
Master 2 Réseaux - NRES - TP : réseaux de capteurs

Stéphane Devismes Sébastien Tixeuil

Résumé

L’objet de ce TP est la découverte de la plateforme de simulation Sinalgo. Sinalgo est une plateforme de simulation
qui permet de tester et de valider ”à haut niveau” des protocoles pour réseaux de capteurs.

1 Installation
Les sources et le tutorial de Sinalgo se trouvent à l’adresse suivante (télécharger la version ”Regular Release”) :

http : //dcg.ethz.ch/projects/sinalgo/

1.1 Pré-requis
Sinalgo nécessite que Java 5.0 ou une version supérieure soit installé sur votre machine. Sinalgo fonctionne aussi avec
des environnnement de développement de type Eclipse.

1.2 Installation
Téléchargez la version ”Regular Release” de Sinalgo et décompressez la dans un sous-répertoire sinalgo de votre
répertoire de travail. Ce répertoire contient entre autres les sources dans src et les fichiers binaires dans binaries/bin.

Deux choix s’offrent alors à vous :
– Soit vous lancez Sinalgo à partir de la ligne de commande en tapant : java -cp binaries/bin sinalgo.Run à

partir du répertoire sinalgo.
– Soit vous utilisez un environnement de développement type Eclipse (cf. ci-dessous).

1.3 Avec Eclipse
1. Lancez Eclipse.

2. Créez un nouveau projet java (File→New→Java Project). Nommez-le sinalgo. Cochez la case ”créer un projet à
partir d’un source existant” et sélectionnez le répertoire sinalgo créé précédemment. Cliquez sur terminer.

3. Vérifiez qu’Eclipse est configuré pour utiliser Java 5.0 : dans le menu Preferences, selectionnez Java→Compiler.
Le niveau du compilateur doit être à 5.0 ou plus.

Une fois ces actions effectuées, il suffit de faire un clic droit sur src dans le navigateur d’Eclipse et de sélectionner Run
as→Java Application pour démarrer l’application.

2 Organisation
Sinalgo propose un ensemble de sources de projets : des exemples (sample), un projet par défaut (defaultProject) et un
projet ”vide” (template). Chaque source est stocké dans un répertoire situé dans sinalgo/src/projects. L’organisa-
tion de chaque projet est identique et comporte :

– Un fichier Config.xml qui permet de paramètrer le modèle d’exécution.
– Un fichier description.txt ; l’ensemble des informations de ce fichier sont affichés dans le menu où l’on sélectionne

la simulation à exécuter.
– Un fichier CustumGlobal.java qui permet de modifier l’interface de simulation.
– Un fichier LogL.java qui permet de développer des fonctions de ”monitoring”.
– Optionnellement, un fichier run.pl ; ce fichier Perl permet de gérer le paramètrage d’une exécution.
– Un répertoire images ; ces images peuvent être utilisées pour personnaliser les menus, etc.
– Deux répertoires : models et nodes qui contiennent les implémentations des modèles et des noeuds (cf. ci-dessous).

1



2.1 Modèles
Les modèles décrivent l’environnement dans lequel votre protocole est simulé. Vous pouvez implanter vos propres
modèles ou utiliser des modèles prédéfinis. Ici, nous utiliserons et paramètrerons uniquement des modèles prédéfinis.
Pour chaque simulation, il faut définir 6 modèles différents :

– Le modèle de connectivité qui décide comment évaluer le voisinage d’un noeud.
– Le modèle de distribution qui décrit comment les noeuds sont placés au démarrage de l’application.
– Le modèle d’interférence qui décide si un message est perdu suite à une interférence.
– Le modèle de transmission qui décide du temps d’acheminement des messages.
– Le modèle de mobilité qui gére le mouvement des noeuds.
– Le modèle de fiabilité qui gére la perte de messages.

2.2 Noeuds
Le répertoire nodes contient le code du protocole. Ce code est subdivisé en plusieurs fichiers répartis dans plusieurs
répertoires :

– edges. Contient le code relatif aux liens de communication (ici, nous utiliserons uniquement l’implantation par
défaut donc ce répertoire ne contiendra aucun fichier).

– messages. Contient la description de chaque type de message utilisé dans la simulation.
– nodeImplementations. Contient le code pour le comportement des noeuds.
– timers. Contient le code des timers utilisés dans la simulation.

3 Un petit exemple...
Lancez une exécution de l’exemple sample1. Vous pouvez le lancer via Eclipse ou directement en tapant :

java -cp binaries/bin sinalgo.Run -project sample1

Une fenêtre apparait alors avec un plan en 3 dimensions. Pour lancer la simulation, allez dans le menu Simulation et
cliquez sur Generate Nodes. Créez 100 noeuds puis cliquez sur l’icone verte pour démarrer la simulation.

Vous pouvez ensuite paramétrer la simulation directement à partir de la ligne de commande. Par exemple, taper :

java -cp binaries/bin sinalgo.Run -project sample1 -gen 1000 sample1 :S1Node
RandomC=UDG -rounds100.

Cette commande lance la simulation sample1 avec 1000 noeuds de type S1Node, ces noeuds sont placés de manière
aléatoire, le modèle de connectivté utilisé est UDG, enfin la simulation s’arrête après 100 unités de temps.

4 1er protocole : coloriage
Le premier protocole que nous allons écrire est très simple : au début chaque noeud tire au hasard une couleur parmi k
couleurs possible. Ensuite, chaque noeud envoie périodiquement sa couleur à tous ses voisins. Lorsqu’un noeud détecte
que l’un de ses voisins à une couleur identique à la sienne, il tire au hasard une nouvelle couleur parmi celles non-
utilisées dans son voisinage.

Pour créer notre simulation, nous allons tout d’abord faire une copie du répertoire template situé dans le répertoire src/
projects dans le même répertoire. Cette copie sera re-nommée coloriage.

Nous allons ensuite créer de nouveau type de noeuds, messages, et timers. Pour cela, téléchargez les fichiers CMes-
sage.java, CNode.java CTimer.java situés à l’adresse du cours NRES.

Copiez le fichier CMessage.java dans le répertoire nodes/messages. Ce fichier contient le code suivant :

package projects.coloriage.nodes.messages;
import sinalgo.nodes.messages.Message;

/* description de l’unique type de message utilisé dans l’application */
public class CMessage extends Message {

2



public int id;
public int couleur;

public CMessage(int id, int couleur) {
this.id=id;
this.couleur = couleur;
}

public Message clone() {
return new CMessage(id,couleur);
}
}

Copiez le fichier CTimer.java dans le répertoire nodes/timers. Ce fichier contient le code suivant :

package projects.coloriage.nodes.timers;
import projects.coloriage.nodes.nodeImplementations.CNode;
import projects.coloriage.nodes.messages.*;
import sinalgo.nodes.timers.Timer;

/* Description de l’unique timer utilisé dans l’application */
public class CTimer extends Timer {
CNode sender;
int interval;

public CTimer(CNode sender, int interval) {
this.sender = sender;
this.interval = interval;
}

/* La fonction "fire" est appelée lorsque le timer expire */
public void fire() {
// le noeud crée un message contenant sa couleur
CMessage msg= new CMessage(sender.ID,sender.getCouleur());
// le noeud envoie le message à tous ses voisins

sender.broadcast(msg);
// le noeud relance un nouveau timer

this.startRelative(interval, node); // recursive restart of the timer
}
}

Copiez le fichier CNode.java dans le répertoire nodes/nodeImplementations. Ce fichier contient le code suivant :

package projects.coloriage.nodes.nodeImplementations;
import java.awt.Color;
import java.awt.Graphics;
import java.util.*;
import sinalgo.configuration.WrongConfigurationException;
import sinalgo.gui.transformation.PositionTransformation;
import sinalgo.nodes.Node;
import sinalgo.nodes.edges.Edge;
import sinalgo.nodes.messages.Inbox;
import projects.coloriage.nodes.timers.*;
import projects.coloriage.nodes.messages.*;
import sinalgo.nodes.messages.Message;

/* La classe "donnee" ci-dessous est utilisée

* pour stocker l’état d’un voisin, ici sa couleur.

3



* Les états de tous les voisins

* seront ensuite stockés dans une table de hachage */
class donnee
{
int couleur;

donnee(int couleur){
this.couleur=couleur;
}
}

/* La classe "CNode" ci-dessous implémente le code de chaque noeud */
public class CNode extends Node {

private int couleur; // la couleur du noeud
/* ci-dessous "nb" représente le nombre de couleurs total

* le tableau "tab" stocke les codes couleur */
private final int nb = 10;
private final Color tab[] = {Color.BLUE,Color.CYAN,Color.GREEN,

Color.LIGHT_GRAY,Color.MAGENTA,Color.ORANGE,Color.PINK,Color.RED,
Color.WHITE,Color.YELLOW};

/* La table de hachage "etatvoisin" stocke le dernier état connu

* de chaque voisin */
private Hashtable<Integer,donnee> etatvoisin;

public int getCouleur(){
return couleur;
}

public Color RGBCouleur(){
return tab[getCouleur()];
}

public void setCouleur(int c) {
this.couleur=c;
}

/* La fonction ci-dessous

* est utilisée pour tirer au hasard une couleur parmi les nb disponibles */
public void initCouleur(int range){
setCouleur((int) (Math.random() * range) % range);
}

/* La fonction "compute" est lancée à chaque réception

* de message. Elle permet de changer la couleur du noeud si nécessaire */
public void compute(){
boolean same=false;
Iterator<Edge> it=this.outgoingConnections.iterator();
boolean SC[]=new boolean[nb];

for (int i=0;i<SC.length;i++)
SC[i]=false;

while(it.hasNext()){
Edge e=it.next();
donnee tmp=etatvoisin.get(new Integer(e.endNode.ID));

4



if(tmp!=null){
if(tmp.couleur==this.getCouleur()){
same=true;
}
SC[tmp.couleur]=true;
}
}

if (same){
int dispo=0;
for (int i=0;i<SC.length;i++)
if(SC[i]==false) dispo++;
if (dispo == 0) return;
int choix= ((int) (Math.random() * 10000)) % dispo + 1;
int i=0;
while(choix > 0){
if(SC[i]==false)
choix--;
if(choix>0) i++;
}
this.setCouleur(i);
}
}

/* La fonction ci-dessous est appelée à chaque réception de message */
public void handleMessages(Inbox inbox) {

if(inbox.hasNext()==false) return;

while(inbox.hasNext()){

Message msg=inbox.next();

if(msg instanceof CMessage){
/* Chaque message contient l’état d’un voisin.

* On mets alors la table de hachage à jour

* Puis on réévalue la couleur du noeud */
donnee tmp=new donnee(((CMessage) msg).couleur);
etatvoisin.put(new Integer(((CMessage) msg).id),tmp);
compute();
}
}
}

public void preStep() {}

/* La fonction ci-dessous est appelée au démarrage uniquement

* On initialise la couleur du noeud au hasard

* On charge le premier timer. On crée la table de hachage */
public void init() {
initCouleur(nb);
(new CTimer(this,50)).startRelative(50,this);
this.etatvoisin=new Hashtable<Integer,
donnee>(this.outgoingConnections.size());
}

public void neighborhoodChange() {}

5



public void postStep() {}

public String toString() {
String s = "Node(" + this.ID + ") [";
Iterator<Edge> edgeIter = this.outgoingConnections.iterator();
while(edgeIter.hasNext()){
Edge e = edgeIter.next();
Node n = e.endNode;
s+=n.ID+" ";
}
return s + "]";
}

public void checkRequirements() throws WrongConfigurationException {}

/* La fonction ci-dessous affiche le noeud */
public void draw(Graphics g, PositionTransformation pt, boolean highlight) {
Color c;
this.setColor(this.RGBCouleur());
String text = ""+this.ID;
c=Color.BLACK;
super.drawNodeAsDiskWithText(g, pt, highlight, text, 20, c);
}
}

La dernière étape consiste à définir le modèle en nous basant sur les modèles existants. Pour cela, il suffit de personnaliser
le fichier Config.xml situé dans le répertoire coloriage. Ouvrez le fichier Config.xml et modifiez les paramètres suivants :

– Interdisez la mobilité et les interférences.
– Changez le type de noeuds par défaut : remplacez ”DummyNode” par ”coloriage :CNode”.
– Changez le type d’arête en arête bidirectionnelle (sinalgo.nodes.edges.BidirectionalEdge).
– Initialisez les connections dès le démarrage de la simulation.
– Changez le mode de transmission de synchrone à asynchrone. Pour cela, modifiez la balise de mode de trans-

mission de ConstantTime à RandomTime. Puis, remplacez la ligne <MessageTransmission ConstantTime=”1”/>
par <RandomMessageTransmission distribution=”Uniform” min=”1” max=”5”/>. Dans cette balise, min et max
définissent la borne inférieure et supérieure du temps de transmission des messages.

– Pour augmenter la connectivité du réseau, changez le paramètre rMax de GeometricNodeCollection et UDG en
passant de 100 à 150. Dans GeometricNodeCollection, rMax correspond à la distance de transmission maximum
des messages. Dans UDG, rMax définit la distance maximum où se trouve les voisins.

Lancez une exécution avec 100 noeuds.

5 Protocole de clustering
En vous basant sur le protocole de coloriage précédent, vous allez maintenant écrire un protocole de clustering. Dans
ce protocole, chaque noeud va choisir un chef de cluster. Chaque cluster sera identifié par l’identité de son chef de
cluster. Chaque noeud p va se baser sur deux informations pour choisir son chef de cluster : sa densité dp et sa couleur
cp. La densité dp du noeud p est égale au nombre d’arêtes liant p ou l’un de ses voisins à un autre voisin de p divisé
par le nombre de voisin de p. En utilisant dp et cp, on définit la relation d’ordre suivante : p ≺ q si et seulement si
(dp < dq) ∨ (dp = dq ∧ cq < cp). La fonction de choix du chef est alors la suivante :

ClusterHead(p) =
{

p si ∀q ∈ Np, q ≺ p
max≺{q ∈ Np} sinon

avec Np, l’ensemble des voisins de p.

6


