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Abstract. Consider a system of multiple mobile robots in which each robot, at infinitely many
unpredictable time instants, observes the positions of all the robots and moves to a new position
determined by the given algorithm. The robots are anonymous in the sense that they all execute the
same algorithm and they cannot be distinguished by their appearances. Initially they do not have a
common x-y coordinate system. Such a system can be viewed as a distributed system of anonymous
mobile processes in which the processes (i.e., robots) can “communicate” with each other only by
means of their moves. In this paper we investigate a number of formation problems of geometric
patterns in the plane by the robots. Specifically, we present algorithms for converging the robots
to a single point and moving the robots to a single point in finite steps. We also characterize the
class of geometric patterns that the robots can form in terms of their initial configuration. Some
impossibility results are also presented.
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1. Introduction. Suppose that a schoolteacher wants her 100 children in the
playground to form a circle so that, for instance, they can play a game. She might
draw a circle on the ground as a guideline or even give each child a specific position
to move to. What if the teacher does not provide such assistance? Even without such
assistance, the children may still be able to form a sufficiently good approximation
of a circle if each of them moves adaptively based on the movement of other children
and knowledge of the shape of a circle. If successful, this method can be called a
distributed solution to the circle formation problem for children.

A similar distributed approach can be used for controlling a group of multiple
mobile robots. The main idea is to let each robot execute a simple algorithm and
plan its motion adaptively based on the observed movement of other robots, so that
the robots as a group will achieve the given goal. The objective of this paper is to give
a formal discussion on the power and limitations of the distributed control method in
the context of the formation problems of geometric patterns in the plane.

The problem of forming an approximation of a circle having a given diameter by
identical mobile robots was first discussed by Sugihara and Suzuki [13].1 Assuming
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Fig. 1.1. Reuleux’s triangle.

that the positions of the robots are the only information available, they proposed a
simple heuristic distributed algorithm (to be executed independently by all robots),
which, according to simulation results, sometimes brings the robots to a pattern
reminiscent of a Reuleaux’s triangle (Figure 1.1) rather than a circle. Tanaka [16] later
improved their algorithm and demonstrated, using simulation, that his new algorithm
avoids this problem and generates a better approximation of a circle. In essence, in
his algorithm each robot simply adjusts its position regarding the midpoint of the
positions of the nearest and farthest neighbors as the center of the circle to which the
robots are converging, while moving away from its nearest neighbor if the distance
to that midpoint is approximately equal to the given target radius. Figure 1.2 shows
the behavior of 50 robots executing his algorithm starting from an initial distribution
generated randomly. This extremely simple algorithm demonstrates the potential of
the distributed method. The circle formation problem was also discussed recently
by Debest [2] from the viewpoint of self-stabilization. A system is said to be self-
stabilizing if it recovers from any finite number of transient errors [12], and thus self-
stabilizing robot algorithms are robust against a finite number of sensor and control
errors.

Formation problems of geometric patterns are closely related to certain agreement
problems. Agreement on a common x-y coordinate system by the robots, for instance,
can greatly reduce the complexity of motion coordination algorithms; e.g., convergence
toward a single point can easily be solved by moving all the robots toward point (0, 0)
of the common coordinate system. However, such a simple solution is not possible
if the robots have only their own local coordinate systems, whose origins may or
may not agree. It is sometimes assumed in the literature, therefore, that either there
exists a global coordinate system or that some navigation devices (e.g., a variety of
potential functions [18], compasses [3], or beacons and lighthouses [4]) are available to
compensate for the lack of such a system. Note here that the agreement problem on a
common coordinate system can (partially) be reduced to certain formation problems:
If the robots can form (i.e., gather at) a single point, then they can agree to use
that point as the origin of the common coordinate system. Similarly, formation of
a circle implies agreement on both the origin and the unit distance (i.e., the center
and the radius of the circle). Formation of a symbol “>” implies agreement on the
origin, the unit distance, and the positive x-direction, i.e., agreement on a common
x-y coordinate system.

Related work on the distributed robot control method includes the following.
Wang and Beni [17] considered a cellular robotic system consisting of a large number
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Fig. 1.2. Hollow circles are the initial positions of 50 robots. Solid circles are their final
positions after execution of Tanaka’s algorithm. Small dots represent their intermediate positions.

of robots that operate in a cellular space under distributed control. They discussed
the problem of generating certain one- and two-dimensional cellular patterns using
distributed control and showed how the technique can be applied to the design of sen-
sor arrays and escape systems. Fukuda and Nakagawa [6] and Kawauchi, Inaba, and
Fukuda [7] considered a dynamically reconfigurable robotic system called CEBOT,
which consists of many simple cells that can detach and combine autonomously to
change its overall shape, depending on the task and the environment. Kokaji [8] and
Murata, Kurokawa, and Kokaji [10] designed self-reorganizing systems called Fractal
Machine and Fractum, respectively, based on a similar idea (but unlike CEBOT, these
systems consist of homogeneous units) and discussed dynamic reconfiguration based
on a set of local rules. Fujimura [5] investigated how planning algorithms, knowledge
about the environment, and action intervals of the robots affect the overall perfor-
mance of two robots moving toward their respective goal positions while avoiding
collision. Sugihara and Suzuki [13], [14], and Suzuki and Yamashita [15] considered
formation and agreement problems for anonymous mobile robots in the plane. Work
by others includes swarm intelligence [1] and collective behavior of multiple robots
[9], [11].

The main emphasis of most of the work mentioned above has been on the de-
velopment of heuristic algorithms for various problems, and rigorous proofs of the
correctness of these algorithms have not been given. In contrast, as we stated earlier
in this paper, we conduct a formal investigation on the power and limitations of the
distributed control method.

We model a robot as a mobile processor with infinite memory and a sensor for
detecting the positions of other robots2 that repeatedly becomes active at infinitely

2We assume that the sensor cannot measure the velocity or acceleration of other robots and that
other navigation devices such as compasses and beacons are not available.



1350 ICHIRO SUZUKI AND MASAFUMI YAMASHITA

many unpredictable time instants. (At other times it is inactive.) We assume that
initially the robots do not have a common x-y coordinate system and that the local
x-y coordinate systems of the robots may not agree on the location of the origin,
the unit distance, or the direction of the positive x-axis. Each time a robot becomes
active, using its sensor it observes the positions of all the robots in terms of its own
local x-y coordinate system and moves to a new position determined by the given
deterministic algorithm.3 The algorithm is oblivious if the new position is determined
only from the positions of the robots observed at that time instant. Otherwise, it
is nonoblivious, and the new position may depend also on the observations made in
the past. Note that oblivious algorithms are self-stabilizing by definition. To simplify
the discussion and bring forth the fundamental issues of the problem, in this paper
we assume that (1) the initial positions of the robots are all distinct, (2) the time it
takes for a robot to move to its new position is negligibly small, and (3) a robot is a
point (so two robots can occupy the same position simultaneously and never collide).
The robots are anonymous in the sense that (1) they do not know their identifiers,
(2) they all use the same algorithm for determining the next position, and (3) they
cannot be distinguished by their appearances.

Let π be a predicate describing a geometric pattern, such as a point, a regular
polygon, a line segment, etc. On the one hand, we say that an algorithm ψ solves the
convergence problem for π if the robots’ distribution converges to one that satisfies π,
regardless of the number n of robots, their initial distribution, and the timing with
which they become active. On the other hand, we say that ψ solves the formation
problem for π if the robots eventually reach a distribution that satisfies π in a finite
number of steps, regardless of n, their initial distribution, and the timing with which
they become active. (See section 2 for formal definitions of these concepts.)

We begin with a simple problem of converging the robots toward a single point.
(That is, this is the convergence problem for a predicate π that describes a point.
Note that the process of convergence need not terminate in finite steps.) Note again
that since the robots do not have a common x-y coordinate system, we cannot simply
use an algorithm such as “move toward the origin (0, 0).” For this problem we give a
simple oblivious algorithm.

We also consider the formation problem for a point, in which the robots must
form (i.e., gather at) a single point in finite steps. We show that this problem can be
solved by a nonoblivious algorithm for any n ≥ 2 and by an oblivious algorithm for
any n ≥ 3, but it is not solvable by any oblivious algorithm for the case n = 2, where
n is the total number of robots.

Finally, we characterize the class of geometric patterns for which the formation
problem is solvable in our model. We do so by first examining the class of patterns that
the robots can form, starting from a given initial configuration. Our main observation
is that since the robots may happen to become active simultaneously all the time
(i.e., their motions turn out to be synchronized) and (by definition) algorithms are
required to solve the given problem regardless of the timing with which the robots
become active, the robots may not be able to break the “symmetry” that exists in their
initial distribution by executing an algorithm (which is deterministic by definition).
Based on this and using techniques that have been developed for anonymous complete
networks in [19], [20], we prove that the formation problem is solvable by an algorithm
(in the sense defined above) only for two patterns: a point and a regular n-gon. The

3In this paper we do not consider nondeterministic algorithms that allow a robot to randomly
select its next position from two or more candidates.
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algorithm we present for the formation of a regular n-gon is nonoblivious. Whether
an oblivious algorithm exists for this problem remains open.

We present necessary definitions and basic assumptions in section 2. Convergence
and formation problems for a point are discussed in section 3. Section 4 gives a
characterization of the class of geometric patterns that the robots can form in our
model. Discussions and concluding remarks are presented in section 5.

2. Definitions and basic assumptions. We formalize the concepts described
in section 1. Let r1, r2, . . . , rn be the robots in a two-dimensional space. (The sub-
script i of ri is used for convenience of explanation. The robots do not know their
identifiers.) We denote by Zi = (oi, di, ui), 1 ≤ i ≤ n, the local x-y coordinate system
of ri, where oi, di, and ui denote the position of the origin, direction of the positive
x-axis, and size of the unit distance, respectively, under Zi. It is possible that Zi 6= Zj
for some i and j, but the robots are assumed to have a common sense of orientation
so that in each Zi, the positive y-direction is 90 degrees counterclockwise from the
positive x- direction. As we describe below, all robot positions that ri observes and
computes are given in terms of Zi.

We assume discrete time 0, 1, 2, . . . and let pi(t) be the position of ri at time instant
t, where pi(0) is the initial position of ri. We assume that p1(0), p1(0), . . . , pn(0) are
all distinct. Define P (t) = {pi(t)|1 ≤ i ≤ n} to be the multiset of the positions of
the robots at time t. (P (t) is a multiset, since we assume that two robots can occupy
the same position simultaneously.) For any point p, we denote by [p]j the position of
p given in terms of Zj and define [P (t)]j = {[pi(t)]j |1 ≤ i ≤ n}. Thus [P (t)]j shows
how rj views the distribution P (t) in terms of its own Zj . Note that if Zj 6= Zk,
then it is possible that [P (t)]j 6= [P (t)]k; i.e., rj and rk may observe distribution P (t)
differently. However, [P (t)]j = [P (t)]k may hold even if pj(t) 6= pk(t). In this case, rj
and rk are located at different positions, but P (t) looks identical to them.

At each time instant t, every robot ri is either active or inactive. Without loss of
generality we assume that at least one robot is active at every time instant. We use
At to denote the set of active robots at t, and call the sequence A = A0, A1, . . . an
activation schedule. We assume that every robot becomes active at infinitely many
time instants, but no additional assumptions are made on the timing with which
the robots become active. Thus A need satisfy only the condition that every robot
appears in infinitely many At’s. Note that a special case is when every robot appears
in At for every t; in this case we say that the robots are synchronized.

The algorithm that a robot uses is a function ψ such that, for any given sequence
(Q1, p1), (Q2, p2), . . . , (Qm, pm) of pairs of a multiset Q` of points and a point p` ∈ Q`,
ψ((Q1, p1), (Q2, p2), . . . , (Qm, pm)) is a point such that the distance between pm and
ψ((Q1, p1), (Q2, p2), . . . , (Qm, pm)) is at most 1. The position of a robot at t ≥ 1 is
determined by P (0), A, and ψ, as follows.

For any t ≥ 0, if ri 6∈ At (ri is inactive), then pi(t + 1) = pi(t); i.e., ri does
not move. If ri ∈ At (ri is active), then let 0 ≤ t1 ≤ t2 ≤ · · · ≤ tm = t be the
time instants when ri has been active, and for each 1 ≤ ` ≤ m, let Q` = [P (t`)]i
and p` = [pi(t`)]i be the distribution that ri observed and the position of ri at t`,
respectively. (Note that Q` and p` are given in terms of Zi.) Then pi(t + 1) = p,
where p is the point such that [p]i = ψ((Q1, p1), (Q2, p2), . . . , (Qm, pm)). That is,
ri moves to point ψ((Q1, p1), (Q2, p2), . . . , (Qm, pm)) of Zi. By the restriction on ψ
stated above, the maximum distance that ri can move in one step is the unit distance
1 of Zi, which corresponds to some physical distance εi > 0. Note that every robot is
then capable of moving over distance at least ε = min{ε1, ε2, . . . , εn} > 0 in one step.
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That is, ri observes the distribution of the robots only when it is active, and its
next position depends only on ψ and the distributions that ri has observed so far. The
p` in pair (Q`, p`) shows that ri is always aware of its current position in Zi. Algorithm
ψ is said to be oblivious if ψ((Q1, p1), (Q2, p2), . . . , (Qm, pm)) = ψ((Qm, pm)) for any
(Q1, p1), (Q2, p2), . . . , (Qm, pm). In this case, the move of a robot depends only on
the current configuration of the robots. Otherwise, ψ is nonoblivious. Note that the
robots are anonymous in the following sense: (1) function ψ is common to all the
robots, (2) the identifier i of robot ri is not an argument of ψ, and (3) [P (t)]i contains
only the positions of the robots (but not their identities).

Let π be a predicate over the set of multisets of points that is invariant under
any rotation, translation, and uniform scaling. For example, π might be true iff the
given points are on the circumference of a circle or on a line segment. For such π, we
consider two types of problems: the convergence problem and the formation problem.
An algorithm ψ is said to solve the convergence problem for π if, as t goes to infinity,
P (t) converges to a distribution that satisfies π, regardless of the number n of robots,
initial distribution P (0), and activation schedule A. In contrast, in the formation
problem the robots must reach a distribution satisfying π in finite steps and “halt.”
That is, an algorithm ψ is said to solve the formation problem for π if there exists
some time instant t′ such that P (t′) satisfies π and pi(t

′) = pi(t
′ + 1) = · · · for all

1 ≤ i ≤ n, regardless of n, P (0), and A. Since the robots have no knowledge of
the underlying coordinate system, the robots can only converge to or form a pattern
similar to the given goal pattern. The restriction on π stated above was introduced for
this reason. All predicates discussed in the following sections satisfy this condition.

3. Convergence and formation problems for a point. Formally, the prob-
lem of converging the robots to a point is stated as the convergence problem for
predicate πpoint, where πpoint(p1, . . . , pn) = true iff pi = pj for any 1 ≤ i, j ≤ n. We
call this problem C-POINT. The corresponding formation problem for πpoint is called
F-POINT. Note that in F-POINT, all robots must occupy a single point in finite
steps, whereas in C-POINT they need only converge to a single point. These are per-
haps some of the simplest problems one could consider. Nevertheless, the discussions
presented in this section can serve as an introduction to the technical results given in
the rest of the paper. An algorithm that solves F-POINT also solves C-POINT.

For convenience, we present all algorithms by giving an informal description of the
behavior of the robots executing it, instead of giving a formal definition of function ψ.
Converting the informal description into a formal definition of ψ is straightforward.

It is easy to show that the following oblivious algorithm ψc−point(2) solves
C-POINT for the case n = 2.

ALGORITHM ψc−point(2)—OBLIVIOUS.
Each time ri becomes active, it moves toward4 the midpoint m of its current

position and that of the other robot rj .
Suppose that we modify ψc−point(2) so that each robot moves toward the position

of the other robot. Then the two robots will continue to swap their positions if they
are mutually reachable in one step and always become active simultaneously. (Recall
that we assume robots never collide with each other.) Thus this modified algorithm
does not solve C-POINT for n = 2.

Note that if exactly one robot becomes active at every time instant, then the

4Unless otherwise stated, “a robot moves toward point p” means that “a robot moves to the
point p′ closest to p that is reachable in one step from the current position.” Of course, p = p′ if p
is reachable in one step.
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two robots executing ψc−point(2) will never occupy the same point. Thus oblivious
algorithm ψc−point(2) does not solve F-POINT for n = 2. In fact, we have the following
theorem.

Theorem 3.1. There is no oblivious algorithm for solving F-POINT for the case
n = 2.

Proof. Suppose that there is an oblivious algorithm ψ that solves F-POINT for
two robots ri and rj . Note that since ψ is oblivious, the moves of the robots depend
only on Zi, Zj and their current positions.

We first show that there exist distinct positions p and q of ri and rj , respectively,
such that either (1) ψ moves ri from p to q and rj from q to q, or (2) ψ moves ri
from p to p and rj from q to p. (That is, ψ moves exactly one robot to the position of
the other if both robots become active simultaneously.) To see this, assume that such
positions do not exist. Consider a scenario S in which ri and rj , located at distinct
positions p and q, respectively, at time t − 1 occupy the same position r at time t.
Now we show that we can modify this scenario and obtain another scenario in which
the robots never occupy the same position simultaneously. There are two cases.

Case 1. Both ri and rj are active at time t− 1 in S. By assumption, r 6= p and
r 6= q. Thus if exactly one robot, say, ri, happens to be active at t− 1, then at time
t, ri is located at r and rj at q, where r 6= q.

Case 2. Exactly one robot is active at t − 1 in S. Suppose that ri is active at
t− 1 but rj is not. Then r = q. So if both robots happen to be active at t− 1, then
at time t, ri is located at q and rj at some point s, where by assumption s 6= q.

Using this argument repeatedly, we can construct an infinite sequence of moves
in which the robots never occupy the same position simultaneously. (We can do so in
such a way that each robot becomes active infinitely many times, since either of the
robots can be chosen to be inactive in Case 1.) So ψ does not solve F-POINT. This
is a contradiction.

Now consider an initial distribution P (0) = {p, q} in which ri and rj are at p and
q, respectively, and ψ moves ri from p to q, and rj from q to q; see Figure 3.1(a).
(The case in which ψ moves rj to the positions of ri is similar.) Now, by modifying Zi
through translation and rotation, we can construct another configuration in which ri
observes distribution P (0) the same way as rj ; i.e., [P (0)]i = [P (0)]j and [p]i = [q]j ;
see Figure 3.1(b). Then ψ moves ri and rj in the same manner in the new configuration
and, of course, ψ moves rj in the same manner in both configurations (namely, from
q to q). Therefore, in the new configuration ψ moves ri from p to p and rj from q to
q. Then, since ψ is oblivious, both robots remain in their respective initial positions
forever. Thus ψ does not solve F-POINT. This is a contradiction.

However, F-POINT can be solved for two robots by the following nonoblivious
algorithm ψf−point(2).

5

ALGORITHM ψf−point(2)—NONOBLIVIOUS.
When ri becomes active for the first time, it translates and rotates its coordinate

system6 Zi so that
1. ri is at (0, 0) of Zi, and
2. the other robot rj is on the positive y-axis of Zi, say, at (0, a) for some a > 0.

5If all robots are known to be active at every time instant (i.e., the robots are “synchronous”),
then a simple oblivious algorithm that moves both robots toward the midpoint of their current
positions solves F-POINT for two robots.

6Formally, ri cannot modify Zi in our framework, but the effect of such a transformation can
easily be simulated within the framework.
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Fig. 3.1. (a) ri moves but rj does not. (b) After modification of Zi.

Then it moves in the positive x direction of Zi, over any nonzero distance. It then
continues to move in the same direction each time it becomes active until it observes
that the position of rj has changed twice.

Now, ri knows line ` that contains the first two distinct positions of rj that ri
has observed. (Note that by symmetry ` is the x-axis of rj ’s coordinate system Zj .)
Then using Lemma 3.2, ri finds the initial position of rj and moves to the midpoint
of the initial positions of ri and rj .

Lemma 3.2, which follows immediately from the description of ψf−point(2), shows
that robots ri and rj executing ψf−point(2) eventually find out which of them became
active first for the first time and what their initial distribution was.

Lemma 3.2. Let ti and tj be the time instants at which ri and rj, respectively,
become active for the first time in ψf−point(2). Then the following hold.

1. The trajectory of ri and the trajectory of rj are parallel iff ti = tj. In this case,
each robot sees the other robot at its initial position at ti(= tj) (Figure 3.2(a)).

2. The trajectory of rj intersects the negative x-axis of Zi iff ti < tj. In this
case, ri sees rj at its initial position, and ri’s initial position is the foot of
the perpendicular drop from rj’s initial position to the line containing the
trajectory of ri (Figure 3.2(b)).

3. The trajectory of ri intersects the negative x-axis of Zj iff tj < ti. In this
case, rj sees ri at its initial position, and rj’s initial position is the foot of
the vertical drop from ri’s initial position to the line containing the trajectory
of rj.

Theorem 3.3. Algorithm ψf−point(2) solves problem F-POINT for n = 2.
Proof. A key observation is the following: When ri observes that the position of

rj has changed twice, rj must have already observed that ri’s position has changed
at least once and thus rj knows where the x-axis of Zi is. Similarly, rj will know that
ri knows where the x-axis of Zj is. Then the correctness of ψf−point(2) follows from
Lemma 3.2.
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Fig. 3.2. Illustration for ψf−point(2); (a) ti = tj , (b) ti < tj .

Finally, we have the following result on F-POINT and C-POINT for n ≥ 3.
Theorem 3.4. There is an oblivious algorithm for solving F-POINT (and thus

C-POINT) for n ≥ 3.
Proof. It suffices to give an oblivious algorithm ψf−point(n) that solves F-POINT.

The idea is the following. Starting from distinct initial positions, we move the robots
in such a way that eventually there will be exactly one position, say, p, that two
or more robots occupy. Once such a distribution is reached, all robots that are not
located at p move toward p in such a way that no two robots will occupy the same
position at any location other than p. Then all robots eventually occupy p, solving
F-POINT.

Such a distribution can be obtained if each robot, each time it becomes active,
determines which of the following cases applies and moves to a new position (or
remains stationary) as specified. Since a robot’s action is based only on the current
robot distribution, this strategy can be implemented as an oblivious algorithm.

Case 1. n = 3; p1, p2, and p3 denote the positions of the three robots.
1.1. If n = 3 and p1, p2, and p3 are collinear with p2 in the middle, then the robots

at p1 and p3 move toward p2 while the robot at p2 remains stationary. Then
eventually two robots occupy p2.

1.2. If n = 3 and p1, p2, and p3 form an isosceles triangle with |p1p2| = |p1p3| 6=
|p2p3|, then the robot at p1 moves toward the foot of the perpendicular drop
from its current position to p2p3 in such a way that the robots do not form
an equilateral triangle at any time, while the robots at p2 and p3 remain
stationary. Then eventually the robots become collinear and the problem is
reduced to part 1.1.

1.3. If n = 3 and the lengths of the three sides of triangle p1p2p3 are all different,
say, |p1p2| > |p1p3| > |p2p3|, then the robot at p3 moves toward the foot of
the perpendicular drop from its current position to p1p2 while the robots at
p1 and p2 remain stationary. Then eventually the robots become collinear
and the problem is reduced to part 1.1.

1.4. If n = 3 and p1, p2, and p3 form an equilateral triangle, then every robot
moves towards the center of the triangle. Since all robots can move up to
at least a constant distance ε > 0 in one step, if part 1.4 continues to hold
then eventually either the robots meet at the center, or the triangle they form
becomes no longer equilateral and the problem is reduced to part 1.2 or part
1.3.
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Case 2. n ≥ 4; Ct denotes the smallest enclosing circle of the robots at time t.
2.1. If n ≥ 4 and there is exactly one robot r in the interior of Ct, then r moves

toward the position of any one robot, say, r′, on the circumference of Ct while
all other robots remain stationary. Then eventually r and r′ occupy the same
position.

2.2. If n ≥ 4 and there are two or more robots in the interior of Ct, then these
robots move toward the center of Ct while all other robots remain stationary
(so that the center of Ct remains unchanged). Then eventually at least two
robots reach the center.

2.3. If n ≥ 4 and there are no robots in the interior of Ct, then every robot moves
toward the center of Ct. Since all robots can move up to at least a constant
distance ε > 0 in one step, if part 2.3 continues to hold, then eventually the
radius of Ct becomes at most ε. Once this happens, then the next time some
robot moves, say, at t′, either (i) two or more robots occupy the center of Ct
or (ii) there is exactly one robot r at the center of Ct, and therefore there is a
robot that is not on Ct′ (and the problem is reduced to part 2.1 or part 2.2)
since a cycle passing through r and a point on Ct intersects with Ct at most
at two points.

Suppose that for 1 ≤ i ≤ n, robot ri has (privately) chosen a directed line `i that
passes through its initial position. Algorithm ψf−point(2) uses a technique with which
all robots can simultaneously “broadcast” the locations and directions of `1, `2, . . . , `n.
The basic idea is that each robot ri moves repeatedly along `i in the given direction
until it observes that every rj , j 6= i has changed positions at least twice (i.e., until
ri sees rj at three or more distinct positions). Then, as we explained in the proof
of Theorem 3.3, every rj , j 6= i must have (become active and) seen ri at two or
more distinct positions along `i, and thus rj can conclude that the `i that ri has
chosen passes through the first two distinct positions of ri that rj has observed and
that `i is oriented in the direction from the first to the second positions of ri that
rj has observed. Care must be taken so that ri continues to move at least one more
time (to any distinct position) after observing that every rj has changed position at
least twice, since at this moment some rj might have observed ri only at two distinct
positions.

Another problem is that, since the robots are indistinguishable by their appear-
ances, if n > 2, then rj may not be able to determine how ri has moved, given the
robot distributions at two time instants. To cope with this, if n > 2, then we let each
robot ri memorize the distance ai > 0 to its nearest neighbor when it becomes active
for the first time and move at most distance ai/2

k+1 in the kth move. Then each ri
will remain in the interior of the ai/2-neighborhood of its initial position, and thus
every robot can correctly determine which robot has moved to which position even
after it has remained inactive for a long time.

4. Achievable geometric patterns. In this section we characterize the class
of geometric patterns that the robots can form regardless of the activation schedule
A, starting from a fixed initial configuration. For simplicity of explanation we assume
that each robot ri is located at the origin of its coordinate system Zi at time 0.
Essentially the same result holds even without this assumption.

Whether or not a particular geometric pattern can be formed depends not only on
the given initial positions of the robots but also on their local x-y coordinate systems.
For example, suppose that, initially, four robots r1, r2, r3, and r4 form a square in
counterclockwise order, where r2 is at position (1, 0) of Z1, r3 is at position (1, 0)
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Fig. 4.1. Two configurations of four robots that are (a) symmetric, (b) not symmetric.

Fig. 4.2. ri, rj , and views Vi(0) and Vj(0).

of Z2, and so on, as shown in Figure 4.1(a). Intuitively, the robots have the same
“view,” and thus, if they are synchronized, then they will never be able to break
symmetry and form a pattern other than a square, but if the direction of the positive
x-axis happens to be the same for all four robots, as shown in Figure. 4.1(b), then
intuitively every robot has a unique “view,” and hence the robots may be able break
symmetry and form a pattern that is not a square. (In fact, the result given below
shows that the robots can form any pattern for this case.) We now formalize this
observation.

Following [19], [20], the view of robot ri at time t, denoted Vi(t), is defined
recursively as a rooted infinite tree as follows. See Figure 4.2.

1. The root of Vi(t) has n− 1 subtrees, one for each robot rj , j 6= i.
2. The edge from the root of Vi(t) to the subtree corresponding to rj is labeled

((a, b), (c, d)), where (a, b) is the position of rj in terms of Zi and (c, d) is the
position of ri in terms of Zj .

3. The subtree corresponding to rj is the view Vj(t) of rj at time t.
Note that each vertex of Vi(t) corresponds to a robot, but it is not labeled as such.
Two views Vi(t) and Vj(t

′) are said to be equivalent, written Vi(t) ≡ Vj(t′), if they are
isomorphic to each other, including the labels. A view is defined as an infinite tree
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for convenience of discussion; the relevant information is contained in the subtree of
height 2 from the root.

Vi(0) is thus the view of ri at time 0. Note that since the robots occupy distinct
positions at time 0, the edges incident on the root of Vi(0) have distinct labels. Since
at time 0 the robots have no knowledge of other robots’ local coordinate systems,
at time 0 robot ri does not know its view Vi(0). Using the following algorithm, the
robots can obtain sufficient information to construct their views at time 0.

ALGORITHM ψgetview—NONOBLIVIOUS.
The robots first broadcast the x-axes of their respective local coordinate systems

by moving in the respective positive x directions, return straight to their respective
initial positions, broadcast the y-axes of their respective local coordinate systems by
moving in the respective positive y directions, and finally return straight to their
respective initial positions. Since different robots may start the second broadcast (of
their local y-axes) at different time instants, every robot ri broadcasting its y-axis
must continue to move along its y-axis until it observes that every rj , j 6= i has
changed positions at least twice along a line perpendicular to the first line that rj
broadcasted.

At this moment every robot ri has discovered the initial distribution P (0) (in
terms of Zi) as well as the direction of the positive x-axis of Zj for every robot
rj . Then ri measures the minimum distance di between any two robots in P (0)
in terms of Zi and “announces” the value of di to all other robots by broadcasting
the directed line through its initial position with direction f(di) of Zi, where for
x > 0, f(x) = (1 − 1/2x) × 360◦ is a monotonically increasing function with range
(0◦, 360◦). Then, any robot observing the movement of ri can determine the value of
di (and hence the unit distance of Zi) from its knowledge on the positive x direction
of Zi and direction f(di) of Zi. Finally, the robots return to their respective initial
positions.

When ψgetview is completed, each robot ri can determine the positions of all other
robots in terms of Zj for any j. Using this information, ri can construct its view Vi(0).

Let m be the size of a largest subset of robots having an equivalent view at time
0. If m = 1, then every robot has a unique view, and thus once Algorithm ψgetview is
executed the robots can be ordered using a suitable total ordering of the views. Then
for any multiset F of n points, using a predetermined total ordering of the points in F ,
the ith robot in the ordering can compute the location of the ith point in F relative
to some reference points (e.g., the positions of the first and second robots at time 0
if the first and second points of F are distinct) and move to that point. Therefore, if
m = 1, the robots can form a pattern similar to F for arbitrary F .

Therefore, in the following, we consider the case m ≥ 2. Lemmas 4.1, 4.2, 4.3,
and 4.4 refer to a fixed initial configuration with m ≥ 2.

Lemma 4.1. The robots can be partitioned into n/m groups of m robots each,
such that two robots have an equivalent view iff they belong to the same group.

Proof. The claim is trivial if m = n. Thus assume that m < n, and without loss of
generality suppose that V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0) but V1(0) 6≡ Vm+1(0). That is,
r1, r2, . . . , rm have an equivalent view at time 0 but rm+1 does not. Let ((a, b), (c, d))
be the label of the edge from the root of V1(0) to the vertex corresponding to rm+1.
Since V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0) for each `, 1 ≤ ` ≤ m, there exists an edge
with label ((a, b), (c, d)) from the root of V`(0) to a vertex corresponding to some
robot ri` , where ri1 = rm+1. Now we show that the robots ri1 , ri2 , . . . , rim are all
distinct. Note that by symmetry there is an edge with label ((c, d), (a, b)) from the
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Fig. 4.3. Illustration for the proof of Lemma 4.2, for the case m = 4.

root of Vi`(0), leading to a vertex that corresponds to robot r`. Thus if ri1 = ri2 , for
instance, then we have r1 = r2, a contradiction. Thus ri1 ,ri2 ,. . . ,rim are all distinct.
Furthermore, since V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0) and Vi`(0) is a subtree of V`(0)
connected to the root of V`(0) by an edge with label ((a, b), (c, d)) for each `, we have
Vi1(0) ≡ Vi2(0) ≡ · · · ≡ Vim(0). Thus there are at least m robots (including rm+1)
having a view equivalent to that of rm+1. But then there must be exactly m such
robots, since there cannot exist more than m such robots by the definition of m. The
lemma follows from this observation.

Lemma 4.2. At time 0, the robots in the same group form a regular m-gon, and
the regular m-gons formed by all the groups have a common center.7 (See Figure 4.3.)

Proof. Suppose that V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0), that is, r1, r2, . . . , rm have
an equivalent view at time 0. Consider the initial positions p1(0), p2(0), . . . , pm(0) of
these robots. Clearly, at least one of p1(0), p2(0), . . . , pm(0) is a corner of the convex
hull C of {p1(0), p2(0), . . . , pm(0)}. Then, since V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0), each
of p1(0), p2(0), . . . , pm(0) must be a corner of C. Without loss of generality, assume
that p1(0), p2(0), . . . , pm(0) occur in counterclockwise order around the convex hull.
(See Figure 4.3.)

Since V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0), the internal angles of C at the corners
p1(0), p2(0), . . . , pm(0) must all be identical, and the lengths of the edges of the
convex hull must all be identical. (If p1(0)p2(0) looks shorter than p2(0)p3(0) to
r2, then p2(0)p3(0) should look shorter than p3(0)p4(0) to r3, and so on, leading
to a conclusion that p1(0)p2(0) is shorter than p1(0)p2(0), a contradiction.) Thus
p1(0), p2(0), . . . , pm(0) form a regular m-gon.

Suppose that at time 0, rm+1, rm+2, . . . , r2m also have an equivalent view and that
their respective positions pm+1(0), pm+2(0), . . . , p2m(0) appear in counterclockwise
order around the regular m-gon they form. Then again, since V1(0) ≡ V2(0) ≡
· · · ≡ Vm(0), the position of pm+1(0) relative to p1 is the same as the position of
pm+2(0) relative to p2, and so on. (See Figure 4.3.) So the regular m-gon formed by
p1(0), p2(0), . . . , pm(0) and the regular m-gon formed by pm+1(0), pm+2(0), . . . , p2m(0)
have the same center.

7A regular 2-gon is simply a line segment whose center is the midpoint of the endpoints.
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Lemma 4.3. For any algorithm ψ, if the robots are synchronized, then at any
time instant t, the robots in the same group form a regular m-gon and the regular
m-gons formed by all the groups have a common center.

Proof. Suppose that V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0), that is, r1, r2, . . . , rm have
an equivalent view at time 0. Now, since the initial distribution of the robots looks
identical to r1, r2, . . . , rm, the new positions they compute using ψ in their respective
Z1, Z2, . . . , Zm are all identical. Also, since V1(0) ≡ V2(0) ≡ · · · ≡ Vm(0), the center
of the regular m-gon that r1, r2, . . . , rm form at time 0 has the same x-y coordinates
in all of Z1, Z2, . . . , Zm. This means that r1, r2, . . . , rm move in a symmetric manner
relative to the center of the regular m-gon, and thus at time 1 they again form a
regular m-gon with the same center. The same applies to all n/m groups, and since
the robots are synchronized, at time 1 they together form a collection of n/m regular
m-gons all having the same center. Since the robots in the same group have observed
the same robot distributions, their next moves at time 1 are also symmetric relative
to the center of the regular m-gon they currently form. Therefore, again, at time
2 the robots form a collection of n/m regular m-gons all having the same center.
Continuing in the same manner, we can prove that at any time instant t the robots
form a collection of n/m regular m-gons all having the same center.

Since the robots may happen to be synchronized, by Lemma 4.3 there exists
an algorithm ψ for forming a pattern similar to F starting from the given initial
configuration only if F can be partitioned into n/m regular m-gons all having the
same center. Conversely, we have the next lemma.

Lemma 4.4. For any multiset F of points that can be partitioned into n/m regular
m-gons all having the same center, there exists an algorithm ψ for forming a pattern
similar to F starting from the initial configuration. (The algorithm does not depend
on the initial configuration.)

Proof. We fix a total ordering over views and we fix an ordering of the n/m regular
m-gons in F . The idea is to move the robots in the jth group in the ordering of the
views to the corners of the jth regular m-gon, as in the case m = 1. Specifically, first
the robots execute Algorithm ψgetview and obtain their views. The robots in the first
group need not move any more, since the m-gon they form is similar to the corners
of the first m-gon of F (except when the first m-gon is a point, in which case the
robots must move to the center of the m-gon they form). Each robot in the second
group computes the position of a corner of the second m-gon of F (relative to the
location of the first m-gon of F ) that is closest to its current position, breaking ties
in any deterministic manner. (If the first m-gon is a point and the second m-gon is
not, then the robots in the second group need not move.) The robots in other groups
also compute their final positions in a similar manner. Then the robots move to their
respective final positions and form a pattern similar to F .

The following theorem summarizes the discussion given above.
Theorem 4.5. Let m be the size of a largest subset of robots having an equivalent

view at time 0. Let F be a multiset of n points. There exists an algorithm ψ for
forming a pattern similar to F , starting from the given initial configuration iff either
(1) m = 1 or (2) m ≥ 2 and F can be partitioned into n/m regular m-gons all having
the same center.

Proof. The theorem follows from Lemmas 4.3 and 4.4.
We introduced in section 3 a predicate πpoint such that πpoint(p1, . . . , pn) =

true iff pi = pj for any 1 ≤ i, j ≤ n. Consider another predicate πregular, where
πregular(p1, . . . , pn) = true iff p1, . . . , pn form a regular n-gon. The following theo-
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rem, which follows as a corollary to Theorem 4.5, states that these two are the only
predicates for which the formation problem is solvable.

Theorem 4.6. There exists an algorithm for solving the formation problem for
a predicate π iff either π = πpoint or π = πregular.

Proof. The if part for πregular follows immediately from Theorem 4.5, and that
for πpoint follows from Theorem 4.5 and the observation that, for any m that divides
n, a point can be viewed as a collection of n/m degenerate regular m-gons all having
the same center. The only-if part follows from the fact that if m = n, where m is
the size of a largest subset of robots having an equivalent view at time 0, then by
Theorem 4.5 an algorithm exists for the formation problem only for a single regular
n-gon (which reduces to a point if the polygon is degenerate).

5. Concluding remarks. We formally modeled the system of anonymous mo-
bile robots and characterized the class of geometric patterns that the robots can form.
In this section, we discuss other related issues.

5.1. Agreement on a common x-y coordinate system. In section 1 we
briefly mentioned that the agreement problem on a common x-y coordinate system is
reducible to the formation problem of certain geometric patterns. By Theorem 4.6 it
is always possible for the robots to form a point and a regular n-gon, hence the robots
can always agree on both the origin and unit distance (of a common x-y coordinate
system). On the one hand, the agreement problem on direction is unsolvable in
general, since otherwise the formation problem of a line segment would be solvable,
contradicting Theorem 4.6. On the other hand, it can be shown that if the robots
have a sense of direction (i.e., their local coordinate systems agree on the positive x
direction), then they have distinct views at time 0 (i.e., m = 1 where m is as defined
in section 4). As we have shown, in this case the robots can form (a pattern similar
to) any geometric pattern. This means that the difficulty of forming certain geometric
patterns lies in the difficulty of agreeing on direction (and break symmetry).

5.2. Issues of fault tolerance. As we mentioned in section 1, Debest [2] dis-
cussed the problem of forming a circle from the viewpoint of self-stabilizing systems.
Algorithms for controlling robots must be sufficiently robust against sensor and con-
trol errors. Oblivious algorithms are, by definition, self-stabilizing in the sense that
they achieve their goal even in the presence of a finite number of sensor and control
errors. In contrast, nonoblivious algorithms are sensitive to errors in general, and it
is a challenging open problem to enhance fault tolerance in such algorithms.

Another interesting issue in fault tolerance arises when the number of robots
changes dynamically a finite number of times during the execution of an algorithm,
where by this we mean that a robot becomes visible (or invisible) when it is added to
(or removed from) the system. Again by definition, an oblivious algorithm correctly
solves the given problem even if the number of robots changes a finite number of
times. One way to make nonoblivious algorithms robust against such changes is to
adopt an additional assumption that, if the number of robots changes, then it never
changes again until all robots have noticed the change. Under this assumption, it can
be shown that any nonoblivious algorithm works correctly when it is modified so that
a robot noticing a change in the number of robots “resets its memory and restarts the
algorithm” (i.e., it ignores the pairs (Q`, p`) for the observations made previously).

5.3. Time complexity. Since a robot may remain inactive for an unpredictable
period of time, we cannot use the total number of steps for measuring the time
complexity of a formation algorithm. An alternative measure of the complexity of
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an algorithm is the total distance that a robot must move to form a given pattern.
Under this measure, a robot moves over distance O(d) by the method used in the
proof of Lemma 4.4, where d is the diameter of the smallest enclosing circle of the
initial positions of the robots. (Note that the total distance that a robot moves while
executing ψgetview can be limited to O(1).) The bound of O(d) is tight for some
patterns (e.g., a point), since a robot can move at most a constant distance at a time.

5.4. Other open problems. Algorithms for solving a formation problem based
on the method given in the proof of Lemma 4.4 are nonoblivious. Thus Theorem 4.6
implies that a point and a regular n-gon can be formed by n robots regardless of the
initial distribution P (0) and the activation schedule A, by a nonoblivious algorithm.
An interesting question is whether these patterns can also be formed, regardless of
P (0) and A, by an oblivious algorithm. For the case of a point we already have
the answer: an oblivious algorithm for forming a point exists for the case n ≥ 3
(Theorem 3.4), but not for the case n = 2 (Theorem 3.1). However, the question
remains open for the formation of a regular n-gon. We are currently working on this
issue and also are conducting similar investigations on (1) randomized algorithms,
(2) the case in which the motion of a robot is not instantaneous, and (3) the three-
dimensional case.
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