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Summary. The distributed coordination and control of a team of autonomous mo-
bile robots is a problem widely studied in a variety of fields, such as engineering,
artificial intelligence, artificial life, robotics. Generally, in these areas, the problem is
studied mostly from an empirical point of view. Recently, a significant research effort
has been and continues to be spent on understanding the fundamental algorithmic
limitations on what a set of autonomous mobile robots can achieve. In particular,
the focus is to identify the minimal robot capabilities (sensorial, motorial, computa-
tional) that allow a problem to be solvable and a task to be performed. In this paper
we describe the current investigations on the interplay between robots capabilities,
computability, and algorithmic solutions of coordination problems by autonomous
mobile robots.

1 Introduction

In this paper we describe the current investigations on the algorithmic limi-
tations of what autonomous mobile robots can do with respect to basic coor-
dination problems.

The current trend in robotic research, both from engineering and behav-
ioral viewpoints, has been to move away from the design and deployment of
few, rather complex, usually expensive, application-specific robots. In fact, the
interest has shifted towards the design and use of a large number of “generic”
robots which are very simple, with very limited capabilities and, thus, rela-
tively inexpensive, but capable, together, of performing rather complex tasks.
The advantages of such an approach are clear and many, including: reduced
costs (due to simpler engineering and construction costs, faster computation,
development and deployment time, etc); ease of system expandability (just
add a few more robots) which in turns allows for incremental and on-demand
deployment (use only as few robots as you need and when you need them); sim-
ple and affordable fault-tolerance capabilities (replace just the faulty robots);
re-usability of the robots in different applications (reprogram the system to
perform a different task). Moreover, tasks that could not be performed at
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all by a single agent become manageable when many simple units are used
instead [19, 34].

One of the first studies conducted in this direction in the AI community
is that of Matarić [30]. The main idea in Matarić’s work is that “interactions
between individual agents need not to be complex to produce complex global
consequences”.

Other investigations in the AI community include the study of [4] on stig-
mergy communication and on the use a set of simple robots that operate
completely autonomously and independently to collect pucks spread over a
square arena in a single cluster; the ALLIANCE architecture and the studies
on selfish behavior of cooperative robots in animal societies by Parker [34];
the formation and navigation problems in multi-robot teams in the context of
primitive animal behavior in pattern formation by Balch and Arkin [3]; and
the experiments in cooperative cleaning behavior of Jung et al [28].

Alternative approaches to the problem of studying multi-robot systems,
can be found in the CEBOT system of Fucuda, Kawaguchi et al. [25, 29], in
the planner-based architecture of Noreils [32], in the information requirements
theory of Donald et al. [19] (see [6] for a survey), in the Swarm Intelligence of
Beni and Hackwood [5], in the Self-Assembly Machine (”fructum”) of Murata
et al. [31], etc.

The common feature of all these approaches is that they do not deal with
formal correctness and they are only analyzed empirically. In all these investi-
gations, algorithmic aspects were somehow implicitly an issue, but clearly not
a major concern, let alone the focus, of the study. An investigation with an
algorithmic flavor has been undertaken within the AI community by Durfee
[20], who argues in favor of limiting the knowledge that an intelligent robot
must possess in order to be able to coordinate its behavior with others.

Recently, the problem has been tackled from a different perspective: from
a computational point of view. In other words, the focus is to understand
the relationship between the capabilities of the robots and the solvability of
the tasks they are given. In these studies, the impact of the knowledge of the
environment is analyzed: can the robots form an arbitrary geometric pattern
if they have a compass? Can they gather in a point? Which information each
robot must have about its fellows in order for them to collectively achieve
their goal? The goal is to look for the minimum power to give to the robots
so that they can solve a given task; hence, to formally analyze the strengths
and weaknesses of the distributed coordination and control.

In this paper we describe the current investigations on the interplay be-
tween robots capabilities, computability, and algorithmic solutions of coordi-
nation problems by autonomous mobile robots.

In Section 2 we describe the model used in these investigations. In Section
3 we review some results related to the analysis of the problem of pattern
formation by autonomous mobile robots. Finally, in Section 4 we draw some
conclusions and present suggestions for further study.
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2 Modeling Autonomous Mobile Robots

In the general model, the computational universe is a 2-dimensional plane
populated by a set of n autonomous mobile robots, denoted by r1, . . . , rn,
that are modeled as devices with computational capabilities which are able to
freely move on a two-dimensional plane.

2.1 The robots and their behavior

A robot is a computational unit capable of sensing the positions of other
robots in its surrounding, performing local computations on the sensed data,
and moving towards the computed destination. The local computation is done
according to a deterministic algorithm that takes in input the sensed data
(i.e., the robots’ positions), and returns a destination point towards which
the executing robot moves. All the robots execute the same algorithm. The
local view of each robot includes a unit of length, an origin, and a Cartesian
coordinate system defined by the directions of two coordinate axes, identified
as the x and y axis, together with their orientations, identified as the positive
and negative sides of the axes.

Each robot repeatedly cycles through four states: (i) initially it is inactive
– Wait, (ii) it observes the positions of the other robots in its area of visibility
– Look, (iii) it computes its next destination point by executing the algorithm
(the same for all robots) – Compute, and (iv) it moves towards the point it
just computed – Move. After the Move it goes back to the Wait state.

The sequence: Wait - Look - Compute - Move form a computation cycle
(or briefly cycle) of a robot. The operations performed by each robot r in each
state will be now described in more details.

1. Wait. The robot is idle. A robot cannot stay indefinitely idle. Initially,
all robots are in Wait.

2. Look. The robot observes the world by activating its sensors which will
return a snapshot of the positions of all other robots within the visibility
range with respect to its local coordinate system. Each robot is viewed
as a point, hence its position in the plane is given by its coordinates,
and the result of the snapshot (hence, of the observation) is just a set of
coordinates in its local coordinate system: this set forms the view of the
world of r.

3. Compute. The robot performs a local computation according to a de-
terministic algorithm A (we also say that the robot executes A). The
algorithm is the same for all robots, and the result of the Compute state
is a destination point.

4. Move. If the destination point is the current location of r, r performs
a null movement (i.e., it does not move); otherwise it moves towards the
computed destination but it can stop anytime during its movement3.

3 e.g. because of limits to the robot’s motorial capabilities.
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The robots are completely autonomous: no central control is needed. Fur-
thermore they are anonymous, meaning that they are a priori indistinguish-
able by their appearance, and they do not (need to) have any kind of identifiers
that can be used during the computation.

Moreover, there are no explicit direct means of communication: any com-
munication occurs in a totally implicit manner. Specifically, it happens by
means of observing the robots’ positions in the plane, and taking a deter-
ministic decision accordingly. In other words, the only mean for a robot to
send information to some other robot is to move and let the others observe
(reminiscent of bees in a bee dance).

2.2 Levels of Synchronization

The model, in its general setting, makes no assumptions about the level of
synchronization of the robots. Indeed, the assumptions on the level of syn-
chronization have a deep impact on computability; in fact, there are problems
that are unsolvable in the general setting but can be solved in a synchronous
setting (e.g., see [36]). The situation is analogous to the one occurring in the
distributed computing field, and the settings will be described in this section.

General Setting: Asynchronous Robots

In the general setting, no assumptions on the cycle time of each robot, and
on the time each robot takes to execute each state of a given cycle are made.
It is only assumed that each cycle is completed in finite time, and that the
distance traveled in a cycle is finite. Moreover, the robots do not need to
have a common notion of time, and each robot can execute its actions at
unpredictable time instants.

More precisely, there are only two limiting assumptions. The first one refers
to space; namely, the distance traveled by a robot during a computational
cycle.

Assumption A1 (Finite Distance). The distance traveled by a robot
r in a move is not infinite. Furthermore, there exists an arbitrarily small
constant δr > 0, such that if the destination point is closer than δr, r will
reach it; otherwise, r will move towards it of at least δr.

As no other assumptions on space exist, the distance traveled by a robot
in a cycle is unpredictable.

The second limiting assumption is on the length of a cycle.

Assumption A2 (Finite Cycle). The amount of time required by a
robot r to complete a computational cycle is not infinite. Furthermore,
there exists a constant εr > 0 such that the cycle will require at least εr

time.
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As no other assumption on time exists, the resulting system is fully asyn-
chronous and the duration of each activity (or inactivity) is unpredictable.

There are two important consequences:

1. Since the time that passes after a robot starts observing the positions of
all others and before it starts moving is arbitrary, but finite, the actual
move of a robot may be based on a situation that was observed arbitrarily
far in the past, and therefore it may be totally different from the current
situation.

2. Since movements can take a finite but unpredictable amount of time, and
different robots might be in different states of their cycles at a given time
instant, it is possible that a robot can be seen while it is moving by other
robots that are observing4.

These consequences render difficult the design of an algorithm to control
and coordinate the robots. For example, when a robot starts a Move, it is
possible that the movement it performs is not “coherent” with the current
configuration (i.e., the configuration it observed at the time of the Look and the
configuration at the time of the Move can differ), since, during the Compute,
other robots can have moved.

Restricted Setting: Semi-synchronous Robots

A computational setting that has been extensively investigated is one in which
the cycles of all the robots are synchronized and their actions are atomic.

In particular, there is a global clock tick reaching all robots simultaneously,
and a robot’s cycle is an instantaneous event that starts at a clock tick and
ends by the next.

The only unpredictability (hence the name semi-synchronous) is given by
the fact that at each clock tick, every robot is either active or inactive, and
only active robots perform their cycle. The unpredictability is restricted by
the fact that at least one robot is active at every time instant, and every robot
becomes active at infinitely many unpredictable time instants. A very special
case is when every robot is active at every clock tick; in this case the robots
are fully synchronized.

In this setting, at any given time, all active robots are executing the same
cycle state; thus no robot will look while another is moving. In other words, a
robot observes other robots only when they are stationary. This implies that
the computation is always performed based on accurate information about
the current configuration.

Furthermore, since no robot can be seen while it is moving, the movement
can be considered instantaneous.
4 Note that this does not mean that the observing robot can distinguish a moving

robot from a non moving one.
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An additional consequence of atomicity and synchronization is that, for
them to hold, the maximum distance that a robot can move in one cycle is
bounded.

2.3 Capabilities

Different settings arise from different assumptions that are made on the robots’
capabilities, and on the amount of information that they share and use during
the accomplishment of the assigned task. In particular,

• Visibility. The robots may be able to sense the complete plane or just
a portion of it. We will refer to the first case as the Unlimited Visibility
case. In contrast, if each robot can sense only up to a distance V > 0 from
it, we are in the Limited Visibility case. In the following, we will say also
that the robots have unlimited/limited visibility.
In addition, a robot cannot in general detect whether there is more than
one fellow robot on any of the observed points, included the position where
the observing robot is. We say it cannot detect multiplicity.

• Agreement on Coordinate System. The robots do not necessarily
share the same x − y coordinate system, and do not necessarily agree on
the location of the origin (that we can assume, without loss of generality, to
be placed in the current position of the robot), or on the unit distance. In
general, there is no agreement among the robots on the chirality of the local
coordinate systems (i.e., in general they do not share the same concept of
where North, East, South, and West are). We will refer to this scenario
as no agreement on the local coordinate systems. In the most favorable
scenario, the robots agree on the direction and orientation of both axes. In
this case, we will talk of total agreement on the local coordinate systems.
Note that knowledge of the directions and orientations of both axes does
not imply knowledge of the origin or the unit of length. An intermediate
scenario is when the robots agree only on the direction and orientation of
one axis; we will talk of partial agreement.

• Memory. The robots can access local memory to store different amount
of information regarding the positions in the plane of their fellows. In
particular, if the robots can only store the robots’ positions retrieved in
the current observation, we have oblivious robots. In contrast, if the robots
can store all the positions retrieved since the beginning of the computation,
we have unbounded memory robots. We will also refer to the algorithm the
robots execute as oblivious or non oblivious, depending on the assumption
made.

Note that, the conditions under which the robots operate are by definition
common knowledge among the robots.

Let us stress that the only means for the robots to coordinate is the obser-
vation of the others’ positions and their change through time. For oblivious
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robots, even this form of communication is impossible, since there is no mem-
ory of previous positions.

3 Problems and Limitations

In the following, we survey the computational results obtained so far. They
are mostly about geometric problems, like forming a certain pattern, following
a trail, or deploy the robots in order to guarantee optimal coverage of a certain
terrain. Observe that several classical problems in distributed computing (e.g.,
leader election) can be reformulated as geometric problems in our model (e.g.,
forming an asymmetric pattern).

3.1 Pattern formation

The Pattern Formation problem is one of the most important coordination
problem and has been extensively investigated in the literature (e.g., see [8,
38, 39, 41]). The problem is practically important, because, if the robots can
form a given pattern, they can agree on their respective roles in a subsequent,
coordinated action. The geometric pattern to be formed is a set of points
(given by their Cartesian coordinates) in the plane, and it is initially known
by all the robots in the system.

The robots are said to form the pattern if, at the end of the computation,
the positions of the robots coincide, in everybody’s local view, with the points
of the pattern. The formed pattern may be translated, rotated, scaled, and
flipped into its mirror position with respect to the initial pattern. Initially
the robots are in arbitrary positions, with the only requirement that no two
robots are in the same position, and that, of course, the number of points
prescribed in the pattern and the number of robots are the same.

The basic research questions are which patterns can be formed, and how
they can be formed. Many proposed procedures do not terminate and never
form the desired pattern: the robots just converge towards it; such procedures
are said to converge.

Arbitrary Pattern

In this section, we review our results on the formation of an arbitrary pat-
tern. The problem has been investigated by Flocchini et al [21, 23] and Oasa
et al. [33] in the general setting, and by Suzuki and Yamashita [39] in the
semi-synchronous setting; both investigations consider robots with unlimited
visibility.

In the general setting with unlimited visibility:

• With total agreement oblivious robots can form any arbitrary given pattern
[21].
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• With partial agreement, oblivious robots can form any arbitrary given
pattern if n is odd. If n is even, oblivious robots can form only symmetric
patterns that have at least one axis of symmetry not passing through any
vertex of the pattern [23].

• With no agreement at all, oblivious robots cannot form an arbitrary given
pattern [21].

In the semi-synchronous setting with unlimited visibility, let m be the size
of the largest subset of robots having an equivalent initial view.

• Robots with unbounded memory can form [39]
1. any pattern if m = 1;
2. only patterns whose vertices can be partitioned into n/m regular m-

gons all having the same center, if m ≥ 2.

Circle Formation

In the Circle Formation problem, the robots want to place themselves on
the plane to form a non degenerated circle (i.e., with finite radius greater than
zero).

First observe that, if the diameter of the circle is not fixed a priori, the
problem can be solved in a rather straightforward way by oblivious robots
even in the general setting: each robot computes the smallest circle enclosing
all the robots’ positions and moves on the circumference of such a circle.

The problem becomes more difficult when the diameter is prescribed. This
problem was first studied by Sugihara and Suzuki [38]. They presented an
heuristic distributed protocol that allowed the robots to form an approxi-
mation of a circle having a given diameter. The distributed protocol they
proposed (executed independently by all the robots) to let the robots form
an approximation of a circle of given diameter D. Experiments have shown
that sometimes the robots bring themselves in a configuration similar to a
Reuleaux triangle rather than a circle (see Figure 1). Successively, the pro-
tocol has been improved by Tanaka [40], that proposed a new solution that
produces a better approximation of the circle.

A variant of this problem is the Uniform Circle Formation problem:
the n robots on the plane must be arranged at regular intervals on the bound-
ary of a circle. Notice that this is the same as the problem of forming an n-gon.
This problem has been studied in the semi-synchronous setting by Défago and
Konagaya [16]; simulation results of these studies have been presented in [37].

The solution in [16] is, however, computationally expensive: in fact, it
involves the use of Voronoi diagrams, necessary to avoid the very specific
possibility in which at least two robots share at some time the same position
and also have total agreement. Based on this observation, in [7] it is presented
a new algorithm that avoids these expensive calculations.

• In the semi-synchronous setting with unlimited visibility: oblivious robots
can converge towards an n-gon [16, 37, 7].
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a

b c

Fig. 1. Reuleaux’s triangle. It is obtained by drawings arcs arc(a, b), arc(b, c), and
arc(c, a), with radii equal to D, from the vertices c, a, and b, respectively, of an
equilater triangle !(a, b, c) with sides equal to D.

Line Formation

Let us now consider another simple pattern for the robots: a line. That is,
the robots are required to place themselves on a line, whose position is not
prescribed in advance; we just defined the Line Formation problem. Note
that, if n = 2, a line is always formed. Despite the simplicity of its formulation,
this problem has some subtleties that render its solution not so easy. In fact,
the solvability of this problem heavily depends on the amount of agreement
the robots have on their local coordinate systems.

Clearly, if the robots can rely on total agreement, then the problem is easily
solved: after lexicographically ordering the robots’ positions (e.g., left-right,
top-down), the first and the last robot in the ordering define the line to be
formed. Then, all robots move sequentially (in order to avoid collisions) to
this line (see Figure 2.a).

If the robots have partial agreement, for instance on the direction and
orientation of y, the robots can not rely on an unique total ordering of the
robots’ positions. In this case the robots can place themselves on the axis that
is median between the two vertical axes tangent to the observed configuration
(see Figure 2.b). The robots on the tangent axes are the last to move.

y

x

y

a.

5

4

1
23

b.

Fig. 2. Line formation with (a) total and (b) partial agreement.
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In a recent study [15], the Line Formation problem has been tackled
by studying an apparently totally different problem: the spreading. In this
problem, the robots, that at the beginning are arbitrarily placed on the plane,
are required to evenly spread within the perimeter of a given region. In their
work, the authors focus on the one-dimensional case: in this case, the robots
have to form a line, and place themselves uniformly on it. A very interesting
aspect of the study, is that [15] addresses the issue of local algorithms: each
robots decides where to move based on the positions of its close neighbors. In
particular, in the case of the line, the protocol, called Spread, is quite simple:
each robot r observes its left and right neighbor. If r does not see any robot,
it simply does not move; otherwise, it moves to the median point between
its two neighbors. The authors prove its convergence in the semi-synchronous
setting.

• In the semy-synchronous setting, the robots executing Spread converge to
a line configuration with equal distances.

Furthermore, if each robot knows the exact number of robots at each of
its sides, it is possible to achieve the spreading in one dimension in a finite
number of cycles.

• In the fully-synchronous model, n robots can spread in one dimension in
n − 2 cycles.

3.2 Gathering

In the Gathering problem, the robots, initially placed in arbitrary positions,
are required to gather in a single point. This problem is also called point
formation, homing, or rendezvous.

In spite of its apparent simplicity, it has recently been tackled by several
studies: in fact, several factors render this problem difficult to solve, as shown
by the following

• In both the asynchronous and the semi-synchronous setting, there exists no
deterministic oblivious algorithm that solves the Gathering problem in a
finite number of cycles, hence in finite time, for a set of n ≥ 2 robots [35].

Some additional capabilities are thus needed to solve this problem (in
Table 1 we report the existing results related to the Gathering problem).

Let us first consider the case of unlimited visibility.

• In the semi-synchronous setting, n ≥ 3 oblivious robots with multiplicity
detection can gather in finite time [39].

This result has been recently improved; in fact, the same result can be achieved
even in the general setting, extending the previous work of [11]:
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Semi-synchronous
Multiplicity Detection [39]
Infinite Time [2, 13, 14]

Asynchronous

Multiplicity Detection [10]
Compass [22]

Unbounded Memory [9]
Infinite Time [12]

Table 1. Summary of additional assumptions made by the existing solutions for
the Gathering problem.

• In the general setting, n ≥ 3 oblivious robots with multiplicity detection
can gather in finite time [10].

The multiplicity detection assumption is crucial to prove the correctness
of these algorithms. In fact, the main idea is first to create a unique point p
on the plane with two robots on it, and then to move all other robots on this
point, taking care in not having other points with multiplicity greater than
one while the robots move towards p.

In contrast, the multiplicity detection is not used in the solution described
in [9]; however, it is assumed that the robots can rely on an unlimited amount
of memory: the robots are said to be non-oblivious. In other words, the robots
have the capability to store the results of all computations since the beginning,
and freely access to these data and use them for future computations.

• In the general setting, n ≥ 3 robots with unbounded memory can gather in
finite time [9].

Another study [13] has been devoted to study the behavior of a partic-
ular simple solution to the problem: the robots use the center of gravity as
gathering destination. The authors prove that this simple algorithm repre-
sent a convergence solution to the problem in the semi-synchronous setting.
In [12] the same algorithm has been proven to be a convergence solution to
the problem in the asynchronous setting.

Let us then consider the case of limited visibility. With limited visibility,
an obvious necessary condition to solve the problem, is that at the beginning
of the computation the visibility graph (having the robots as nodes and an
edge (ri, rj) if ri and rj are within viewing distance) is connected [2, 22].
In [2] the proposed protocol works in the semi-synchronous setting; however,
it is a convergence solution to the problem: the robots do not gather in finite
time. In fact, the authors design a protocol that guarantees only that the
robots converge towards the gathering point. In contrast, in [22], the authors
present an algorithm that let the robots to gather in a finite number of cycles.
However, the robots can rely on the presence of a common coordinate system:
that is, they share a compass.
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• In the semi-synchronous setting there exists an oblivious procedure that
lets robots converge towards (but not necessarily reach) a point for any n
[2].

• In the general setting oblivious robots with agreement on the coordinate
system (e.g., with a compass) can gather in finite time [22, 24].

The Gathering problem has been also investigated in the context of
robots failures. In this context, the goal is for the non-faulty robots to gather
regardless of the action taken by the faulty ones. Two types of robot faults
were investigated by Peleg et al. [1]: crash failure, in which the robot stops any
activity and will no longer execute any computational cycle; and the byzantine
failure, in which the robot acts arbitrarily and possibly maliciously.

• In the semi-synchronous setting, gathering with at most one crash failure
is possible [1].

• In the semi-synchronous setting, gathering with at most one byzantine
failure is impossible [1].

• In the fully synchronous setting, gathering with at most n−1

3
byzantine

failure is possible [1].

Finally, in [14] it is analyzed the case of systems where the robots have
inaccuracies in sensing the positions of other robots, in computing the next
destination point, and in moving towards the computed destination. The au-
thors provide a set of limitations on the amount of inaccuracies allowing con-
vergence; hence, they present an algorithm for convergence under bounded
measurement, movement and calculation errors.

3.3 Following, flocking and capture

In these problems there are two kinds of robots in the environment: the leader
L, and the followers. The leader acts independently from the others, and we
can assume that it is driven by an human pilot. The followers are required to
follow the leader wherever it goes (following), while keeping a formation they
are given in input (flocking). In this context, a formation is simply a pattern
described as a set of points in the plane, and all the robots have the same
formation in input (see Figure 3).

In [26], an algorithm solving this problem has been tested by using com-
puter simulation; the algorithm assumes no agreement. All the experiments
demonstrated that the algorithm is well behaved, and in all cases the followers
were able to assume the desired formation and to maintain it while following
the leader along its route. Moreover, the obliviousness of the algorithm con-
tributes to this result, since the followers do not base their computation on
past leader’s positions.

Finally, if the leader is considered an “enemy” or “intruder”, and the
pattern surrounds it, the problem is known as capture. Also in this case,
a procedure that assumes no agreement and solves the problem has been
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presented in [27]. The proposed algorithm exhibits remarkable robustness,
and numeric simulations indicate that the intruder is efficiently captured in a
relatively short time and kept surrounded after that, as desired. Furthermore,
the solution is self-stabilizing [17, 18]. In particular, any external intervention
(e.g., if one or more of the cops are stopped, slowed down, knocked out, or
simply faulty) does not prevent the completion of the task.

• In the general setting there is a procedure for the flocking problem [26].
• In the general setting there is a procedure for the intruder problem [27].

Leader
Initial Positions

Fig. 3. Trace of the vehicles while forming and keeping a wedge shaped formation.

4 Conclusion and Discussion

In this paper, we surveyed a number of recent results on the interplay between
robots’ capabilities and solvability of problems. The goal of these studies is
to gain a better understanding of the power of distributed control from an
algorithmic point of view.

The area offers many open problems. The operating capabilities of our
robots are quite limited. It would be interesting to look at models where
the robots have more complex capabilities, e.g.: the robots have some kind
of direct communication capabilities; the robots are distinct and externally
identifiable; etc. Little is known about the solvability of other problems like
spreading and exploration (used to build maps of unknown terrains), about
the physical aspects of the models (giving physical dimension to the robots,
bumping, energy saving issues, etc.), and about the relationships between
geometric problems and classical distributed computations.

In the area of reliability and fault-tolerance, lightly faulty snapshots, a
limited range of visibility, obstacles that limit the visibility and that moving
robots must avoid or push aside, as well as robots that appear and disappear
from the scene clearly are all topics that have not yet been studied.
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We believe that investigations in these areas will provide useful insights
on the ability of weak robots to solve complex tasks.
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