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Summary. This paper describes a parameterized distributedheed of human intervention. This also means that the com-
algorithm applicable to any directed graph topology. Theefu  plicated task of initializing distributed systems is no den

tion parameter of our algorithm is instantiated to produse d needed, since self-stabilizing protocols regain corretial-
tributed algorithms for both fundamental and high levellapp ior regardless of the initial state. Furthermore, note that
cations, such as shortest path calculus and depth-firatbsea practice, the context in which we may apply self-stabiligin
tree construction. Due to fault resilience properties ofalu  algorithms is fairly broad since the program code can be sto-
gorithm, the resulting protocols are self-stabilizingatddi-  red in a stable storage at each node so that it is always possi-
tional cost. Self-stabilizing protocols can resist trensifail- ble to reload the program after faults cease or after everty fa
ures and guarantee system recovery in a finite time. Since thaetection.

condition on the function parameter (being a strictly idemp

tent r-operator) permits a broad range of applications to be

implemented, the solution presented in our paper can be use- )
ful for a large class of distributed systems. Related Work.Silent tasks [12] are tasks where the commu-

nications between the processors are fixed from some point
of the execution. In addition to simplicity implied by the si
lence property, silent distributed algorithms may use fewe
o L resources in terms of communication operations and com-
Key words: self-stabilization+-operators —distributed sys- - mynjcation bandwidth allocation. In our model, registees a
tems — read-write atomicity — unfair scheduling used for communication between processors. Then a system
solving a silent task has the property that the contents of
the communication registers is not changed after some point
1 Introduction in the execution. When the algorithm checks that a regis-
ter needs to be changed before performing a write opera-

Robustness is one of the most important requirements of modion, all write operations may be eliminated when the silent
ern distributed systems. Various types of faults are litely System has reached a legitimate configuration. Static prob-
occur at various parts of the system. These systems go throudems, which consist to compute a global result in the system,

the transient faults because they are exposed to constamt ch fead to silent tasks: communications cease when the termi-
ge of their environment. nal configuration is reached. Examples of such tasks include

leader election, spanning tree construction or singlecgour
shortest path algorithms. Note that many tasks fundamental
to distributed systems are inherently non silent. Suclstask
clude mutual exclusion or token passing, where the contents
of communication registers have to change infinitely often i

Self-stabilization.One of the most inclusive approaches to
fault tolerance in distributed systemssigf-stabilizatiorj10,

11,19]. Introduced by Dijkstra in [10], this technique garas : .
tees that, regardless of the initial state, the system wdlhe every possible execution of the system.

tually converge to the intended behavior or the setegft- Historically, research in self-stabilization over gerhele_x-_
imatestates. Since most self-stabilizing fault-tolerant proto WOrks has mostly covered undirected networks where bidirec

cols are non-terminating, if the distributed system is eobj  tional communication is feasible (the Update protocol &f[1
to transient faults corrupting the internal node state kmit n O the algorithms presented in [14, 4]). Bidirectional comm
its behavior, once faults cease, the protocols themselwas g nication is usually heavily used in bidirectional selftsta

antee to recover in a finite time to a safe state without theiZing Systems to compare one node state with those of its
neighbors and check for consistency. The self-stabilialng

* An extended abstract of this paper was presented i2rtien- gorithms that are built upon the paradigm of local checking
ternational Conference On Principles of Distributed Sysse (see [6,7]) use this scheme.
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The lack of bidirectional communication was overcome fers no overhead. Our system performs in the fine-grained
in recent papers using several techniques. Strong comnecti read/write atomicity model, where read and write actions oc
ity (which is a weaker requirement than bidirectionalitygsv  curring on different processors may be interleaved at will.
assumed to build a virtual well known topology on which the Also worth of noting is the fact that our algorithm does nat re
self-stabilizing algorithm may be run (a tree in [2], a ring quire any fairness property on the executions other than sim
in [3]). As many self-stabilizing algorithms exists for gg  ple progression.

([20]) or trees ([1]) in the literature, these constructonay
be used to reuse existing algorithms in general networks.

The restriction of having either bidirectional communica- Outline of the paper.The rest of the paper is organized as
tion media or strongly connected unidirectional networles a follows. In Section 2, we give some definitions pertinent to
reasonable when the task to be solved is dynamic and the syhe protocols and proofs. The self-stabilizing paramegeti
tem is asynchronous:g.for traversal algorithms, a token has protocol is presented in Section 3. The correctness reagoni
to be able to pass through every node infinitely often. How-for the parameterized protocol is given in Section 5. Applic
ever, there exists several silent tasks for which globalmmam  tion to fundamental problems in distributed computing area
nication is not required. For example, the single sourcetsho are presented in Section 6. We discuss the extension of our
est path task only requires that a directed path exists from &eas and make some concluding remarks in Section 7.
node to any other node, but not the converse.

In [5], Attie et al. used the formalism of Iteration Sys-
tems to give sufficient conditions for convergence of system 2 Model
solving related tasks. An important subset of silent tasks i
computing routing metricse(g. to perform maximum flow 2.1 Distributed System
routing), so that Gouda and Schneider in [17] provided a con-
dition-based approach to determinate if a particular rmuti Graph modelingA distributed systens® is a collection of
metric is maximizable. Silent tasks have been solved infa sel processors linked with communication media allowing them
stabilizing way on directed graphs that are not strongly con to exchange information. Such a system is modeled biy a
nected in [9], but the underlying network was assumed havingected graph(also calleddigraph) G(V, E), defined by a set
no cycle (DAG). The absence of cycles permits to avoid casesf verticesV and a setF' of edges(vy, v2), which are or-
where corrupted data moves forever in the system, prexgentindered pairs of vertices df (v1,v2 € V). Each vertex: in
it from stabilizing. V represents a processBy of systemS. Each edgéu, v) in

E, represents a communication link fraf) to P, in S. We

give now some graph definitions.
Our Contribution. In this paper, we concentrate on solving ~ The in-degreeof a vertexv of &, denoted by~ (v) is
silent tasks in a self-stabilizing way on a truly general-net equal to the number of verticessuch that the edge:, v) is
work, where no hypothesis are made about the strong conin £. The incoming edges of each vertexf ¢ are indexed
nectivity or the presence of cycles. As in [5], our solution from 1 toé~(v). We denote byind(u, v) the index of the
is by giving a condition on the distributed algorithm. How- incoming edggu, v) in v.
ever, in [5], the condition is given in terms of global system A directed path?”,,,,, from a vertexv, to a vertexuvy
property, while our condition is independent of the taskeéo b in a digraphG(V, £) is a list of consecutive edges @,
solved, and is only determined by the algebraic properfies o(vo, v1), (vi,v2), ..., (vk—1, vx). The length of this path is
the function computed locally by the algorithm. While our &. A cycleis a directed path where, = v;. A loopis a cy-
objectives — deciding whether an operator-based algoiighm cle of length 1. To make some wording shorter, we define an
self-stabilizing — are different from those of [17] — decidi  empty pathas an empty list of edges. Its length is 0. &k
whether a metric is maximizable —, our two approaches dementary patlis a path where each vertex is encountered at
share common points. Thidempotencyof the local opera- most once. A digraph without any cycle is calledlizected
tor plays a crucial role in the theory of [17], while tB&ict acyclic graph (DAG)
idempotencysee Definition 5) of the local operator plays a  The distancebetween two vertices, v of a digraphG:,
fundamental role here. Unlike many approaches, our salutio denoted bydg (u, v), is the minimum of the lengths of all
does not require any knowledge about the network: no sizeglirected paths from: to v (assuming there exists at least
diameter, maximum degree are needed. one such path). Thdiameterof a digraph&, denoted by

To this purpose, we provide a parameterized algorithmDiam(G), is the maximum of the distances between all cou-
that can be instantiated with a local function. Our paramete ples of vertices inG between which a distance is defined.
ized algorithm enables a set of silent tasks to be solved selfThestrongly connected componesfta vertexv in a digraph
stabilizing provided that these tasks can be expressedghro G(V, E) is the set of all vertices of V' such that there exists
local calculus operations calledoperators. The-operators ~ a directed path (possibly empty) fromto w and a directed
are general enough to permit applications such as shorteg@ath fromw to v. (& is strongly connected any v in G has
path calculus and depth-first-search tree constructiobeto the same strongly connected component.
solved on arbitrary graphs while remaining self-staliligi Thedirect descendantsf a vertexv of a digraphZ(V, £)

In addition, since our approach is condition based, thereare all the verticess of ¢ such that the edgey, w) is in E.
is no additional layer used to make an algorithm that satisTheir set is denoted by (v). Thedescendantsf v are all
fies this condition tolerant to transient failures. In faghen  the verticesv such that there exists a path franto w. Their
no transient faults appear in the system, the performarfee suset is denoted by (v). In the same way, theirect ancestors
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of a vertexv of G are all the vertices of G such thattheedge wri t e action, but not both):; is called theinitial configu-
(u,v) isin E. Their set is denoted by ' (v). Theancestors  ration of e. This scheduling policy is known as thead-

of v are all the vertices such that there exists a path fram wri t e atomicity model (see [14]). It should be noted that
to v. Their set is denoted by (v). Finally, I'*(v) denotes  r ead andwr i t e actions are executed asynchronously,

the set of all ancestors of v such thatlg(u, v) = &, while All executions considered in this paper are assumed to be
I'Z*(v) denotes the set of all descendantof v such that ~maximalmeaning that the sequence is either infinite, or it is
dg(v,w) = k. An orphanof a digraph(; is a vertex that has finite and no action is enabled in the final configuration. Note
no ancestor. Avatriarch s of a digraph’s is a vertex such that  that no particular fairness assumptions are made.

there exists a directed path fronto all other vertices. The set of executions in systashstarting with a partic-
ular initial configurationc; € C is denoted by.,. The set

of executions in syster§ whose initial configurations are all
elements of’; C Cis denoted ag.,. The set = & is the

Communications A communication from processa?, to . .
set of all possible executions.

processof?, is only feasible if vertex: is a direct ancestor of
vertexv in G. Such a communication is performed through a
communication register. Procesder writes the datum to be
sent tol, into its dedicated register regThenP, is ableto 5 o gelf-stabilization
read the datum in regand to use it.
The processors maintain two types of variabfietd vari-
ablesandlocal variablesThe field variables are part of the A specificationof a distributed system is a predicate on ex-
shared register which is used to communicate with the neighecutions of that system. A systematches its specification
bors. The local variables defined in the program of a procesif all its possible executions satisfy the specificationw
sor cannot be accessed by its neighbors and is used for locapnsider onlystaticproblems {.e., problems whose solutions
computations only. A processor may only write into its own consist of computing some global result), the specification
shared register and can only read shared registers owned Ian be given in terms of a set of configurations (such specifi-
its direct ancestor processors or itself. So, the field béeg ~ cations are callesilent specificatiorjsEvery execution satis-
of a processor can be accessed by the processor itself and Bing the specification would be a sequence of such configu-
its direct descendants. rations. The set of configurations that satisfy the spetifina
Processopv performing a Ca” to the ead (regu) func- Of S'[atiC pr0b|emS_iS Ca”ed thesetl@ﬁ”ﬂate Conﬁgurations
tion (u € I';'(v)) atomically reads regand obtains the list (denoted a<’), while the remaindet \ £ denotes the set of
of field variables that are stored at this register. ProceBso  €gitimate configurations _
performingwr i t e(list) atomically writeslist to the corre- We need to introduce the concept of an attractor to define
sponding fields of reg self-stabilization. Intuitively, an attractor is a set ofdigura-
tions of the systens that “attracts” another set of configura-
tions of S for any execution irf. In addition, if the attractor
is closed, then any subsequent execution of the algorithm re

Processors. A processor is a deterministic sequential machi- mains in the same set of configurations.

ne that runs a single process. Té$tateof a processor is de-

fined by the values of its local variables. The state of a link

(u,v) of E is defined by the values of the field variablejeg Definition 1 (Closed attractor). LetC, andC, be subsets of

A processomction (or step) consists of an internal computa- C. C. is aclosed attractofor C; if and only if for any config-

tion followed by either a ead or awr i t e action. Internal ~ uratione; in Cy, and for any execution = ¢y, ¢, ... in &,

actions of processors are not significant to their neighbers  there exists > 1 such that for any > ¢, ¢; isinC,.

cause the neighbors have no access to the variables that are

manipulated by those actions. Thead andwr i t e actions  Definition 2 (£-stabilization). Let £ be a non-empty set of

are the only way for two processors to communicate. configurations  C C) of a distributed systerS. S is £-sta-
bilizing if and only if £ is a closed attractor foc.

Protocol. A distributed algorithmP (or protoco)) is a col-  Definition 3 (Self-stabilization). Let P be a distributed al-

lection of local algorithms. A distributed systefhexecutes  gorithm (or protocol). LetS be a distributed system that ex-

P if every processor of executes a local algorithm &f. ecutesP. Let £ be a set of configurations & that defines
a silent specification. Protocd? is self-stabilizing ifS is £-
stabilizing.

Configuration and ExecutionsA configurationof a distri-

buted systen® is an instance of the states of its processors

and links. The_ set of configurations of is o!enote_d ag. 3 Parametric distributed algorithm

Processor actions change the system configuratiorexén

cutione is a sequence of configurations ¢, . .. such that

fori =1,2,..., the configuratiom; , is reached frone; by In this section, we describe a parametric distributed palto

a single step of one processor (a single step of one processoomposed, on each node, of a local algorithm dengted

being internal computations followed by either@aad ora  and parameterized by a local function.
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3.1 Programming Notation

The local algorithm of each processor consists of a set of ac- :
tions:(actior) - - - (action). Eachactionhas the form: :

<=

M, [~ () + 1}

(guardy — (statemerit

A guardis a boolean expression over the local variables of
a processor and the field variables of its direct ancestors. A
statements allowed to update the variables of the proces-Fig. 1.Nodev Layout
sor only. Any action whose guard tsue is said to been-
abled A processor with one or more enabled actions is said
to be privilegedand may make anoveexecuting the state-
ment corresponding to the chosen enabled guard. When no
rule is enabled on any node in the distributed systerthe
corresponding configuration is callegfrminal If for any ini-

tial configuration, and any subsequent execution, a tefmina
configuration is reached, the systehis silent

. Fig. 2. Nodewv Simplified Layout
3.2 Informal Description

Each processof’, has two local constants stored in Read 3.3 Formal Description

Only Memory: theinitial datum, A, [0], and the set of its _ )

direct ancestorsg’; ! (v). To replicate values from its direct More formally, the local algorithnP A parameterized by a
ancestors and ensureead/wr i t e atomicity, P, also has  function<g, — and denoted by A|4, when necessary —
8~ (v) local variablesi,[1], ..., M,[6~(v)], theincoming ~ consists of two guarded rules (see Algorithm 3.1).
variables To store the result of local execution, a single field
variable is used ab,: M, [6~ (v) + 1], theoutgoing variable
which is stored in the field registesg,, .

Algorithm 3.1 The P.A|,, local parametric algorithm at
nodev (parameter is functior, )

Copying  (Ri):
<Pu c Fgl(v) :

Notation 1 We denote by the set of all the values that can
be stored in registers and local variables of processors.of (o := read (M, [6~ () + 1])) >
On each processdt, of S, the local algorithnP.4 main- A M, find(u)] # a
tains a function denoted as, defined ort by: .
— M,[ind(u)] := o ;
Qy: SO+ —S

M,[0..67 (v)] = <1y (M, [0..6~(v)]) Computing  (Rz|q,):

(read (Mv[(s_(v) + 1]) #<y (Mv [0..5_(0)]))
The input to<, are the initial datum/, [0] of v and the
values of the local variables copied from the direct angesto
into M,[1..6~(v)]. Function<, outputs the current state of
the processor computing the function. This result is stared

My[0~ (v) + 1].
The dynamic of each processBy is as follows:

—s write (M,[57(v) + 1], 9 (M.[0..6(0)]));

The first rule, calledCopying ruleand denoted by,
copies the direct ancestor field variables into the proe&sso
Ipcal variables, so that they can be used at a later time. It

ses a local variable to avoid reading the field variable
M, [0 (v)+1] twice, and implements threead/wr i t e atom-
icity. In Ry, an expression of the forrfleft) := (right) is
used. The first operaridft must be a variable while the sec-

(1) P, reads data in the registers of its direct ancestors an
copies them into its incoming variables

My[1], My[2], ..., My[0™ (v)]

(2) P, performs a local execution using functien, its ini-
tial datuma/, [0] and the received data

M), ..., My[6~ (v)],
and stores the result into its outgoing variable:
M6~ (v) +1] « < (MJ0],..., My[67(v)])

Figure 1 represents nodealong with its M, registers,
while Figure 2 depicts a simplified vision of node with-
out showing variabled/,[1] to M, [6~ (v)]. For the sake of
simplicity, this simplified version is used in the forthcomi
figures.

ond operandight may be a constant or a variable. The op-
erator:= assigns the value oight to left and always returns
true.

The second rule, calleBomputing ruleand denoted by
R» (or R2|4, when necessary), computes thig function
with the previously copied variables as input and stores the
result intoA, [0~ (v) + 1].

4 r-operators

As explained in previous section, we concentrate on a sin-
gle local algorithm that processes at each node the incoming
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data through a given operator that parametrizes the ahgorit \ Fs= (o) v —
Such an operator is sufficient to describe the behavior of the : ~ '
whole system. In this paper, we investigate sufficient condi ' rz — ry —>
tions on the operator so that the system is self-stabiliing _ .
a given specification. We begin to define theperators as an _—n . 1 —
extension of Tel's infimum functions. o

M, [0]
4.1 Infimum Functions Fig. 3.Nodev Simplified Layout

Thanks to Tel results (see [20]), the distributed protoasl d . _

scribed above terminates when ed@H local parametric al-  Definition 5 (Strict idempotency). An r-operator < based

gorithm is instantiated by an infimum over the set of inguts N thes-operator @ is strictly idempotentf, for any z ¢

An infimum(hereby called ar-operato) & over a se€is >\ {¢al, & <g r(x) (8.2 2¢ r(x) andr(z) # ).

an associative, commutative and idempotent binary operato  For example, the operatefinc(z, y) = min(z, y+1) isa

Such an operator defines a partial order relatignover the  strictly idempotent-operator or¥, U {+oc}, with +cc as its

setS by:# =g yifand only ifz © y = x . Moreover, [20]  dentity element. It is based on theoperatommin and on the

assumes that there exists a greatest elemefit danoted by pjjective-mappingr(x) = « + 1. Such an operator can also

eq, and verifyingr <g eq foreveryz € 5. If necessary, this  pe defined on the finite s¢0, 1, ... ,255}. In that case, the

element can be added o In the following, we assume that ;..mapping is defined by(z) = = + 1 for « € {0,... , 254}

an s-operator admits such an element in its definition of setandr(255) = 255.

S. ) o ) We now definer-operators that accept an arbitrary num-
Hence, thgS, ©) structure is albelianidempotent semi-  per of arguments.

group* (see [8]) withes, as identity element. When para- o _ _ _

meterized by such as-operatorss, the parametric local al- Definition 6 (r-operator). A mapping< from 5™ into S is

gorithmP Al yields a silent distributed protocol. However, anr-operatorif there exists an-operator® ons andn — 1

some counter examples show that such a protocol is not selffomomorphisms (calledmappingsy, ... ,r,—1 of (S, ®)
stabilizing (see Section 5.3). suchthakq (o, ..., #n—1) = 2o®ri(21)B: - -Srn_1(Tn-1)
foranyaxy,...,z,_1inS.

Definition 7. Ther-operator< fromS” into S based on the
s-operatord is idempotent (resp. strictly idempotent) if, for
. . an S (resp. S and anyr-mappingr; (1 <
Starting from Tel results, [15] proposed a distorted algebr ; <yfl)€l, L E(Z)E(res\p{;@j) i (x) |yz - fp r%;)(arﬁ
— ther-algebra —, that generalizes the Abelian idempotentr'(x) # x)—@ ' R

semi group. To ease comparison with this structure, we first' '

recall definition and basic properties binary r-operators
(see [15)). 4.3 Hypothesis

4.2 r-operators

Definition 4 (Binary r-operator). The operatokiis abinary  |n the rest of the paper, we assume that every procedsor
r-operator onS if there exists ars-operatorg onS and an  of § yses theP.A|, local algorithm instantiated with an
homomorphism dfs, &) — calledr-mapping and denoted by - gperator<, . We do not require that all thoseoperators,
r —such that satisfies, forany andy inS,z<y = #®r(y).  pe the same for each nodeHowever we assume the follow-

The following proposition states thatoperators consti- ing hypothesis.

tute a larger class of operatorssasperators (infimum). Hence Hypothesis 1 The r-operators used by the processorssf
some results proved feroperators still apply fos-operators.  are all based on the sameoperator @, and the ordering
N relation defined bys is a total order relation or.

Proposition 1. Let « be anr-operator onS, based on the- i _
operator® and ther-mappingr. Then it satisfies the follow- HyPothesis 2 All operators are defined on sét Moreover,
ing properties (i) r-associativity(z ay) <r(z) = x <(y<z); if Sis infinite, then the two following conditions are satisfied:
(if) r-commutativityr(x) ay = r(y) <z; (iii) r-idempotency: ® any sequence of strictly increasing elements is unbednd
r(z) <z = r(z) and(iv) identity: z < eg = x. and (i) no initial datum contains the; element.

Hypothesis 1implies that for any set of déta, . . . , zx },
we have®{xzq,...,zx} € {zo,...,2x}. Hypothesis 2 is
satisfied by or 7Z, but not by@) orIR. In practice, since mem-

Proposition 2. Let< be anr-operator based on theoperator ~ 1Y is only available in bounded flavor, all considered segs a

@®. Then the following propositions are equivalent: {i)is finite. _ _
idempotent; (ii) for any: € S, z <4 r(z). Moreover, if< is When each processor performs local computations using
idempotent, then(eg ) = eg. N an r-operator, each edge of the distributed system is associ-

ated with anr-mapping (see figure 3). The result of an
! The prefixsemimeans that the structure cannot be completed tomapping associated to an edge is called-augmented vari-
obtain a group, since the law is idempotent. able Note that if all the--mappings of a nodeare equal, the

The following proposition allows us to introduce tbteict
idempotencyhat will be useful below.
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operator used by processBy is a binaryr-operator, while if There remains the case when Rilde at u (that includes

they are all equal to the identity functid) itis ans-operator.  read, (reg, ) action following bywrite, (reg,) action)isin-
terleaved with Rule?; atv € I'}'(u). The two actions in-

Notation 2 We callr'v"d(“’”) ther-mapping corresponding to  volve the same registeeg,,, and the resulting computation

the incoming edgéu, v) of v. When no confusion is possible, would be as follows:

we also denote thismapping by, with1 < i < §~(v). To

shorten our notations, we assume that, for any nadéere ... ,read,(reg, ), read,(reg, ), write,(reg, ), . ..
is also anr-mappingr? corresponding to the initial datum, _ o _ _
and we state that) = Id. Now this computation is equivalent to the following, where

Rule R, is executed atomically:
Notation 3 Let P, be a path(up, u1) ... (un_1, us) in
G. To each of its edgds:;, u; 1) corresponds the-mapping ... ,read,(reg, ), read,(reg, ), write,(reg, ), . ..

rL"iff““’“). The composition of suchmappings along the

: : . _ Thus, any interleaved computation is equivalent to a compu-
path is calledr-path-mapping and is denoted &g, ., = tation where Rulédz- is executed atomically. O

ind{ua—run) o o pndoa) (Franch composition of the ap-
plications).

5.2 Idempotency yields silent distributed computations
5 Proof of Correctness Proposition 4 (Silence)Consider a distributed systefithat

satisfies Hypotheses 1 and 2, and where each procdgsor
In this section, we prove th#t) rules of theP.4 local para-  runsthe local parametric Algorithm.A4 |, instantiated with
metric algorithm can be considered as atomic although Rule strictly idempotent-operator <i,,. Then each execution is
R, contains one ead and onew i t e actions (see Sec- finite.
tion 5.1),(ii) if every local parametric algorithm is instanti-
ated by an--operator that is strictly idempotent, the resulting Proof. We wish to prove that, starting from any initial con-
distributed protocol is self-stabilizing for the intendgoec-  figurationc,, any execution is finite,e. after finite time, no
ification (see Sections 5.2 and 5.3), wher§} if somer-  rule (; or Rs) is enabled.
operators are not strictly idempotent, the resulting itisted In any initial configuratior; , there exists a finite number
algorithm is not self-stabilizing (see Section 5.4), andlfin  of data in the network, either stored in the Read Only Mem-
(iv) we investigate complexity results related with the stabi-0ry, in some incoming variable¥/, [i], 1 < i < §~(v), for
lization time of our algorithm (see Section 5.5). anywv in the network, or in some outgoing variabl, [6~ (v) +
1]. Without loss of generality, one can consider that all the
results built by the processors of the distributed systesn ar
5.1 Read/write Atomicity stored into a formal expression where thenappings are
not computed. For example, if the processgrhaszg in

In this section, we prove that our local parametric Algarith M, [_0] andz, o T (v) in M, [1..67 (v)], then the infpr-
P.A conforms to the ead/wr i t e atomicity specifications Mation stored intalZ, [6~(v) + 1] after applying Rulef; is

as stated in [14]. In the algorithm, the first rule can be yafel T (Mu[i]), foroneiin {0,..., 47 (v)}, where
assumed atomic, but the second rule has to be checked thor- 0
oughly. ry (My[0])

i G D (M[1])

o (Muli]) = o ...

Proposition 3. Rules R; and R- of local parametric Algo- -
rithmP.4 can be considered as atomic. @ W (My[6~(v)])

Proof. Rule R; contains only one ead statement and some We are now able to consider moves of the initial data during

internal actions, and hence, can be considered atomic in than execution of the system.

read/wr i t e atomicity model. Any copying RuleR; moves ther-augmented datum of
Rule R, contains ong ead statement and onerite  the outgoing variablé/,[6~ (u) + 1] of each direct ances-

statement, both using the same registgr,. In ther ead / tor » of v into the incoming variabled/, [Ind(w, v)] of v.

wr i t e atomicity model, these two actions can be interleavedThis erases the previously stored expression in these incom

with other processor actions. Now we prove that any sucling variables. The execution of a copying rule can be inter-

interleaving is equivalent to an execution where Rhleis preted as &orizontal movéretween two neighbor nodes.

executed atomically. Any computing RuleR, moves ther-augmented datum
Let u be the owner ofeg, andI'}*(u) denote the set of  stored intoM, [4] for a singlei in {0,...,6=(v)}, in a new

u’s direct descendants. Interleaving Rieatu and RuleRs expression!, (M, [¢]) which is stored intoM,[d~ (v) + 1].

atv (v # u) is equivalent to considering them as executing This erases the previously stored expressiof/ifd~— (v) +

atomically since they apply to different registe®,(apply  1]. The execution of a computing rule can be interpreted as a

both of its two actions to the same register). For the same reavertical movenside one node.

son, interleaving?, atu andR; atv ¢ '} (u) is equivalent From the construction of the algorithm, the two following

to considering them as executing atomically. properties hold in any execution at any nade(i) between
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any two executions of Rul&; on v, at least one Rul&; is nodes in the system are legitimate (and a configuratiof in

executed on, (ii) between any two executions of Rulg on is reached).

v, at least one Rul&, is executed on some direct ancesior Since we supposed that theoperator® defines a total

of v. Since the network is finite, it is sufficient to prove that order, one can sort, for any given configuration, the legitam

either a nodes may not execute Rul&, forever or that a incoming variables of all the nodes of the system.

nodev may not execute Rul&; forever. We choose the later o _ ]

approach. Definition 9 (A°). Let ¢ be a configurationA® denotes the
Suppose that there exists some nedef S such that sorted set_of all Iegltlmatglncommg variablesdnUsing the

v executesR, infinitely often. Since initially there are a fi- total ordering relation~g induced bys,

nite number of values, there exists one valuthat is moved . e e .

vertically through Rule&?; infinitely often at nodes. By hy- AT = A6, AL, A

potheses, any-mappingr verifies that, forany € S, y <¢

r(y). From Hypothesis 2, there exists a configuraticsuch WIth A7 < Ajfori < j. Foranyiin {0, , k.}, A7 denotes

that either (1) M, [0] <o r(...(w)...) or (2) M,[0] =  thei'™ element ofi°.
;(' 3 (ﬁgldg) = ¢g, the maximum element &f (in sense of Moreover, for any given configuration, one can sort out
=a), -

the nodes of the system into several distinct sets. Infdymal
the partition ofV” into the?;: sets collects nodes sharing a le-
gitimate variable. Thew§ contains nodes having the small-
est legitimater-augmented variabla§, ¥y contains nodes
having smallest remaining-augmented legitimate variable
A§ € A\ {A¢}, and so on. Since all nodes have at least one
legitimate variable ¥/, [0] is stored in ROM), th@¢ sets de-
fine a partition ofi” at configuratiore.

(1) For the first case, consider that the result of the local
computation is always lower or equal (in the sense pfthan
M,[0]. Itis then different frony(...(w)...). Hence, from
this point, no vertical move @b may occur aw, which con-
tradicts the hypothesis.

(2) In the second case, wherg .. (w)...) = M,[0] =
eq, any subsequent-mapping would leave the result un-
changed. (idempotency yield& ) = eg, See Proposition 2).
Then from this point, no additional vertical move@fmay  pefinition 10 (#¢). Let ¢ be a configuration¥? is the set of

occur atv, which also contradicts the hypothesis. the nodes of the system satisfying the following criteria:
In any of the two possible cases, the hypothesis that there
exists one node that executes Rulé&; infinitely often is 30,0 <i <6 (v),
contradicted, which proves that rufg, is executed only a fi- . L (M [i]) = M,[4]
nite number of times in systeth From the strict interleaving o =qvevst U(M [i]) = As,
relation between ruleB, and R, we can conclude that no in- Vn' < n,vé lI/C,
finite execution (in the sense that some rules remain enpbled
may occur in the distributed system we considen. Lemma 1. In any configuratiore, there is no legitimate out-
going variable smaller thany.
5.3 Strict-idempotency yields self-stabilizing distttl Proof. Any legitimate variable is equal to an expression built
computations with initial data increased by strictly idempotenpath-map-

pings. Suppose that there exists a configuratisach that
We define the legitimate property for nodes through the le- 3 .
gitimate property for node variables. We denotediy) the L (My[07 (v) +1]) <& AG

legitimate value of variable. We state:
Then we have

Definition 8 (Legitimate output).

(Leg put) o [P MLIO)) w € TG (v). ] e

rp (M, [0]), P._,,elementary path & 7o
LM~ (v) +1]) =@{ uelg(v),
P,_., an elementary path and then there exists € I';; (v) and anr-path-mappingp
such that
For any node, if M, [0~ (v) + 1] = L (M,[6~ (v) + 1])
the outgoing variablé/, [§~ (v) + 1] is legitimate An incom- M,[0] <g rp (Mu[0]) <g AG
ing variable M, [Ind(u, v)] is legitimateif A, [Ind(u,v)] =
L (My[d~ (u) + 1]). For any node, the initial datuma/, [0] ~ Which is impossible, by definition ofj. O
is legitimate in any configuration, since this datum is stiore
in Read Only Memory. A node is legitimateif its outgoing
variableM, [§~ (v) + 1] is legitimate. Given these definitions,
alegitimate configuratioms simply a configuration where all
nodes are legitimate: the s&bf legitimate configurations for
S is defined asvl € £, Vv in V, v is legitimate in configura- £ (17, (6~ (v) + 1)) = ri (£ (M, [i])) for oneiin {0,... 6 (v)}
tion!.
We now wish to prove that the systemisstabilizing (see  and since is in ¥,

Definition 2). This is by proving that in any terminal config-
uration (which is eventually reached by Proposition 4), all L(My[07(v) +1]) =g Af

Lemma 2. Any nodev of &g verifies C(M,[6~ (v) + 1]) =
L(My[0]) = M, [0] = AG.

Proof. We have:
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But, following Lemma 1, no legitimate variable is smaller Proof. We explicitly expandPOCj1 as follows:
thanX§, which means that
Poc,tl s IweG,dn, > 0,ve v,

L(My[6™(v) +1]) = A§ Jui € I (v),
dny > 0,uy € Wﬁtl,
Now suppose that> 0: (u1,v) € E,

. My, [07 (ur) + 1] <o Ay
LM, (v) +1]) = ! (L(M,[i _ _
(ML[07 () 1)) = v (C(ALL)) Consider a node € ¥;*. Following Lemma 2, we have

Since ther-mappings are strictly idempotent, we have: L(M,[6™ (v) + 1)) = M,[0] = XS
v — v — Q0

L(M,[i]) <a ry (L(M,[1])) Suppose now that in configuration the nodev is non-legi-
<@ AG timate:
which is impossible by definition of¢. Hence My[67(v) +1] # £ (M,[67 (v) +1])
- _ _ Since the configuratios is terminal, RuléR ; is not enabled,
LIM[8™(v) +1]) = LM, [0]) = M. [0] which means that:
D M5~ (v) +1] = @ {r, (M[d)),0 < i <67 ()}

<o M, [0]

For a given configuratior, we consider the following As-
d g “ g (can not be greater;

sertion”? ., which is of technical use in the induction proofs,

and informally described hereafter. if equal then legitimate)
<a AG
Pe,: weG, Ing > nveEVE Hence the node has at least one incomimgaugmented vari-
Cogu e rsi), ... un EUFG_’“(U), able smaller thany!:

Vi,l<i<k,§|ni>n,uieﬂf, - nd(uyq,v cy
(g U_k—JE E, ... (w2, uy) €E (u1,v) € E Fus € FGl(U)arlv d(u, )(Mv“”d(ul,v)]) <& Ay

My, [07 (ue) +1] <a - .. Since all the-mappings are strictly idempotent, we have:
<g My, [67 (1) +1]
< AS Juy € I (v),
M, [Ind(uy, v)] <a oY) (M, [Ind(uy, v)])
Informally, ¢ , states that there exists an elementary path <p G

of lengthk of illegitimate distinct vertices in configuratian

(and such that the illegitimate values are smaller thanIn- Again, since the considered configuratignis terminal, all
deedw € ¥¢, withn, > n means thatthe smallest legitimate the incoming variables of the nodehave correctly been co-
r-augmented incoming variable ofis A¢ , which is greater ~ pied (RuleR is not enabled) from the direct ancestorsyof

or equal to\¢ . If the outgoing variable of is smaller thar¢,, Formally, we have:

then this value has been obtained by anoth@ngmented in- 1

coming variable, smaller thaxf,. Hence, this incoming vari- Fuy € I'g™(v),

able cannot be legitimate, and therefereannot be legiti- My, [07(w) +1] = ]‘{Z['”d(ul’ v)]

mate too. Using the same reasoning, all nodes on the path are <@ (“1’”)(Mv[lnd(u1, v)])
non-legitimate. <@ A

We now wish to prove that in a terminal configuratign _ .
all nodes ofV” are legitimate. The proof is by recurrence on NOte that(u1, v) is a path of length one. Since
thewgt_ sets, which d_efine a partitior_w of at configuratiorz; . Mo, [0 (u1) + 1] <a XS

This recurrence is segmented into base case (Lemma 5)
and induction step (Lemma 8). The first part (base case) ishe nodeu; is non-legitimate (Lemma 2). We proved that,
proved by recurrence ohin P, wherec, is a terminal con-  if there exists a terminal configuratiep in which nodev is
figuration (base case: Lemma 3, induction step: Lemma 4 anglon-legitimate, then AssertioR;*, holds, which means that
conclusion: Lemma 5). In the same way, the induction step ishere exists a path of length one of non-legitimate distinct
proved by recurrence omin P, (base case: Lemma 6, in- nodes. O
duction step: Lemma 7 and conclusion: Lemma 8). _ i i _

For each part, the proof is based on the fact that since thb€Mma 4. In any terminal configuration, where there exists
network is finite, there can not exist an infinite elementary? € %' such thatv is non-legitimate,/%; ;. holds, for any
path of non-legitimate nodes. ke N\ {0}.

. ) . . Proof. We prove by recurrence that, if there exists a terminal
Lemma 3. In any terminal configuration, where there exists configuratior:, where node € ¥ is non-legitimate, then,
v € ¥§' such thaw is non-legitimateP;, holds. for anyk € I\ {0}, P<', holds 0

: Py .
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Base case.The base casé: (= 1) is proved by Lemma 3.

Induction step. Suppose that there exists a terminal configu-

rationc, and an integek > 1 such that’;, _, holds:

P

0 k-1 " JveG,dn, > 0,v eV,

Ju, € FG_l(v), c L, Ug_1 € FG_(k_l)(v),

Wil < i<k, 3ng>0,u € W,

(up—1,up—2) € B, ... (uz,u1) € B, (u1,v) € K
M [(5‘(uk_1)—|—1] <@ ...

Uk—1

Sincee, is terminal, RuleR, is not enabled and the outgo-
ing variablesM,, _,[6~ (ux—1) + 1] of any nodeuj_; of

;% Y(v) is equal to its initial datuniz,, _, [0] or to one
of its incoming variable, augmented by itanapping,
% (]\41“6_1

v

[1]) 1 <@ <6 (upn)

However, by definition, there is no initial datum smallerrtha
Ag'. Then, we have:

Jug € I'5"(v), (wr, up—1) € E,
b=t (M, Ind(ug, we—1)])
My, [6™ (ug—1) + 1]
<@ .-
'<@ Mul[é_ (U1
<@ Ay

)+ 1]

Sincec; is terminal, RuleR ; is not enabled and each incom-
ing variable of the nodes iﬁG_(k_l)(v) have correctly been

copied from the outgoing variables of the nodesF'g\’“(v).
Then, we have:

Juy € FG_k(v),
My, [07 (ur) +1] =

(ug,up—1) € E,
My, [Ind(ug, ug-1)]

Ther-mappings are strictly idempotent, so :

Eluk‘ € F (U), (ukauk‘—l) € Ea

My, [67 ( k) +1] <o My, [07 (ur—1) + 1]
-<@ S
< My, [07 (u) + 1]
<@ Ay

Which in turn is a rewriting of asserti

Conclusion. Hence we proved by recurrence that assertion

Py, holds foranyk € N\ {0}. O

Lemma 5. In any terminal configuration,, no node inZ;*
is non-legitimate.

Proof. From Lemma 4, in any terminal configuratien 7y’
holds for anyk € I\ {0}. Since P cannot hold fork

Lemma 5 established the base case for the recurrence on
thevS sets. We now prove the induction step with Lemmas 6
and 7.

Lemma 6. If there exists a terminal configuratiapsuch that
allnodesu € ¥;*U...UW, " | are legitimate and there exists
a nodev in ¥ which is non- legitimate, theR;*; holds for
n € N.

Proof. We explicitly expandP;’, as follows:

Pyt s v e G an, > nv e,

Jur € 51 (v),

dny > n,u; €
(ug,v) € E,

My [67 (u1) + 1] <g AY

e

ni’

Consider a node € ¥¢+. By definition ofSt, there exists an
integerq, 0 < ¢ < ¢~ (v), such thatd, [¢] is legitimate and

rd (My[g]) = A%. Suppose now that there exists a terminal
configuratiorr; such that the nodeis non-legitimate:

My[6™ (v) + 1] # £ (M6~ (v) + 1))

Since the configuratios is terminal, RuleéR » is not enabled,
which means that:

My[6~ (v) + 1] :@{r ])0<z<6()}
@ AL
Suppose that/, [6‘(v) + 1] = M, [0]. Then we have
M, [0] <g ALt

But sinceM, [0] = L£(M,[0]), v would not be inZ¢t. Hence
we have

Ju, € I (v)

r'v"‘““h”) (My[Ind(ur,v)]) = M,[6~(v) +1]

<& A

Since all the~-mappings are strictly idempotent, we have:

Jur € I (v),
M, [Ind(uy, v)] <a oY) (M, [Ind(uy, v)])
~® /\ct

Again, since the considered configuratiqnis terminal, all
the incoming variables of the nodédaave correctly been copied
from the direct ancestors of(Rule’R; is not enabled). For-
mally, we have:

E'Ul & F
MU1[6 (

L(v),
D) +1] = M,[Ind(u,v)]
<a r (M, [Ind (us, 0)])
~® /\ct

Since My [Ind(uy, v)] <g¢ AZ andv € ¥t M, [Ind(u,v)]
cannot be legitimate. Thu¥/,,, [0~ (v) + 1] is not legitimate
and the node:; is not legitimate, which means that there ex-
ists somen; > n such that; € ¥;;t.

We proved that, if there exists a terminal configuration
in which nodev € ¥t is non-legitimate, then Assertiafy;’

greater than the number of nodes in'the system, no vertex dfolds, which means that there exists a path of length one of

st is non legitimate. O

non-legitimate distinct nodes.O
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Lemma 7. If there exists a terminal configuratiepsuch that
allnodesu € ¥ U...UW," , are legitimate and there exists
a nodev in ¥ which is non-legitimate, theR:*, holds for

n € Nandk € W\ {0}.
Proof. We will prove by recurrence that, if there exists a ter-

minal configuratiorr; where nodes € ¥t is non-legitimate,
then, for anyk € W\ {0}, P;*, holds.

Base case.The base case:(= 1) is proved by Lemma 6:
Pyt holds.

Induction step. Suppose that there exists a terminal configu-

ratione; such thatP’*, _, holds:

Pﬁfk_l D we G aAn, > nv eV
Ju; € FG_l(v), c L, Ug_1 € FG_(k_l)(v),
Vi, 1 <i<k,3In;>n,u €V,
(up—1,up—2) € B, ... (uz,u1) € B, (u1,v) € K
Moy 6 (1) 4 1) < ...
<@ My, [67 (ur) + 1]

Sincec, is terminal, the outgoing variables

My, [07 (up—1) + 1]

of any nodeu;,_; of I';*~"(v) is equal to its initial datum
My, _,[0] or to one of its--augmented incoming variable

ri (Muy,_, [7]),1 < i <07 (up_i)

v

No r-augmented legitimate variable is smaller thgp on
ug_1, elseuy_, would be in¥ ! with »’ < n. In particular,
My, _,[0] £4 A%. Thus we have:

Juy, € FG_k(v), (up,up_1) € E,
rzlin:YkaUk_l) (MUk—l [Ind(uk’ Uk—l)])
— Muk_1[6_(uk_1) + 1]

Sincec; is terminal, RuleR ; is not enabled and each incom-
ing variable of the nodes if; “~")(v) have correctly been

copied from the outgoing variables of the nodesF'gl’“(v).
Then, we have:

Fu € T55(v), (up,up_1) € E,
Muk[(s_(uk) + 1] = Muk—l[lnd(uka uk—l)]

Ther-mappings are strictly idempotent, so :

Jug € 5" (v), (ur,up—1) € E,
Moy, [67 (ur) +1] <@ Muy_, [67 (up-1) + 1]
<&
<@ My, [07 (u1) +1]
<g A

Finally, My, _, [Ind(ux, ux_1)] is not legitimate, else;_;
would not be inZ¢t. Thus My, [0~ (v) + 1] is not legitimate
and nodeu;, is not legitimate, which means thaj, € ¥ !
with »’ > n. That givesP, .

Conclusion.Hence we proved by recurrence that Assertion
Py, holds for anyk € N\ {0} and any» € N. O

Lemma 8. If sets¥*, ... ¥ " | are legitimate, thew " is le-
gitimate.

Proof. In Lemma 7, we proved that if there exists a terminal
configuratione; such that all nodes € ¥;* U ... U¥S"
are legitimate and there exists a nadm ¥ which is non-
legitimate, then”", holds fork € I\ {0} andn € IN. Since
the network is finite %, may not hold fork greater than the
number of nodes in the system, and then all nodeg ofire
legitimate. O

Proposition 5 (Correctness).Consider a distributed system

S that satisfies Hypotheses 1 and 2, and where each processor
P, runs the local parametric AlgorithmB.A|, instantiated

with »-operator<, . If all r-operators are strictly idempotent,
then in any terminal configuration, of any execution, all
nodes inS are legitimate.

Proof. We show that any node ifiis legitimate in configura-
tion¢, by recurrence on th&: sets, which define a partition
of the vertices of5.

Base Case.The fact that?;" is legitimate is proven by Lem-
ma 5.

Induction Step.If sets @', ... ¥, ", are legitimate, then
Wt is legitimate, was proven in Lemma 8.

Conclusion. All nodes in§ are legitimate in configuration
C¢. O

Then from Proposition 4 and 5, we can state the following
sufficient condition:

Proposition 6 (Sufficient condition).Consider a distributed
systems that satisfies Hypotheses 1 and 2, and where each
processorP, runs the local parametric AlgorithmB.A|
instantiated with anr-operator<g, . If ther-operators<, are

all strictly idempotent, then the distributed protocol mifs
stabilizing.

Proof. We proved that each executienof our distributed
protocol terminates in configuratien, where no rule is ap-
plicable (Proposition 4, Silent). Moreover, we proved that
each such; configuration is legitimate (Proposition 5, Cor-
rectness). Hence, the set of terminal configurations isilegi
mate and a closed attractor for our distributed protocoicivh
means that AlgorithnP.4 instantiated with--operators that
are strictly idempotent leads to self-stabilizing disitéxd pro-
tocols. O

5.4 Strict Idempotency is Necessary for Self-stabiliratio

In this section, we show that strict idempotency of the
operators is a necessary condition to insure self-staliitiz

of the distributed algorithm based on local parametric Algo
rithm P 4 instantiated by--operators.
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Co-

, .
Fig. 4. Necessary Condition

Proposition 7 (Necessary condition)Consider a distribu-

ted systens that satisfies Hypotheses 1 and 2, and where

each processoP, runs the local AlgorithnP.A| 4, instanti-
ated with anr-operator<, . If somer-operators<t, are not
strictly idempotent, the distributed algorithm is not s&if-
bilizing.

Proof. To prove that the distributed algorithm is not self-sta-
bilizing, it is sufficient to exhibit a particular system aad
particular initialization from which the distributed sgst does
not stabilize.

Consider the distributed system composed of a single pro;

cessorP, and a single link, which is a loop fromt, to P,
(see Figure 4). Assume that, uses the non-strictly idem-
potent binaryr-operator« defined byz <« y = « & r(y) for
all x andy in S, where® is an s-operator orfs andr is an
homomorphism of S, @) (see Section 4). Let be an ele-
ment of S \ {eq} satisfyinge = r(a), that contradicts the

11

algorithm was proved to be correct even in the case where
is infinite and Hypothesis 2 holds.)

The space complexity result is immediately given by the
assumptions made when writing the local parametric Algo-
rithmP.A.

Proposition 8 (Space complexity)For executing local para-
metric AlgorithmP.4, each processor € S needs

(67 (v) +1) x log, (IS])

bits, where|S| denotes the number of elements in the input
data set.

Proof. Each processaor hasé~ (v) local variables that hold
the value of the register of the corresponding direct ancest
and one register used to communicate with its direct descen-
dants. Each of these local variables or register may hold a
value in a finite sef, then needog,(|S|) bits. Note that the
constant stored in ROM is not taken into account in this re-

sult. O

In the convergence part of the proof, we only assumed that
the executions were maximal. In order to provide an upper
bound on the stabilization time for our algorithm, we assume
strong synchrony between nodes. (Note that this assumption
is used for complexity results only, since our algorithm was

strict idempotency hypothesis. Now consider the case whergroved to be correct even in the case of asynchronous and

the processoP, is initialized with a datunb strictly greater
(in sense oKg, the total order relation induced lay) thana:
a =g M,[0] = b. We suppose moreover théf,[1] = eg at
the beginning. Without any subsequent transient falt}1]
and M, [2] stabilize on the valué.

Now suppose that, after a transient failufé, [2] con-
tains an erroneous datum This datum will be copied into

unfair executions.)

Proposition 9 (Time complexity). Assuming a synchronous
systems, the stabilization time of the distributed protocol
based on local parametric Algorith®.A is O(D + |S|),
whereD is the diameter of the network.

M, [1] The execution will then terminate on the erroneousPrOOf. We deﬁne¢ as the function that returns the index of

resulta (because(a) = ¢ andb & a = a). Hence, theP A|,
local algorithm instantiated with the non strictly idemguot
r-operator« does not lead to a self-stabilizing distributed al-
gorithm. O

From Propositions 6 and 7, we deduce the following re-

sult.

Theorem 1 (Necessary and sufficient condition)Consider

a distributed syster§ that satisfies Hypotheses 1 and 2, and
where each processoP, runs the local parametric Algo-
rithmsPA| 4, instantiated with an--operator<,. Then the
distributed algorithm is self-stabilizing if and only ifehr-
operators<, are all strictly idempotent.

As aresult, in Sections 5.5 and 6, we only consider strictly

idempotent--operators.

5.5 Complexity

a given element of. This index always exists sin¢gis or-
dered by a total order relation. The signaturesds as fol-
lows:

¢:S—N
s = ¢(s)

and we have:

S| =g S2 = (f)(Sl) < (f)(Sz)

After O(D) steps, every node in the network has received
values from all of their ancestors. If those values wereyad|

initialized, then the received values are also possiblyiybad

valued.

For each node, we consider the difference between the
index of its final value (since the algorithm terminates) and
the index of the smallest received value which is badly ini-
tialized. The biggest possible differencelis— m, wherei
is the maximum index value &f andm the minimum index
value ofS. This difference is called and isO(|S|).

In this section, we investigate the memory space and time Let! be the length of the smallestpath-mapping. Any

needed for the system to stabilize into a legitimate configur
tion.

r-path mapping increases a value index by at least
In the worst case, there exists a node that has an incor-

In order to give an upper bound on the space and timeect input value indexed withn, a correct input value in-

requirements, we assume that the $és¢ finite. (Note that
this assumption is used for complexity results only, sinae o

dexed withi/, so it has to wait that the incorrect value index
is increased by\/ — m before the incorrect value effect is
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. . L . s:)—+1—>§:)—+1—>§:)—+1—>
canceled. Eachtimes units at least, this incorrect value in- ,(‘P

dex is increased by Again, in the worst case, if¢] < £,
another incorrect value may still be lower than the correct

value, and the greatest cycle may be followed, inducing an
extrad time delay. Overall, after the firgp(D) times units,

: : <—+1—5:)<—+1ﬂ:)
(14] x 1) + d = O(d) time units are needed.O

L (a) Faulty Configuration
6 Applications

In this section, we briefly give some examples-afperators @_ + _)@_ + _)@_ +1 _’,C?

designed to solve particular problems. Those examples use?
different techniques to illustrate the expressivenessaye-
rators in distributed systems.
In the first three applications given in this secti®@OQM
are used to differentiate a particular set of nodes from the +1 @ +1 @
others, leading to a semi-uniform algorithm: all nodes eiec

the same overall code, but based on some hardwired values, _ _ _
some internal functions may not have the same behavior. (b) Terminal Configuration

Fig. 5. Distance Computation

6.1 Distance Computation, Shortest Dipath Spanning Tree

and Forest This is equivalent toV/ [~ (w) 4 1] = r%e W) (M, [0]) =
da(u, w). Hence, the-operatominc solves the distance com-

Computing the distance from some patriarabf the network  putationin any network from a patriaretin a self-stabilizing

requiresu-sourced paths length computations. Such a compuway.

tation can be done using incrementatian « + 1) on the After stabilization of systen$, a shortest path spanning

edges. Moreover, if two different paths framarrive at node  tree rooted at the patriarch is maintained by the knowledge,

v by two different incoming edges, thenshould choose the  on each node, of one incoming variable containing the small-

paths with the smallest length. Heneegerforms aminimum  est datum of all those in the incoming variables. Figure 5

computation. Intuitively, an operator such as shows two possible configurations 8r the first is an incor-
rect configuration due to a transient failure, while the selco
(,y) = min(z,y + 1) is a legitimate configuration obtained after stabilizatibthe
algorithm.

should solve the problem. We now prove that this operator is If there are several patriarchs in the system, each node will

correct. be in the tree that has the closest patriarch from itselfs Thi

_ Suppose that registers in the distributed systenkdis  completes our solution of the shortest path spanning forest
wide, and that2® is larger than the distance fromto any problem.

other node in the network (if not, the problem can not be

solved). LetS be thefinite set {0,...,2* — 1} (Hypothe-

sis 2 is satisfied). The operatefin is an s-operator onS

which defines aotal order relation usually denoted by _ )

(Hypothesis 1 is satisfied). Its identity elemengfis— 1. Let 62 Single and Multiple Source Shortest Path

r be a mapping fron to S defined byr(z) = « + 1 for

0 <z <2 —1andr(2® — 1) = 2¥ — 1. This mapping is

an homomorphism ofS, min). Let minc(z, y) be the binary ~ The single source shortest path problem is similar to the dis

r-operator defined ofi by minc(z, y) = min(z,r(y)) (Defi-  tance computation, except that the edge weights are not nec-
nition 4). Sincer < r(z) = z + 1 foranyz € S\ {2¥ — 1},  essarily equal to 1. Assume thaf is the weight of the'"
minc is a strictly idempotent-operator or$ (Definition 5). incoming edge of node. As in Section 6.1, we consider the

Let S be a distributed system such that there exists a pasamefinite setS, assuming that* is larger than the maxi-
triarch « with its constantV/,,[0] = 0 and all others nodes mal weighted distance from the patriareho any other node
v # u with their constants\/, [0] = 2* — 1. Moreover, we in the network (if not, the problem can not be solved). The
assume that each processgrof S runsP Al minc. operatord defined byx @ y = min(z,y) is an s-operator
According to Theorem 6, this distributed systsris self-  onS that defines #otal orderrelation onS. Hence Hypothe-
stabilizing. When the system is stabilized, each nedeas SCS 1 and 2 are satisfied. For each Welgﬁltthe mapping
the following legitimate value (see Definition 8): , defined byz +— min(2* — 1,z + ) is an homomor-
phlsm of(S,@):r(x dy) = m|n(2k -1 mln(x Yy) + w, 0=
rp,_ . (M,[0]),v € FG—(w)’} min (mln(?k — 1,z +wl), m|n(2 - 1Ly+uw! )) = (l‘) e

M[o™(w) + 1] = min { P, elementary path ry ()-
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' } S:)— 1—>§:>—+2—>§:)—+3—>
We then define the-operatormminc, as follows: 0 ,(‘P

minc, (xo,... ,$6—(U)) +1

. zo, min(28~1 z) +wl),
- mn ...,min(Qk_l,xn_l—l—wg_(v)) +1—> — +2 —v<zD<—+1—1<zD

Then we have:

minc, (xo, . ,$6—(U))
. 2k_1a$0a$1 +w11/’ @ +2 — +3 — +1 —
= min o 5_(1/) 0 o o o0

yEp_1+ Wy

~ If eachw! is strictly larger than 0, then eaehmapping (@) Faulty Configuration
ri(z) = min(2% — 1,z + w!) verifiesz <q i (z) forallz €

v

S\ {2¥ —1}. Theminc, r-operator is thus strictly idempotent
(Definition 7). ©O—+ "@— +2 "@— +3 ",(?

As in previous application, suppose that the patriarch 0 T
has its constan¥/,,[0] = 0 and others nodes+# « have their +1 +2
constant\/, [0] = 2* — 1. Depending on the implementations, é l
such a setting should not require more than one bit per node.
Moreover, assume that each procesBpruns theP.A|minc, ; =3 ) 2 _@" +1
local algorithm. o 1 o° T “1 ~
According to Theorem 6, this distributed systé&ns self-

+2 +5 +7 +5
stabilizing. Whers is stabilized, each node has the follow-
ing legitimate value (see Definition 8): é
S!)—+2->§%)—+3->§{)—+1->
0 o o oo

) [t (MO]), v € TS (w),
M[o™(w) + 1] = min { Py €lementary pgth

(b) Terminal Configuration
This is equivalenttd/ [0~ (w) + 1] = rp,_, ., (My[0]), where
re,_.. (My[0]) is the smallest weighted distance framto
w. Hence, the--operatominc, solves the weighted distance
computation in any network from a patriarehin a self-sta-  its best incoming edge. Hence, to know the best reliable path
bilizing way. from a transmitter, each node has to perform multiplication
Figure 6 shows two possible configurations of such a dis-and maximum computations. We now build:anperator that
tributed systens. performs these computations, and solves the problem in a
After stabilization ofS, a “lightest” path spanning tree self-stabilizing way.
rooted atu is maintained provided that each node chooses Let S be thefinite set{0,...,2% — 1}. The maximum
one of the incoming variables that lead to the smallest patfbperatormax is ans-operator orf that defines aotal order
weight. That solves the single source shortest path prablenyelation<,.x which is, in fact, the usual order on the inte-
As in Section 6.1, the same operator solves the problem witlyers. We denote by the reliability rate of the™® incoming
multiple patriarchs. edge of the node. We suppose that there is no edge with a
reliability rate equal t@* — 1 (on each link, there is some-
times some failures). Hene¢ € S\ {2* — 1}. Hypotheses 1
6.3 Best Reliable Path from some Transmitters and 2 are then satisfied. For each rgtethe mapping’ de-
fined byri (z) — |z x 72 /(2% — 1) is an homomorphism of
In hazardous telecommunication networks where nodes musgts, max). Indeed,
choose their “best” transmitter, distance is not always¢he

Fig. 6. Multiple Source Shortest Path Computation

evant criterium. When the failure rate of neighbor connec- ri,(max(z,y)) = [max(z,y) x ZZ—"lJ

tions is computable and keeps more or less constant, it is in- ( -1 .
teresting to know the transmitter from which the failureerat = [max(z x o1 ¥ X< (2k—1))J
path is the lowest, and to know the path itself. = max(|z x @Z_il)J’ ly x (2&1)”

We suppose that all registers dréits wide and that re- i (@), i (1)
liability rates of the links are sampled frof (link out of v

order) to2* — 1 (no failure at all). The best reliable path We then define the-operatormaxmul, on'S by:
is computed from node to node: for all its ancestergach

= maxXx

nodev computes a reception rateby multiplying the recep- maxmuly (zg, ..., Zp_1)
tion rater, of u by the edge ratey, ,) of the edge(u, v): zo, |21 X J
T = [Tu X T(u,s)/255]. Nodewv can then compute its best = max ’ Zk 1Tn .

reception rate, by a maximum computation, and determine ooy s X (Qk_l)J
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_ ' . ‘—@ 224 —:(5)_ 221 —>§ :: 235 *’
Since we assume that< 7 < 25 —1, we haver <max 1} (z) o5

for all »-mappings!, (which means that > r! (z)). Thus the

r-operatormaxmul, is strictly idempotent (Definition 7). 251 245
Suppose that for any transmittey M,,[0] = 2¥ — 1 and

that for all other nodes, M, [0] = 0. Moreover, assume that @ 50 _,(_ 20 _@(_ 935 @

each processaP, runs theP A|maxmui, local algorithm. Ac- o'

cording to Theorem 6, such a distributed systgis self-sta-

bilizing. Whens is stabilized, each node owns the follow-

214 102 231
ing legitimate value (see Definition 8):
_ 201 —» 222 —» 75 —>
tpy (My[0]),v € TG (w), }

M6~ (w) +1] = max { P,_,., elementary path

L. . (a) Faulty Configuration
which is equivalenttd/ [0~ (w)+1] = rp,_, ., (M, [0]), where

rp,_.. (My[0]) is the best reliability rate of a patR from
one ancestor transmitter of w to the nodew. Hence, the @— 224
r-operatormaxmul, allows to solve the best reliability path 25 T

from a transmitter in any network in a self-stabilizing way. 1 245
Each node should keep the information corresponding to the 251

greatest reliability rate. ¥
Figure 7 shows two possible configurations of such a sys- @ 50 —| <— 20 @4 235 @

temS where the reliability rates of the links are sampled from ¢ T 0 Y
0 (link out of order) to255 (no failure at all),i.e. where reg-

isters are8-bits wide. 0 2 102 231
Note that our approach makes the algorithm input adap-

tive: if reliability rates are adjusted online during thesdi 201 @ @

tributed application, then the forest of the best relialaithp 25

is updated without the need of human intervention.
(b) Terminal Configuration

_ Fig. 7. Best Reliable Path from Some Transmitters Construction
6.4 Depth-first Search Tree

Such mappings are homomorphismgofa):

min(L, min(L, l1,15) U (v))
min(L, min(L, {1 U (v)), min(L,l2 U (v)))

In this section, we give am-operator that allows to find a
depth-first-search tree rooted on a patriaréh the network, to (1 ® 12)
despite transient failures.

To solve this fundamental problem, we assume that each ro (1) @ ro(l2)
processor holds a constant unique identifier, and that a to- i . .
tal order can be defined on those identifiers. Consider the or- W& then define the binary-operatorlexicat, on S by
dered lists of node’s identifierd;denotes the empty list. We |&icatu(l1,12) = L1 @ ry (1) (Definition 4). For any list ¢
denote bymin the binary operator that returns the smallest” \ {L}, ! <g rv(I). Ther-operatotlexicat, is then strictly-
list of its two operands using the lexicographical order. Fo démpotent (Definition s). .
instance, if the identifiers are lette#sb, ¢, ... ordered by Suppose thatthe pﬁ”'am'(m‘)t of the depth-first-search
the alphabetical order, the operatain gives the following tree) hasi, [0] = # while other nodes # u are such that
results:min ((a, b, d,e, ), (a,b, c,d, e, f)) = (a,b,c,d,e, f) M,[0] = L. Moreover, we assume that each processor
andmin ((a, a), (a)) = (a). runs theP Aljexicat, l0cal parametric algorithm.

Let L. be the greatest list (in sense win) that can be . Aﬁcordt)iq_g_to TC\%) remh6, any induced ctl)i_?tribduted sa/ stem
. . - - - Is self-stabilizing. en the system is stabilized, eactieno
coded in thek-bits wide registers of the distributed system . o
S. We then consider the sgtcomposed of the lists of i)(/ien- w owns the_ _followmg legitimate valueqé_ concatenates the
tifiers { verifying min(/, L) = I. Hences is the finite set list of identifiers of the nodes af to any list sent alond):

,...,L} (Hypothesis 2). The operatey defined byl; & ] -
l{z = min(}L, l1,1,) is ans-operator orf that defines aotal MI6™ (w) + 1] = min { ;5;::} (e]\érgloe]ktgs ggtﬁw)’ }
order relation (Hypothesis 1). Its identity elementlisWe
assume that there exists no elementary path the network  whichis equivalenttd/ [~ (w)+1] = rp,_,, (M,[0]), where
such that the list composed of the identifiers of the nodes of,,_  (M,[0]) is the smallest (in sense afin) list of iden-
P is greater tharl. (which means that the registers are wide tifiers of all the paths from the patriarehto the nodew.

enough to store all necessary lists). We now prove that this result induces a depth-first-seasgh tr
For each node, consider the.-mappings, defined on  rooted atu.
S byr,({) = min(L,{ U (v)), wherev is the identifier of the First, all legitimate values are lists beginning bythe

node andJ denotes the concatenation operator of two lists.identifier of the root. Moreover, all nodes# « have in their
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incoming data/, [1]..M,[6~ (v)] asmaller list than their own
legitimate valuel/, [0~ (v) 4 1]. This smallest incoming list
is the legitimate value of one ancestor. Hence, if each node
chooses one of its incoming edge, corresponding to the small

gztn:)etgzge.d value, we obtain a tree, rooted,ahat we will M) +1] = (u...0)
Now, to prove that this tree is a depth-first-search tree, it
is sufficient to verify that the numbering of each node given @
by the legitimate values is a depth-first-search numbering o (w...t) : (u...t)
the network(V, E): M= (1 : D Mer =G
Yo,w €V, we (v Y
( w e F;fu v) )
and M,[07 (v) + 1] <g My[67 (w) + 1] : (u...t)
= <{ or . U (w’
wd I (1) z o=
and My [6~(w) + 1] <¢ My[d~ (v) + 1] v @ U (w")
The legitimate values are all unique since they denote augniq u...t) (u...t)
path. Moreover the numbering increases along the edges of U (v)) U (w')
T... Hence, if this numbering is not a depth-first-search num- Mv= [, |, My=U---
bering, there exists an edge w) in G such that\/, [~ (v) + U (v) U (w")
1] <¢ My[6~ (w) + 1] andw ¢ T, whereT, denotes the U (w)
subtree off;, rooted atv. In this case, we have ¢ 7, and
v & T, (see Figure 8). Fig. 8. Depth-first-search Tree Construction
Then there exists a nodevhich is an ancestor of both
andw in T,, and yet different from botlh andw. Let v’ be
the first node in the path fromto v in 7,, and letw’ (resp. Although being simple in its formulation, the parameter-
w") be the first (resp. the last) one in the path frono w. ized algorithm can be applied to a broad range of distributed

We haveM, [0~ (v) + 1] = M [6~ () + 1JU (v') U - U (v) tasks such as Distance Computation, Shortest Path Calcu-
andM,, [0~ (w) + 1] = My[6~ () +1JU (W)U ---U (w")U lus, Depth-first Search Tree Construction and Best Reitgbil
(w). Since M, [0~ (v) + 1] <g My[d~(w) + 1], we have  Path. Anice property of our approach is that no knowledge on
(v') <e (w'). Thus the incoming list received by from  the communication graph is needed: the resulting algorithm
its direct ancestor (M;[6 () + 1] U (v') U ---U (v)) is  does not need any information about the network topology,
smallest (in sense of the lexicographical orgg¢than the one  size, degree or diameter to stabilize. Of course, if such in-
received by its direct ancestar’ (M;[0~(¢t) + 1] U (w’) U  formation is available, the stabilization time will be reed
-+~ U (w")), which contradicts the fact that has chosen one appropriately.
of its smallest ancestor to construct the depth-first-setaee It should be interesting to further develop our approach
Ty using the layered scheme of [18]. In [18], the lower layer,

HenceT, is a depth-first-search tree rooted at the patri-that ensures stabilization, is basically theperatorninc (see
arch u; the legitimate values give a depth-first-search num-Section 6.1) along with some bound on the network diame-
bering, and indicates the list of the nodes from the root toter, while the higher layer computes a maximum metric tree
themselves in the tree. They allow also to compute the diswith an operator that is not strictly idempotent. By conside
tance from the root to the node in this depth-first-searah tre ing appropriate domains for local algorithms, this laygrif
(length of the list). operators would lead to solve problenesg. maximum flow

The lexicat, r-operator allows to solve the depth-first- routing) for which strictly idempotent-operators are not eas-
search problem in any network, in spite of transient failure ily found. Still any such solution would benefit from our weak

hypothesis (read-write atomicity, unfair scheduling, rabgl
knowledge about topology required).
7 Conclusion
We characterized a set of silent tasks that can be solved in ?Ckr.mw'edge.memwe are grateful to the anonymous referees for
self-stabilizing way using a single algorithm parametiz elping us to improve this paper, both in presentation aredhni-
. cal correctness.
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