Since the output of q
and r in both computations is identical, we construct the behavior of the rest of
the nodes in s1 and s2 to be the same.

Due to termination property, p has to decide on the system topology in both
computations. Due to the safety property, in s1 process p has to determine that
the topology of the graph is a subset of G1. However, since the behavior of p in
s2 is identical to that in s1, p decides that the topology of the system graph is
G1 in s2 as well. This means p does not include the edge between q and r to the
explored topology in s2. Yet, one of the nodes adjacent to this edge, namely q,
is not faulty. An adjacent-edge complete program should include such edges in
the discovered topology. Therefore, the assumed program is not adjacent-edge
complete. 2

Theorem 4. There exists no node- and two-adjacent-edge complete solution to
the strong topology problem if the connectivity of the graph is less than or equal
to twice the total number of faults k.

Proof: Assume that there is a program that solves the problem for graphs
whose connectivity is 2k or less. Let G1 and G2 be two different graphs whose
connectivity is 2k. Similar to the the proof of Theorem 2, we assume that G1 =
A1 ∪B1 ∪C1 and G2 = A2 ∪B2 ∪C2 where the cardinality of A1 and A2 are 2k,
A1 = A2, B1 ∩ C1 = ∅, B2 ∩ C2 = ∅, and B1 6⊆ B2. Form G3 = A1 ∪ B2 ∪ C1.
Divide A1 into two subsets A′

1 and A′′
1 of the same number of nodes.

Construct a computation s1 with system topology G1 where all nodes in
A′

1 are faulty; and another computation s3 with system topology G3 where all
nodes in A′′

1 are faulty. The faulty nodes in s1 in the channels connecting A′
1

to C1 communicate as the (non-faulty) nodes of A′
1 in s3. Similarly, the faulty

nodes in s3 in the channels connecting A′′
1 to C1 communicate as the nodes

of A′′
1 in s1. Observe that s1 and s3 are indistinguishable to the nodes in C1.

Let the nodes in C1, including p ∈ C1 behave identically in both computations.

8

According to the termination property of the strong topology discovery problem
every node, including p has to determine the system topology in both s1 and s3.
Due to safety, the topology that p determines in s1 is a subset of G1. However,
p behaves identically in s3.

This means that p decides that the system topology in s3 is also a subset of
G1. Since G1 6= G3 (specifically, B1 6⊆ B2), and that none of the nodes in B2 are
faulty, this implies that either s3 violates the safety property of the problem or
the assumed solution is not adjacent-edge complete. The theorem follows. 2

4 Detector

Outline. Detector solves the weak topology discovery problem for system graphs
whose connectivity exceeds the number of faulty nodes k. The algorithm lever-
ages the connectivity of the graph. For each pair of nodes, the graph guarantees
the presence of at least one path that does not include a faulty node. The topol-
ogy data travels along every path of the graph. Hence, the process that collects
information about another process can find the potential inconsistency between
the information that proceeds along the path containing faulty nodes and the
path containing only non-faulty ones.

Care is taken to detect the fake nodes whose information is introduced by
faulty processes. Since the processes do not know the size of the system, a faulty
process may potentially introduce an infinite number of fake nodes. However, the
graph connectivity assumption is used to detect fake nodes. As faulty processes
are the only source of information about fake nodes, all the paths from the real
nodes to the fake ones have to contain a faulty node. Yet, the graph connectivity
is assumed to be greater than k. If a fake node is ever introduced, one of the
non-faulty processes eventually detects a graph with too few paths leading to
the fake node.

Detailed Description. The program is shown in Figure 1. Each process p stores
the identifiers of its immediate neighbors. They are kept in set P . Each process
keeps the upper bound k on the number of faulty processes. Process p maintains
the following variables. Boolean variable detect indicates if p discovers a fault
in the system. Boolean variable start guards the execution of the action that
sends p’s neighborhood information to its neighbors. Set TOP (for topology)
stores the subgraph explored by p; TOP contains tuples of the form: (process
identifier, its neighborhood). In the initial state, TOP contains (p, P).

Function path number evaluates the topology of the subgraph stored in
TOP . Recall that a node u is unexplored by p if for every tuple (s, S) ∈ TOP ,
s is not the same as u. That is u may appear in S only. We construct graph G′

by adding an edge to every pair of unexplored processes present in TOP . We
calculate the value of path number as follows. If the information of TOP is
inconsistent, that is:

(∃u, v, U, V : ((u, U) ∈ TOP) ∧ ((v, V) ∈ TOP) :
(u ∈ V) ∧ (v 6∈ U))

9

process p
const

P : set of neighbor identifiers of p
k: integer, upper bound on the number of faulty processes

parameter
q : P

var
detect : boolean, initially false, signals fault
start : boolean, initially true, controls sending of p’s neighborhood info
TOP : set of tuples, initially {(p, P)}, (process ids, neighbor id set)

received by p
∗[

init : start −→
start := false,
(∀j : j ∈ P : send (p, P) to j)

][
accept : receive (r, R) from q −→

if (∃s, S : (s, S) ∈ TOP : s = r ∧ S 6= R) ∨
(path number(TOP ∪ {(r, R)}) < k + 1)

then
detect := true

else
if (@s, S : (s, S) ∈ TOP : s = r) then

TOP := TOP ∪ {(r, R)},
(∀j : j ∈ P : send (r, R) to j)

]

Fig. 1. Process of Detector

then path number returns 0. If there is exactly one explored node in TOP ,
path number returns k+1. Otherwise the function returns the minimum num-
ber of internally node disjoint paths between two explored nodes in G′. In the
correctness proof for this program we show that unless there is a fake node, the
path number of G′ is no smaller than the connectivity of G.

Processes exchange messages of the form (process identifier, its neighborhood
id set). A process contains two actions: init and accept. Action init starts the
propagation of p’s neighborhood throughout the system. Action accept receives
the neighborhood data of some process, records it, checks against other data
already available for p and possibly further disseminates the data. If the data
received from neighbor q about a process r contradicts what p already holds
about r in TOP or if the newly arrived information implies that G is less than
(k + 1)-connected p indicates that it detected a fault by setting detect to true.
Alternatively, if p did not previously have the information about r, p updates
TOP and sends the received information to all its neighbors.

10

Observe that the propagation of information about the neighborhood of a
certain process is independent of the information propagation of another process.
Thus, we will focus on the propagation of the information about a particular
non-faulty process a.

Let COR contain each process b such that b is not faulty and TOP.b holds
(a,A). Let a itself belong to COR if start.a is false.

Lemma 1. The following predicate is an invariant of Detector.

(∀ non-faulty b, c : b ∈ COR, c ∈ B :
(c ∈ COR)∨
((a,A) ∈ Ch.b.c)) ∨
(∃ non-faulty j : j ∈ N : detect.j = true)

(1)

The predicate states that unless one of the non-faulty processes in the pro-
gram detects a fault, if a process b belongs to COR then each neighbor c of b
either belongs to COR as well or the channel from b to c contains (a,A).

Proof: To prove that Predicate 1 is an invariant of the program, we need
to show that it holds in the initial state of any computation and it is closed
under the execution of actions of Byzantine as well as non-faulty processes. The
predicate holds initially as the first disjunct is vacuously true.

Note that no action of a Byzantine process immediately affects the validity
of the predicate. Observe also that a non-faulty process can only set detect to
true. Thus, once this happens the predicate holds throughout the rest of the
computation. Suppose detect is false in all processes of the program. Then the
predicate is violated only if there is a non-faulty pair of neighbors b and c such
that b belongs to COR, c does not and there is no message (a,A) in the channel
from b to c. Notice that a non-faulty process adds the first value (r, R) to TOP
and never changes it afterwards. Thus, provided that detect = false, to violate
the predicate, a process has to join COR without sending (a,A) to its neighbors
or consume a message with (a,A) without joining COR. Let us examine the
actions of a non-faulty process and ensure that neither of this happens.

Observe that init is only of interest in a. This action sets start.a = false
which, by definition, adds a to COR. Also, init atomically sends (a,A) to all
neighbors of a. Thus, the predicate is not violated by the execution of init.

Let us now consider accept in an arbitrary non-faulty process u. Let the
message received by u carry (r, R). Observe that accept affects Predicate 1 only
if r = a. accept may make u join COR or consume a message with (a,A). Notice,
that if u is already in COR the receipt of a message with (a,A) does not violate
the predicate. Also, u joins COR only if it receives (a,A). Hence, the only case
we have to consider is when u does not belong to COR before the execution of
accept, u receives (a,A) and joins COR.

The behavior of u in this case depends on whether it has an element (s, S)
in TOP.u such that s = a. Since u 6∈ COR, if (a, S) ∈ TOP.u, then S differs

11

from A. In this case if u receives (a,A) then it sets detect = true. This preserves
the validity of the predicate. Alternatively, if such an entry in TOP.u does not
exist, then the receipt of (a,A) causes u to join COR and forward (a,A) to all
its neighbors. This preserves the predicate as well.

Thus, Predicate 1 holds in the initial state of every computation of the pro-
gram and is preserved by its every action. Which means that this predicate is
an invariant of the program. 2

Lemma 2. If a computation of Detector contains a state where there is a pro-
cess u that belongs to COR that has a non-faulty neighbor v that does not, then
further in the computation, either some non-faulty process sets detect = true
or v joins COR.

Proof: According to Lemma 1, Predicate 1 is an invariant of the program.
Hence, if u belongs to COR and its non-faulty neighbor v does not, then channel
Ch.u.v contains a message with (a,A). Due to fair message receipt assumption,
(a,A) is received. Observe that if v is not in COR and it receives (a,A), then
either v sets detect = true or joins COR. 2

Lemma 3. Every computation of Detector contains a state where either detect =
true in some non-faulty process or every non-faulty process belongs to COR.

Proof: The proof is by induction on the number of non-faulty processes in
the program. As a base case, we show that a itself eventually joins COR. Recall,
that we assume that a itself is not faulty. Observe that the program starts in a
state where start.a is true. If this is so, init is enabled. Moreover, init is the
only action that sets start.a to false. Thus, init stays enabled until executed.
By weak fairness assumption, init is eventually executed. When this happens, a
joins COR.

Assume that COR contains i: 1 ≤ i < n processes at some state of a com-
putation and there is a non-faulty process that does not belong to COR. We
assume that the connectivity of the graph exceeds the maximum number of
faulty processes. Thus, there is a non-faulty process u ∈ COR that has a non-
faulty neighbor v 6∈ COR. According to Lemma 2, this computation contains
a state where COR contains v. Thus, every non-faulty process eventually joins
COR. 2

Lemma 4. If a computation of Detector contains a state where non-faulty pro-
cess u explores a fake process v, then this computation contains a state where
detect = true in some non-faulty process.

Proof: Observe that the only source of fake process information is a Byzan-
tine process. Hence, if u explores a fake process v, then every path to v leads
through a Byzantine process. Thus, in a graph with a fake node, the maximum
number of node-disjoint paths between a real and a fake node is no more than
k.

According to Lemma 3, eventually, either detect = true at a non-faulty
process or u explores every non-faulty process in the system. In this case u

12

detects that all paths to the fake node v lead through no more than k processes
and sets detect = true. 2

Lemma 5. If the system does not have a faulty process, then in every computa-
tion, for each process, the path number of the explored subgraph G′ is greater
than k.

Proof: Observe that if there are no faulty processes, only correct topology
information is circulated in the system. Hence, for each process u, TOP.u con-
tains the subgraph of the system graph G. In this case, G′.u is an arbitrary set of
explored processes from G and the unexplored members of their neighborhoods.
By the construction of G′.u, every pair of unexplored processes is connected by
an edge.

Fig. 2. Illustration for the proof of Lemma 5: construction of path P ′ ⊂ G′ on the
basis of path P ⊂ G

Let v and w be an arbitrary pair of explored nodes in G′.u. And let P be
a path connecting v and w in G. We claim that there exists a path P ′ in G′.u
connecting v and w that is also a node-subset of P . That is, every node that
belongs to P ′ also belongs to P . See Figure 2 for the illustration. If P contains
only the nodes explored in G′.u, our claim holds since P ′ = P . Let P contain un-
explored nodes as well. In general, P contains alternating segments of explored
and unexplored nodes. Let 〈xi, yi, · · · , yi+1, xi+1〉 be any such unexplored seg-
ment, where xi, xi+1 are explored and yi, · · · , yi+1 are not. Observe that yi and
yi+1 have explored neighbors — xi and xi+1 respectively. This means that both
yi and yi+1 belong to G′.u. Since yi and yi+1 are unexplored, G′.u contains an
edge connecting them. We construct P ′ to contain every explored segment of P ;
we replace every unexplored segment by the edge that links unexplored nodes in
G′.u. Observe that by construction, P ′ ∈ G′.u and P ′ contains a subset of the
nodes of P . Thus, our claim holds.

Let P1 and P2 be two internally node disjoint paths connecting v and w in G.
According to the just proved claim, there exist P ′

1 and P ′
2 belonging G′.u that

connect v and w. Moreover, P ′
1 contains a subset of nodes of P1 and P ′

2 contains
a subset of nodes of P2. Since P1 and P2 are internally node disjoint, so are P ′

1

and P ′
2.

13

Recall that G is assumed to be (k + 1)-connected. This means that for every
two vertices v and w there exist k + 1 internally node disjoint paths between v
and w. Thus, the number of internally node disjoint paths for v and w in G′.u
is at least k + 1. Hence, the path number of G′.u is greater than k. 2

Lemma 6. Any computation of a detector program contains a state where a
Byzantine process is detected only if there indeed is a Byzantine process in the
system.

Proof: A non-faulty process sets detect to true if it encounters divergent in-
formation about some node’s neighborhood or when it detects that path number
is less than k+1. However, a non-faulty process never modifies the neighborhood
information about other processes. Hence, if the program does not have a faulty
process, all the information about a particular neighborhood that is circulated
in the system is identical. Also, according to Lemma 5 if there are no faulty pro-
cesses in the system, the path number never falls below k + 1. Hence, detect
is set to true only if indeed the system contains a faulty process. 2

Theorem 5. Detector is an adjacent-edge complete solution to the weak topol-
ogy discovery problem in case the connectivity of system topology graph exceeds
the number of faults.

Proof: To prove the theorem we show that every computation of Detector
conforms to the properties of the problem. We then show that the discovered
topology is adjacent-edge complete.

Termination property follows from Lemma 3, safety — from Lemma 4, while
validity follows from Lemma 6. Notice that Lemma 3 states that unless a fault is
detected, the neighborhood of every non-faulty process is added to COR. That
is, edges adjacent to a non-faulty processes are detected by every non-faulty
processes. Thus, Detector is adjacent-edge complete. Hence the theorem. 2

Efficiency evaluation. Since we consider an asynchronous model, the number
of messages a Byzantine process can send in a computation is infinite. To evaluate
the efficiency of Detector we assume that each process is familiar with the upper
bound on the number of processes in the system and this upper bound is in O(n).
A non-faulty process then detects a fault if the number of processes it explores
exceeds this bound or if it receives more than one identical message from the
same neighbor. We assume that the process stops and does not send or receive
any more messages if it detects a fault.

In this case we can estimate the number of messages that are received by non-
faulty processes before one of them detects a fault or before the computation
terminates. To make the estimation fair, the assume that the unit is log(n) bits.
Since it takes that many bits to assign unique process identifiers to n processes,
we assume that one identifier is exactly one unit of information. A message in
Detector carries up to δ+1 identifiers, where δ is the maximum number of nodes
in the neighborhood of a process. Observe that a process can receive at most n

14

messages from each incoming channel. Thus, the total number of messages that
can be sent by Detector is 2en, where e is the number of edges in the graph.
The message complexity of the program is in O(2enδ). If e is proportional to n2,
then the complexity of the program is in O(δn3).

5 Explorer

Outline. The main idea of Explorer is for each process to collect information
about some node’s neighborhood such that the information goes along more than
twice as many paths as the maximum number of Byzantine nodes. While the
paths are node-disjoint, the information is correct if it comes across the majority
of the paths. In this case the recipient is in possession of confirmed information.
It turns out that the topology information does not have to come directly from
the source. Instead it can come from processes with confirmed information. The
detailed description of Explorer follows.

To simplify the presentation, we describe and prove correct the version of
Explorer that tolerates only one Byzantine fault. We describe how this version
can be extended to tolerate multiple faults in the end of the section.

Description. Since we first describe the 1-fault tolerant version of Explorer we
assume that the graph is 3-connected. The program is shown in Figure 3. Similar
to Detector, each process p in Explorer, stores the ids of its immediate neighbors.
Process p maintains the variable start, whose function is to guard the execution
of the action that initiates the propagation of p’s own neighborhood. Unlike
Detector, however, p maintains two sets that store the topology information
of the network: uTOP and cTOP . Set uTOP stores the topology data that
is unconfirmed; cTOP stores confirmed topology data. Set uTOP contains the
tuples of neighborhood information that p received from other nodes. Besides
the process id and the set of its neighbor ids, each such tuple contains a set of
process identifiers, that relayed the information. We call it visited set. The tuples
in cTOP do not require a visited set.

Processes exchange messages where, along with the neighbor identifiers for
a certain process, a visited set is propagated. A process contains two actions:
init and accept. The purpose of init is similar to that in the process of Detec-
tor. Action accept receives the neighborhood information of some process r, its
neighborhood R which was relayed by nodes in set S. The information is received
from p’s neighbor — q.

First, accept checks if the information about r is already confirmed. If so,
the only manipulation is to record the received information in uTOP . Actually,
this update of uTOP is not necessary for the correct operation of the program,
but it makes the its proof of correctness easier to follow.

If the received information does not concern already confirmed process, accept
checks if this information differs from what is already recorded in uTOP either
in r or in R. In either case the information is broadcast to all neighbors of p.
Before broadcasting, p appends the sender — q to the visited set S.

15

If the information about r and R has already been received and recorded
in uTOP , accept checks if the previously recorded information came along an
internally node disjoint path. If so, the information about r is added to cTOP . In
this case, this information is also broadcast to all p’s neighbors. Note, however,
that p is now sure of the information it received. Hence, the visited set of nodes
in the broadcast message is empty.

process p
const

P , set of neighbor identifiers of p
parameter

q : P
var

start : boolean, initially true, controls sending of p’s neighbor ids
cTOP : set of tuples, initially {(p, P)},

(process id, neighbor id set) confirmed topology info
uTOP : set of tuples, initially ∅,

(process id, neighbor id set, visited id set)
unconfirmed topology info

∗[
init : start −→

start := false,
(∀j : j ∈ P : send (p, P, ∅) to j)

][
accept : receive (r, R, S) from q −→

if (∀t, T : (t, T) ∈ cTOP : t 6= r) then
if (∀t, T, U : (t, T, U) ∈ uTOP : t 6= r ∨ T 6= R) then

(∀j : j ∈ P : send (r, R, S ∪ {q}) to j)
elsif (∃t, T, U : (t, T, U) ∈ uTOP :

t = r ∧R = T ∧ ((U ∩ (S ∪ {q}))) ⊂ {r}))
then

cTOP := cTOP ∪ {(r, R)},
(∀j : j ∈ P : send (r, R, ∅) to j)

uTOP := uTOP ∪ {(r, R, S ∪ {q})}
]

Fig. 3. Process of Explorer

Correctness proof. Just like for the Detector algorithm, we are focusing on the
propagation of the neighborhood information A of a singular non-faulty process
a. Notice that we use A to denote the correct neighborhood info. We use A′ for
the neighborhood information of a that may not necessarily be correct.

To aid us in the argument, we introduce an auxillary set SENT to be main-
tained by each process. Since this set does not restrict the behavior of processes,

16

we assume that the Byzantine process maintains this set as well. SENT con-
tains each message sent by the process throughout the computation. Notice that
uTOP records every message received by the process in the computation. Hence,
the comparison of uTOP and SENT allows us to establish the channel contents.

Since, a message cannot be received without being sent and vice versa, the
following proposition states the invariant of the predicate that affirms it.

Proposition 1. The following predicate is an invariant of the Explorer pro-
gram.

(∀b, non-faulty c, A′, V : c ∈ B :
(((a,A′, V) ∈ Ch.b.c)∨
((a,A′, V ∪ {b}) ∈ uTOP.c)) ⇔
((a,A′, V) ∈ SENT.b))

(2)

The predicate states that for any process b and its non-faulty neighbor c the
information about the neighborhood of a is recorded in SENT.b if and only if
this information is en route from b to c or is recorded in uTOP.c with b appended
to the sequence of visited nodes V .

Before we proceed with the correctness argument we have to introduce addi-
tional notation. We say that some process c confirms (a,A′) if it adds this tuple
to cTOP.c. We view the propagation of A′ as construction of a tree of processes
that relayed A′. This tree carries A′. A tree contains two types of nodes: a root
and non-root. If process c is non-root, then for some V , (a,A′, V) ∈ SEND.c
and (a,A′, V) ∈ uTOP.c. That is, a non-root is a process that forwarded the
information received from elsewhere without alteration. If c is a root, then
(a,A′, V) ∈ SEND.c but (a,A′, V) 6∈ uTOP.c. Node c’s ancestor in a tree
is the node that lies on a path from c to the root.

Observe that the root of a tree can only be the process a itself, the Byzantine
node or a node that confirms (a,A′). Notice also that since each non-faulty
process c sends a message about a’s information at most twice, c can belong to
at most two trees. Moreover, c has to be the root of one of those trees.

The proposition below follows from Proposition 1.

Proposition 2. If some process d is the ancestor of another process c in a tree
carrying (a,A′) and (a,A′, V) ∈ uTOP.c, then d ∈ V .

Lemma 7. If a non-faulty node c confirms (a,A′), then A′ = A and a is real.

Proof: Let us first suppose that a is real. Further, suppose c is the first non-
faulty process in the system, besides a, to confirm (a,A′). To add (a,A′) to
cTOP.c any process c 6= a has to contain (a,A′, V) ∈ uTOP.c and receive a
message from one of its neighbors b carrying (a,A′, V ′) such that V ∩ V ′ ⊂ {a}.
In our notation this means that c belongs to a tree that carries (a,A′) and
receives a message from b (possibly belonging to a different tree) that carries
the same information: (a,A′). Let us consider if b and c belong to the same or
different trees.

17

Suppose b and c belong to the same tree. If this is the case the messages
that c receives have to share nodes in the visited sets V and V ′. However, for
c to confirm (a,A′) the intersection of V and V ′ has to be a subset of {a}.
That is, the only common node between the two sets is a. Observe that a does
not forward the information about its own neighborhood if it receives it from
elsewhere. Thus, if a belongs to a tree then a is its root. In this case A′ = A.

Suppose b and c belong to different trees. Recall that for c to confirm (a,A′),
both of these trees have to carry (a,A′). However, if A′ 6= A then the root of
the tree is either the faulty node or another node that confirmed (a,A′). Yet, we
assumed that c is the first node to do so. Thus, if c receives a message from b,
the only tree that carries the information (a,A′) such that A′ 6= A is rooted in
the faulty node. Thus, even if b and c belong to different trees, A′ = A.

Similarly, if a is fake, unless another node confirms (a,A′) there is only one
tree that carries (a,A′) and it is rooted in the faulty node. In this case, no other
node confirms (a,A′). 2

Lemma 8. Every computation of Explorer contains a state where each non-
faulty process belongs to at least one tree carrying (a,A).

Proof: We prove the lemma by induction on the number of nodes in the
system. To prove the base case we observe that the init action is enabled in a in
the beginning of every computation. This action stays enabled unless executed.
Thus, due to weak-fairness of action execution assumption, init is eventually
executed in a. When it is executed, a forms a tree carrying (a,A).

Let us assume that there are i: 1 ≤ i < n non-faulty nodes that belong to
trees carrying (a,A). Since the network is at least 3-connected, there exists a
non-faulty process c that does not belong to such a tree but has a neighbor b
that does.

If b belongs to a tree carrying (a,A) then SEND.b contains an entry (a,A, V)
for some set of visited nodes V . If c does not belong to such a tree then, by
definition, (a,A, V ′) 6∈ uTOP.c. In this case, according to Proposition 1, Ch.b.c
contains (a,A, V). Similar argument applies to the other neighbors of c that
belong to trees carrying (a,A). That is, c has incoming messages from every
such neighbor.

According to the fair message receipt assumption, these messages are eventu-
ally received. We can assume, without loss of generality, that c receives a message
from b first. Since c does not contain an entry (a,A, V ′) in uTOP.c, upon re-
ceipt of the message from b, c sends a message with (a,A, V ∪{b}), attaches this
message to SEND.c and includes it in uTOP.c. This means that c joins the tree
carrying (a,A).

Thus, every non-faulty node eventually joins a tree carrying correct neigh-
borhood information about a. 2

A branch of a tree is either a subtree without the root or the root process
alone. The following proposition follows from Proposition 1.

18

Proposition 3. If a computation of Explorer contains a state where a non-
faulty node c and its neighbor b either belong to two different trees carrying the
same information (a,A) or to two different branches of the tree rooted in a, then
this computation also contains a state where c confirms (a,A).

Lemma 9. Every non-faulty process c eventually confirms (a,A).

Proof: The proof is by induction on the number of nodes in the system. The
base case trivially holds as a itself confirms (a,A) in the beginning of every
computation. Assume that i non-faulty processes have (a,A) in cTOP , where
1 ≤ i < n. We show that if there exists another non-faulty process c, it eventually
confirms (a,A). Two cases have to be considered: there exists only one tree
carrying (a,A), and there are multiple such trees.

Let us consider the first case. Notice, that in every computation there even-
tually appears a tree rooted in a. In this case, we may only consider a tree so
rooted. Since the network is at least 3-connected, there exists a simple cycle con-
taining a and not containing the faulty process. According to Lemma 8, every
process in the cycle eventually joins this tree. Observe that, by our definition
of a tree branch, there always is a pair of neighbor processes b and c that be-
long to different branches of a tree rooted in a and carrying (a,A). In this case,
according to Proposition 3, one of the two nodes eventually confirms (a,A).

Let us now consider the case of multiple trees carrying (a,A). Again, accord-
ing to Lemma 8, each non-faulty process in the system joins at least one of these
trees. Since the network is at least 3-connected there exists a non-faulty process
c belonging to one tree that has a neighbor b belonging to a different tree. In
this case, according to Proposition 3, c confirms (a,A).

By induction, every non-faulty process in the system eventually confirms
(a,A). 2

Theorem 6. Explorer is a two-adjacent-edge complete solution to the strong
topology discovery problem in case of one fault and the system topology graph
is at least 3-connected.

Proof: Explorer conforms to the termination and safety properties of the
problem as a consequence of Lemmas 9 and 7 respectively.

Observe that a non-faulty node may potentially confirm incorrect neighbor-
hood information about a Byzantine node. That is, an edge reported by the
faulty process is either missing or fake. However, due to the two above lem-
mas, if two nodes are non-faulty the information whether there is an adjacent
edge between them is discovered by every non-faulty node. Hence Explorer is
two-adjacent-edge complete. 2

Modification to Handle k > 1 faults. Observe that Explorer confirms the
topology information about a node’s neighborhood, when it receives two mes-
sages carrying it over internally node disjoint paths. Thus, the program can
handle a single Byzantine fault. Explorer can handle k > 1 faults, if it waits

19

until it receives k +1 messages before it confirms the topology info. All the mes-
sages have to travel along internally node disjoint paths. For the correctness of
the algorithm, the topology graph has to be (2k + 1)-connected.

Proposition 4. Explorer is a two-adjacent-edge complete solution to the strong
topology discovery problem in case of k faults and the system topology graph is
at least (2k + 1)-connected.

Efficiency evaluation. Unlike Detector, Explorer does not quit when a fault is
discovered. Thus, the number of messages a faulty node may send is arbitrary
large. However, we can estimate the message complexity of Explorer in the ab-
sence of faults. Each message carries a process identifier, a neighborhood of this
process and a visited set. The number of the identifiers in a neighborhood is no
more than δ, and the number of identifiers in the visited set can be as large as
n. Hence the message size is bounded by δ + n + 1 which is in O(n).

Notice, that for the neighborhood A of each process a, every process broad-
casts a message twice: when it first receives the information, and when it con-
firms it. Thus, the total number of sent messages is 4e ·n and the overall message
complexity of Explorer if no faults are detected is in O(n4).

6 Composition and Extensions

Composing Detector and Explorer . Observe that Detector has better mes-
sage complexity than Explorer if the neighborhood size is bounded. Hence, if the
incidence of faults is low, it is advantageous to run Detector and invoke Explorer
only if a fault is detected. We assume that the processes can distinguish between
message types of Explorer and Detector. In the combined program, a process
running Detector switches to Explorer if it discovers a fault. Other processes
follow suit, when they receive their first Explorer messages. They ignore Detec-
tor messages henceforth. A Byzantine process may potentially send an Explorer
message as well, which leads to the whole system switching to Explorer. Observe
that if there are no faults, the system will not invoke Explorer. Thus, the com-
plexity of the combined program in the absence of faults is the same as that of
Detector. Notice that even though Detector alone only needs (k+1)-connectivity
of the system topology, the combined program requires (2k + 1)-connectivity.

Message Termination. We have shown that Detector and Explorer comply
with the functional termination properties of the topology discovery problem.
That is, all processes eventually discover topology. However, the performance
aspect of termination, viz. message termination, is also of interest. Usually an
algorithm is said to be message terminating if all its computations contain a
finite number of sent messages [4].

However, a Byzantine process may send messages indefinitely. To capture
this, we weaken the definition of message termination. We consider a Byzantine-
tolerant program message terminating if the system eventually arrives at a state
where: (a) all channels are empty except for the outgoing channels of a faulty

20

process; (b) all actions in non-faulty processes are disabled except for possibly the
receive-actions of the incoming channels from Byzantine processes, these receive-
actions do not update the variables of the process. That is, in a terminating
program, each non-faulty process starts to eventually discard messages it receives
from its Byzantine neighbors.

Making Detector terminating is fairly straightforward. As one process detects
a fault, the process floods the announcement throughout the system. Since the
topology graph for Detector is assumed (k+1)-connected, every process receives
such announcement. As the process learns of the detection, it stops processing or
forwarding of the messages. Notice that the initiation of the flood by a Byzantine
node itself, only accelerates the termination of Detector as the other processes
quickly learn of the faulty node’s existence.

The addition of termination to Explorer is more involved. To ensure termi-
nation, restrictions have to be placed on message processing and forwarding.
However, the restrictions should be delicate as they may compromise the live-
ness properties of the program. By the design of Explorer, each process may
send at most one message about its own neighborhood to its neighbors. Hence,
the subsequent messages can be ignored. However, a faulty process may send
messages about neighborhoods of other processes. These processes may be real
or fake. We discuss these cases separately.

Note that each process in Explorer can eventually obtain an estimate of the
identities of the processes in the system and disregard fake process information.
Indeed, a path to a fake node can only lead through faulty processes. Thus, if
a process discovers that there may be at most k internally node disjoint paths
between itself and a certain node, this node is fake. Therefore, the process may
cease to process messages about the fake node’s neighborhood. Notice, that
since the system is (2k +1)-connected, messages about real nodes will always be
processed. Therefore, the liveness properties of Explorer are not affected.

As to the real processes, they can be either Byzantine or non-faulty. Recall
that each non-faulty process of Explorer eventually confirms neighborhoods of
all other non-faulty processes. After the neighborhood of a process is confirmed,
further messages about it are ignored.

The last case is a Byzantine process u sending a message to its correct neigh-
bor v about the neighborhood of another Byzantine process w. By the design of
Explorer, v relays the message about w provided that the neighborhood infor-
mation about w differs from what previously received about w. As we discussed
above, eventually v estimates the identities of all real processes in the system.
Therefore, there is a finite number of possible different neighborhoods of w that
u can create. Hence, eventually they will be exhausted, and v starts ignoring
further messages form u about w.

Thus, Explorer can be made terminating as well.

Handling topology updates. In the topology discovery problem statement,
it is assumed that the system topology does not change. However, Detector and
Explorer can be adapted to manage topology changes as well. There are two

21

aspects of topology change: the notification and the transport. For notification,
a node should inform the others of its most up-to-date neighborhood. The trans-
port aspect should ensure that this notification is delivered to all nodes despite
of topology changes.

We implement the transport aspect as follows. If a node p, due to the change
in topology, obtains a new neighbor q. Then p sends to q the most recent neigh-
borhood information about all nodes that p is aware of. Thus, the most recent
information gets propagated regardless of topology changes.

The satisfaction of the notification aspect is more involved. Observe, however,
that apart from detecting fake nodes in Explorer, both algorithms propagate the
information of one process neighborhood independently of the others. We first
describe how this propagation can be done in case the topology changes and
then address the fake node detection. Each time the neighborhood of a process
p changes, p starts a new version of the topology discovery algorithm for its
neighborhood. Observe that a faulty process may also start a new version for p.

The versions are distinguished by version numbers. Each process maintains
the version numbers of p. Each related message carries the version number.
Each process outputs the discovered neighborhood of p with the highest received
version number. Observe that in the case of Explorer the processes only output
confirmed information. Notice that if a faulty process sends incorrect information
about p’s neighborhood with a certain version number, this incorrect info will
be handled by the basic Detector or Explorer within that version. For example,
the faulty messages of version i about p’s neighborhood will be countered by the
correct messages of the same version. Notice that a faulty process in Explorer
may start a version j for p’s neighborhood such that it is higher than the highest
version i that p itself started. However, according to the basic Explorer, the
incorrect information in version j will not be confirmed.

There are two specific modifications to the basic Detector. If the faulty pro-
cess sends a message concerning p with the version number higher than that of
p, p itself detects the fault. To detect fake nodes generated by a faulty process,
each node has to compile the topology TOP graph of the highest version number
for each node in the system and ensure that its connectivity does not fall below
k+1. Observe that Detector is unable to differentiate between temporary lack of
connectivity from malicious behavior of the faulty nodes. Therefore, the connec-
tivity of the discovered network at each node should never fall below k + 1. For
that, we assume that throughout a computation the intersection of all system
topologies is k + 1-connected. This assumption is not necessary for Explorer.

The notification mechanism can be optimized in obvious ways. For Detector,
each process has to keep the information for p with only the highest version
number. Obsolete information can be safely discarded. For Detector, the process
may keep the latest version of confirmed neighborhood information. Observe
that this extension of the topology discovery algorithms assumes infinite-size
counters. Care must be taken when implementing these counters in the actual
hardware, as the faulty processes may try to compromise topology discovery
if the counter values are reused. Hence, such an implementation would require

22

a Byzantine-robust counter synchronization algorithm. Lamport and Melliar-
Smith [10] proposed such algorithm for completely connected systems. Extending
it to arbitrary topology systems is an attractive avenue of future research.

Discovering neighbors. As described, in the initial state of Detector and
Explorer, each process has access to correct information about its immediate
neighborhood. Note that, in general, obtaining this information in the presence
of Byzantine processes may be difficult as they can mount a Sybil attack [7]. In
such an attack, a faulty process is able to send a message and put an arbitrary
process identifier as the sender of this message. That is, a faulty process assumes
the identity of this process. Sybil attack is difficult to handle. However, Detector
and Explorer can be modified to handle neighborhood discovery with known
ports. That is, each process does not know the identities of its neighbors but can
determine if a message is coming from the same process.

The modified algorithms contain two phases: neighborhood discovery phase
and topology discovery proper phase. In the first phase, each process broadcasts
its identifier to its neighbors. Observe that faulty processes may not send these
initial messages at all. Thus, the process should not wait for a message from
every possible neighbor. Instead, as soon as each process p gets a message with q
in its identifier, p may start the second phase with {q} as its neighborhood. Every
time p gets a new distinct identity, p treats it as topology update, increments its
counter and re-initiates the topology discovery. This procedure can be further
streamlined. Recall that for Detector and Explorer the topology graph has to be
respectively k+1 and 2k+1-connected. Thus, depending on the algorithm, each
process is guaranteed to have k + 1 or 2k + 1 non-faulty neighbors. Therefore,
each process may delay initiating topology discovery until it gets this minimum
number of distinct identities.

Observe that due to known ports a faulty process may not be able to use more
than one identifier per neighbor without being detected. However, the modified
algorithms may not be able to determine the identifier of a faulty process as
it may select an arbitrary one, including the identifier of an already existing
process. Thus, a pair of colluding faulty nodes may deceive their non-faulty
neighbors into believing that they share an edge. This behavior is illustrated
in Figure 4. When communicating to a non-faulty node a, its faulty neighbor b
assumes the identity of another non-faulty node d. Similarly, a faulty neighbor
c of d assumes the identity of a. This way, non-faulty nodes a and d are led to
believe they share an edge.

Other extensions. Observe that Explorer is designed to disseminate the infor-
mation about the complete topology to all processes in the system. However, it
may be desirable to just establish the routes from all processes in the system to
one or a fixed number of distinguished ones. To accomplish this Explorer needs
to be modified as follows. No neighborhood information is propagated. Instead
of the visited set, each message carries the propagation path of the message.
That is, the order of the relays is significant.

23

Fig. 4. Faulty nodes b and c forge a link between non-faulty nodes a and d.

Only the distinguished processes initiate the message propagation. The other
processes only relay the messages. Just as in the original Explorer, a process
confirms a path to another process only if it receives 2k + 1 internally process
disjoint paths from the source or from other confirming processes. Again, like in
Explorer, such process rebroadcasts the message, but empties the propagation
path. In the outcome of this program, for every distinguished process, each non-
faulty process will contain paths to at least 2k + 1 processes that lead to this
distinguished process. Out of these paths, at least k + 1 ultimately lead to the
distinguished process.

In Explorer, for each process the propagation of its neighborhood information
is independent of the other neighborhoods. Thus, instead of topology, Explorer
can be used for efficient fault-tolerant propagation of arbitrary information from
the processes to the rest of the network.

7 Conclusion

In conclusion, we would like to outline a couple of interesting research direc-
tions. The existence of Byzantine-robust topology discovery solutions opens the
question of theoretical limits of efficiency of such programs. The obvious lower
bound on message complexity can be derived as follows. Every process must
transmit its neighborhood to the rest of the nodes in the system. Transmitting
information to every node requires at least n messages, so the overall message
complexity is at least δn2. If k processes are Byzantine, they may not relay the
messages of other nodes. Thus, to ensure that other nodes learn about its neigh-
borhood, each process has to send at least k +1 messages. Thus, the complexity
of any Byzantine-robust solution to the topology discovery problem is at least
in Ω(δn2k).

Observe that Explorer and Detector may not explicitly identify faulty nodes
or the inconsistent view of the their immediate neighborhoods. We believe that
this identification can be accomplished using the technique used by Dolev [6].
In case there are 3k + 1 non-faulty processes, they may exchange the topologies
they collected to discover the inconsistencies. This approach, may potentially
expedite termination of Explorer at the expense of greater message complexity:
if a certain Byzantine node is discovered, the other processes may ignore its
further messages.

24

References

1. H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. McGraw-Hill Publishing Company, New York, May 1998. 6.

2. I.C. Avramopoulos, H. Kobayashi, R. Wang, and A. Krishnamurthy. Highly secure
and efficient routing. In Proceedings of INFOCOM: The Conference on Computer
Communications, joint conference of the IEEE Computer and Communications
Societies, Hong Kong, March 2004.

3. V. Bhandari and N.H. Vaidya. On reliable broadcast in a radio network. In
Proceedings of the Twenty-Fourth Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing (PODC 2005), page to appear, Las Vegas,
Nevada, July 2005.

4. E.W. Dijkstra and C.S. Scholten. Termination detection for diffusing computations.
Information Processing Letters, 11(1):1–4, August 1980.

5. E.W. Dijkstra and C.S. Scholten. Predicate Calculus and Program Semantics.
Springer-Verlag, Berlin, 1990.

6. D. Dolev. The Byzantine generals strike again. Journal of Algorithms, 3(1):14–30,
1982.

7. J.R. Douceur. The Sybil attack. In First International Workshop on Peer-to-Peer
Systems (IPTPS ’02), Cambridge, MA, USA, March 2002.

8. J.L. Hill and D.E. Culler. Mica: A wireless platform for deeply embedded networks.
IEEE Micro, 22(6):12–24, November/December 2002.

9. C.-Y. Koo. Broadcast in radio networks tolerating byzantine adversarial behavior.
In PODC ’04: Proceedings of the twenty-third annual ACM symposium on Prin-
ciples of distributed computing, pages 275–282, New York, NY, USA, 2004. ACM
Press.

10. L. Lamport and P.M. Melliar-Smith. Byzantine clock synchronization. Operating
Systems Review, 20(3):10–16, 1986.

11. L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM
Transactions on Programming Languages and Systems, 4(3):382–401, July 1982.

12. D. Malkhi, Y. Mansour, and M.K. Reiter. Diffusion without false rumors: on
propagating updates in a Byzantine environment. Theoretical Computer Science,
299(1–3):289–306, April 2003.

13. D. Malkhi, M. Reiter, O. Rodeh, and Y. Sella. Efficient update diffusion in byzan-
tine environments. In The 20th IEEE Symposium on Reliable Distributed Systems
(SRDS ’01), pages 90–98, Washington - Brussels - Tokyo, October 2001. IEEE.

14. T. Masuzawa. A fault-tolerant and self-stabilizing protocol for the topology prob-
lem. In Proceedings of the Second Workshop on Self-Stabilizing Systems, pages
1.1–1.15, 1995.

15. T. Masuzawa and S. Tixeuil. A self-stabilizing link coloring algorithm resilient
to unbounded byzantine faults in arbitrary networks. In Proceedings of the 2005
International Conference on Principles of Distributed Systems (OPODIS’2005),
Lecture Notes in Computer Science, page to appear, Pisa, Italy, October 2006.
Springer-Verlag.

16. Y. Minsky and F.B. Schneider. Tolerating malicious gossip. Distributed Computing,
16(1):49–68, 2003.

17. M. Nesterenko and A. Arora. Tolerance to unbounded byzantine faults. In Pro-
ceedings of 21st IEEE Symposium on Reliable Distributed Systems, pages 22–29,
2002.

25

18. A. Pelc and D. Peleg. Broadcasting with locally bounded byzantine faults. Infor-
mation Processing Letters, 93:109–115, 2005.

19. A. Perrig, J. Stankovic, and D. Wagner. Security in wireless sensor networks.
Communications of the ACM, 47(6):53–57, June 2004.

20. Y. Sakurai, F. Ooshita, and T. Masuzawa. A self-stabilizing link-coloring protocol
resilient to byzantine faults in tree networks. In Proceedings of the 2004 Interna-
tional Conference on Principles of Distributed Systems (OPODIS’2004), Lecture
Notes in Computer Science. Springer-Verlag, December 2004.

21. J.M. Spinelli and R.G. Gallager. Event-driven topology broadcast without sequence
numbers. IEEE trans. on commun., COM-37, 5:468–474, 1989.

22. J. Yellen and J.L. Gross. Graph Theory & Its Applications. CRC Press, 1998.
ISBN: 0–849–33982–0.

26

