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33 3 44 23 44 77. e-mail:Bertrand.Ducourthial@utc.fr2 Laboratoire de Recherche en Informatique, UMR CNRS 8623, Bˆatiment 490, Université de Paris Sud, F91405 Orsay Cedex, France. Fax:
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Summary. This paper describes a parameterized distributed
algorithm applicable to any directed graph topology.The func-
tion parameter of our algorithm is instantiated to produce dis-
tributed algorithms for both fundamental and high level appli-
cations, such as shortest path calculus and depth-first-search
tree construction. Due to fault resilience properties of our al-
gorithm, the resulting protocols are self-stabilizing at no addi-
tional cost. Self-stabilizing protocols can resist transient fail-
ures and guarantee system recovery in a finite time. Since the
condition on the function parameter (being a strictly idempo-
tent r-operator) permits a broad range of applications to be
implemented, the solution presented in our paper can be use-
ful for a large class of distributed systems.
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1 Introduction

Robustness is one of the most important requirements of mod-
ern distributed systems. Various types of faults are likelyto
occur at various parts of the system. These systems go through
the transient faults because they are exposed to constant chan-
ge of their environment.

Self-stabilization.One of the most inclusive approaches to
fault tolerance in distributed systems isself-stabilization[10,
11,19]. Introduced by Dijkstra in [10], this technique guaran-
tees that, regardless of the initial state, the system will even-
tually converge to the intended behavior or the set oflegit-
imatestates. Since most self-stabilizing fault-tolerant proto-
cols are non-terminating, if the distributed system is subject
to transient faults corrupting the internal node state but not
its behavior, once faults cease, the protocols themselves guar-
antee to recover in a finite time to a safe state without the? An extended abstract of this paper was presented in the2nd In-
ternational Conference On Principles of Distributed Systems.

need of human intervention. This also means that the com-
plicated task of initializing distributed systems is no longer
needed, since self-stabilizing protocols regain correct behav-
ior regardless of the initial state. Furthermore, note thatin
practice, the context in which we may apply self-stabilizing
algorithms is fairly broad since the program code can be sto-
red in a stable storage at each node so that it is always possi-
ble to reload the program after faults cease or after every fault
detection.

Related Work.Silent tasks [12] are tasks where the commu-
nications between the processors are fixed from some point
of the execution. In addition to simplicity implied by the si-
lence property, silent distributed algorithms may use fewer
resources in terms of communication operations and com-
munication bandwidth allocation. In our model, registers are
used for communication between processors. Then a system
solving a silent task has the property that the contents of
the communication registers is not changed after some point
in the execution. When the algorithm checks that a regis-
ter needs to be changed before performing a write opera-
tion, all write operations may be eliminated when the silent
system has reached a legitimate configuration. Static prob-
lems, which consist to compute a global result in the system,
lead to silent tasks: communications cease when the termi-
nal configuration is reached. Examples of such tasks include
leader election, spanning tree construction or single source
shortest path algorithms. Note that many tasks fundamental
to distributed systems are inherently non silent. Such tasks in-
clude mutual exclusion or token passing, where the contents
of communication registers have to change infinitely often in
every possible execution of the system.

Historically, research in self-stabilization over general net-
works has mostly covered undirected networks where bidirec-
tional communication is feasible (the Update protocol of [13],
or the algorithms presented in [14,4]). Bidirectional commu-
nication is usually heavily used in bidirectional self-stabi-
lizing systems to compare one node state with those of its
neighbors and check for consistency. The self-stabilizingal-
gorithms that are built upon the paradigm of local checking
(see [6,7]) use this scheme.
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The lack of bidirectional communication was overcome
in recent papers using several techniques. Strong connectiv-
ity (which is a weaker requirement than bidirectionality) was
assumed to build a virtual well known topology on which the
self-stabilizing algorithm may be run (a tree in [2], a ring
in [3]). As many self-stabilizing algorithms exists for rings
([10]) or trees ([1]) in the literature, these constructions may
be used to reuse existing algorithms in general networks.

The restriction of having either bidirectional communica-
tion media or strongly connected unidirectional networks are
reasonable when the task to be solved is dynamic and the sys-
tem is asynchronous:e.g.for traversal algorithms, a token has
to be able to pass through every node infinitely often. How-
ever, there exists several silent tasks for which global commu-
nication is not required. For example, the single source short-
est path task only requires that a directed path exists from a
node to any other node, but not the converse.

In [5], Attie et al. used the formalism of Iteration Sys-
tems to give sufficient conditions for convergence of systems
solving related tasks. An important subset of silent tasks is
computing routing metrics (e.g. to perform maximum flow
routing), so that Gouda and Schneider in [17] provided a con-
dition-based approach to determinate if a particular routing
metric is maximizable. Silent tasks have been solved in a self-
stabilizing way on directed graphs that are not strongly con-
nected in [9], but the underlying network was assumed having
no cycle (DAG). The absence of cycles permits to avoid cases
where corrupted data moves forever in the system, preventing
it from stabilizing.

Our Contribution. In this paper, we concentrate on solving
silent tasks in a self-stabilizing way on a truly general net-
work, where no hypothesis are made about the strong con-
nectivity or the presence of cycles. As in [5], our solution
is by giving a condition on the distributed algorithm. How-
ever, in [5], the condition is given in terms of global system
property, while our condition is independent of the task to be
solved, and is only determined by the algebraic properties of
the function computed locally by the algorithm. While our
objectives – deciding whether an operator-based algorithmis
self-stabilizing – are different from those of [17] – deciding
whether a metric is maximizable –, our two approaches do
share common points. Theidempotencyof the local opera-
tor plays a crucial role in the theory of [17], while thestrict
idempotency(see Definition 5) of the local operator plays a
fundamental role here. Unlike many approaches, our solution
does not require any knowledge about the network: no size,
diameter, maximum degree are needed.

To this purpose, we provide a parameterized algorithm
that can be instantiated with a local function. Our parameter-
ized algorithm enables a set of silent tasks to be solved self-
stabilizing provided that these tasks can be expressed through
local calculus operations calledr-operators. Ther-operators
are general enough to permit applications such as shortest
path calculus and depth-first-search tree construction, tobe
solved on arbitrary graphs while remaining self-stabilizing.

In addition, since our approach is condition based, there
is no additional layer used to make an algorithm that satis-
fies this condition tolerant to transient failures. In fact,when
no transient faults appear in the system, the performance suf-

fers no overhead. Our system performs in the fine-grained
read/write atomicity model, where read and write actions oc-
curring on different processors may be interleaved at will.
Also worth of noting is the fact that our algorithm does not re-
quire any fairness property on the executions other than sim-
ple progression.

Outline of the paper.The rest of the paper is organized as
follows. In Section 2, we give some definitions pertinent to
the protocols and proofs. The self-stabilizing parameterized
protocol is presented in Section 3. The correctness reasoning
for the parameterized protocol is given in Section 5. Applica-
tion to fundamental problems in distributed computing area
are presented in Section 6. We discuss the extension of our
ideas and make some concluding remarks in Section 7.

2 Model

2.1 Distributed System

Graph modelingA distributed systemS is a collection of
processors linked with communication media allowing them
to exchange information. Such a system is modeled by adi-
rected graph(also calleddigraph) G(V;E), defined by a set
of verticesV and a setE of edges(v1; v2), which are or-
dered pairs of vertices ofV (v1; v2 2 V ). Each vertexu inV represents a processorPu of systemS. Each edge(u; v) inE, represents a communication link fromPu to Pv in S. We
give now some graph definitions.

The in-degreeof a vertexv of G, denoted by��(v) is
equal to the number of verticesu such that the edge(u; v) is
in E. The incoming edges of each vertexv of G are indexed
from 1 to ��(v). We denote byInd(u; v) the index of the
incoming edge(u; v) in v.

A directed pathPv0!vk from a vertexv0 to a vertexvk
in a digraphG(V;E) is a list of consecutive edges ofE,(v0; v1); (v1; v2); : : : ; (vk�1; vk). The length of this path isk. A cycle is a directed path wherev0 = vk. A loop is a cy-
cle of length 1. To make some wording shorter, we define an
empty pathas an empty list of edges. Its length is 0. Anel-
ementary pathis a path where each vertex is encountered at
most once. A digraph without any cycle is called adirected
acyclic graph (DAG).

The distancebetween two verticesu; v of a digraphG,
denoted bydG(u; v), is the minimum of the lengths of all
directed paths fromu to v (assuming there exists at least
one such path). Thediameterof a digraphG, denoted byDiam(G), is the maximum of the distances between all cou-
ples of vertices inG between which a distance is defined.
Thestrongly connected componentof a vertexv in a digraphG(V;E) is the set of all verticesw of V such that there exists
a directed path (possibly empty) fromv to w and a directed
path fromw to v. G is strongly connectedif any v in G has
the same strongly connected component.

Thedirect descendantsof a vertexv of a digraphG(V;E)
are all the verticesw of G such that the edge(v; w) is in E.
Their set is denoted by�+1G (v). Thedescendantsof v are all
the verticesw such that there exists a path fromv tow. Their
set is denoted by�+G (v). In the same way, thedirect ancestors
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of a vertexv ofG are all the verticesu ofG such that the edge(u; v) is inE. Their set is denoted by��1G (v). Theancestors
of v are all the verticesu such that there exists a path fromu
to v. Their set is denoted by��G (v). Finally,��kG (v) denotes
the set of all ancestorsu of v such thatdG(u; v) = k, while�+kG (v) denotes the set of all descendantsw of v such thatdG(v; w) = k. An orphanof a digraphG is a vertex that has
no ancestor. Apatriarchs of a digraphG is a vertex such that
there exists a directed path froms to all other vertices.

Communications.A communication from processorPu to
processorPv is only feasible if vertexu is a direct ancestor of
vertexv in G. Such a communication is performed through a
communication register. ProcessorPu writes the datum to be
sent toPv into its dedicated register regu. ThenPv is able to
read the datum in regu and to use it.

The processors maintain two types of variables:field vari-
ablesand local variablesThe field variables are part of the
shared register which is used to communicate with the neigh-
bors. The local variables defined in the program of a proces-
sor cannot be accessed by its neighbors and is used for local
computations only. A processor may only write into its own
shared register and can only read shared registers owned by
its direct ancestor processors or itself. So, the field variables
of a processor can be accessed by the processor itself and by
its direct descendants.

ProcessorPv performing a call to theread(regu) func-
tion (u 2 ��1G (v)) atomically reads regu and obtains the list
of field variables that are stored at this register. Processor Pu
performingwrite(list) atomically writeslist to the corre-
sponding fields of regu.

Processors.A processor is a deterministic sequential machi-
ne that runs a single process. Thestateof a processor is de-
fined by the values of its local variables. The state of a link(u; v) of E is defined by the values of the field variable regu.
A processoraction(or step) consists of an internal computa-
tion followed by either aread or awrite action. Internal
actions of processors are not significant to their neighborsbe-
cause the neighbors have no access to the variables that are
manipulated by those actions. Theread andwrite actions
are the only way for two processors to communicate.

Protocol. A distributed algorithmP (or protocol) is a col-
lection of local algorithms. A distributed systemS executesP if every processor ofS executes a local algorithm ofP.

Configuration and Executions.A configurationof a distri-
buted systemS is an instance of the states of its processors
and links. The set of configurations ofS is denoted asC.
Processor actions change the system configuration. Anexe-
cutione is a sequence of configurationsc1; c2; : : : such that
for i = 1; 2; : : : , the configurationci+1 is reached fromci by
a single step of one processor (a single step of one processor
being internal computations followed by either aread or a

write action, but not both).c1 is called theinitial configu-
ration of e. This scheduling policy is known as theread-
write atomicity model (see [14]). It should be noted that
read andwrite actions are executed asynchronously,

All executions considered in this paper are assumed to be
maximalmeaning that the sequence is either infinite, or it is
finite and no action is enabled in the final configuration. Note
that no particular fairness assumptions are made.

The set of executions in systemS starting with a partic-
ular initial configurationc1 2 C is denoted byEc1 . The set
of executions in systemS whose initial configurations are all
elements ofC1 � C is denoted asEC1 . The setE = EC is the
set of all possible executions.

2.2 Self-stabilization

A specificationof a distributed system is a predicate on ex-
ecutions of that system. A systemmatches its specification
if all its possible executions satisfy the specification. Ifwe
consider onlystaticproblems (i.e., problems whose solutions
consist of computing some global result), the specification
can be given in terms of a set of configurations (such specifi-
cations are calledsilent specifications). Every execution satis-
fying the specification would be a sequence of such configu-
rations. The set of configurations that satisfy the specification
of static problems is called the set oflegitimate configurations
(denoted asL), while the remainderC n L denotes the set of
illegitimate configurations.

We need to introduce the concept of an attractor to define
self-stabilization. Intuitively, an attractor is a set of configura-
tions of the systemS that “attracts” another set of configura-
tions ofS for any execution inE . In addition, if the attractor
is closed, then any subsequent execution of the algorithm re-
mains in the same set of configurations.

Definition 1 (Closed attractor). Let Ca andCb be subsets ofC. Ca is aclosed attractorfor Cb if and only if for any config-
urationc1 in Cb, and for any executione = c1; c2; : : : in Ec1 ,
there existsi � 1 such that for anyj � i, cj is in Ca.

Definition 2 (L-stabilization). Let L be a non-empty set of
configurations (L � C) of a distributed systemS. S isL-sta-
bilizing if and only ifL is a closed attractor forC.
Definition 3 (Self-stabilization).Let P be a distributed al-
gorithm (or protocol). LetS be a distributed system that ex-
ecutesP. LetL be a set of configurations ofS that defines
a silent specification. ProtocolP is self-stabilizing ifS isL-
stabilizing.

3 Parametric distributed algorithm

In this section, we describe a parametric distributed protocol
composed, on each node, of a local algorithm denotedPA
and parameterized by a local function.
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3.1 Programming Notation

The local algorithm of each processor consists of a set of ac-
tions:hactioni � � � hactioni. Eachactionhas the form:hguardi �! hstatementi
A guard is a boolean expression over the local variables of
a processor and the field variables of its direct ancestors. A
statementis allowed to update the variables of the proces-
sor only. Any action whose guard istrue is said to been-
abled. A processor with one or more enabled actions is said
to beprivilegedand may make amoveexecuting the state-
ment corresponding to the chosen enabled guard. When no
rule is enabled on any node in the distributed systemS, the
corresponding configuration is calledterminal. If for any ini-
tial configuration, and any subsequent execution, a terminal
configuration is reached, the systemS is silent.

3.2 Informal Description

Each processorPv has two local constants stored in Read
Only Memory: theinitial datum, Mv[0], and the set of its
direct ancestors��1G (v). To replicate values from its direct
ancestors and ensureread/write atomicity, Pv also has��(v) local variablesMv[1], : : : , Mv[��(v)], the incoming
variables. To store the result of local execution, a single field
variable is used atPv: Mv[��(v) + 1], theoutgoing variable,
which is stored in the field registerregv.

Notation 1 We denote bySthe set of all the values that can
be stored in registers and local variables of processors ofS.

On each processorPv of S, the local algorithmPAmain-
tains a function denoted asCv defined onSby:Cv: S��(v)+1 ! SMv[0::��(v)] 7! Cv (Mv[0::��(v)])

The input toCv are the initial datumMv[0] of v and the
values of the local variables copied from the direct ancestors
into Mv[1::��(v)]. FunctionCv outputs the current state of
the processor computing the function. This result is storedinMv[��(v) + 1].

The dynamic of each processorPv is as follows:

(1) Pv reads data in the registers of its direct ancestors and
copies them into its incoming variablesMv[1];Mv[2]; : : : ;Mv[��(v)]

(2) Pv performs a local execution using functionCv, its ini-
tial datumMv[0] and the received dataMv[1]; : : : ;Mv[��(v)];
and stores the result into its outgoing variable:Mv[��(v) + 1]  Cv �Mv[0]; : : : ;Mv[��(v)]�
Figure 1 represents nodev along with itsMv registers,

while Figure 2 depicts a simplified vision of nodev, with-
out showing variablesMv[1] to Mv[��(v)]. For the sake of
simplicity, this simplified version is used in the forthcoming
figures.

Mv[��(v)]
...Mv[2]Mv[1]Mv[0] 9>>>>>>>>>=>>>>>>>>>; C! Mv[��(v) + 1]

Fig. 1.Nodev Layout Mv[��(v) + 1]Mv[0]
Fig. 2.Nodev Simplified Layout

3.3 Formal Description

More formally, the local algorithmPA parameterized by a
functionCv — and denoted byPAjCv when necessary —
consists of two guarded rules (see Algorithm 3.1).

Algorithm 3.1 The PAjCv local parametric algorithm at
nodev (parameter is functionCv)

Copying (R1):�Pu 2 ��1G (v) : �� := read�Mu[��(u) + 1]��^ Mv[ind(u)] 6= � ��!Mv[ind(u)] := � ;

Computing (R2jCv):�read�Mv[��(v) + 1]� 6=Cv �Mv[0::��(v)]���! write�Mv[��(v) + 1];Cv �Mv[0::��(v)]��;
The first rule, calledCopying ruleand denoted byR1,

copies the direct ancestor field variables into the processor’s
local variables, so that they can be used at a later time. It
uses a local variable� to avoid reading the field variableMu[��(v)+1] twice, and implements theread/writeatom-
icity. In R1, an expression of the formhlefti := hrighti is
used. The first operandleft must be a variable while the sec-
ond operandright may be a constant or a variable. The op-
erator:= assigns the value ofright to left and always returns
true.

The second rule, calledComputing ruleand denoted byR2 (or R2jCv when necessary), computes theCv function
with the previously copied variables as input and stores the
result intoMv[��(v) + 1].
4 r-operators

As explained in previous section, we concentrate on a sin-
gle local algorithm that processes at each node the incoming
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data through a given operator that parametrizes the algorithm.
Such an operator is sufficient to describe the behavior of the
whole system. In this paper, we investigate sufficient condi-
tions on the operator so that the system is self-stabilizingfor
a given specification. We begin to define ther-operators as an
extension of Tel’s infimum functions.

4.1 Infimum Functions

Thanks to Tel results (see [20]), the distributed protocol de-
scribed above terminates when eachPA local parametric al-
gorithm is instantiated by an infimum over the set of inputsS.
An infimum(hereby called ans-operator) � over a setSis
an associative, commutative and idempotent binary operator.
Such an operator defines a partial order relation�� over the
setSby: x �� y if and only if x � y = x . Moreover, [20]
assumes that there exists a greatest element onS, denoted bye�, and verifyingx �� e� for everyx 2S. If necessary, this
element can be added toS. In the following, we assume that
an s-operator admits such an element in its definition of setS.

Hence, the(S;�)structure is anAbelian idempotent semi-
group1 (see [8]) withe� as identity element. When para-
meterized by such ans-operator�, the parametric local al-
gorithmPAj� yields a silent distributed protocol. However,
some counter examples show that such a protocol is not self-
stabilizing (see Section 5.3).

4.2 r-operators

Starting from Tel results, [15] proposed a distorted algebra
— ther-algebra —, that generalizes the Abelian idempotent
semi group. To ease comparison with this structure, we first
recall definition and basic properties ofbinary r-operators
(see [15]).

Definition 4 (Binary r-operator). The operator/ is a binaryr-operator onSif there exists ans-operator� onSand an
homomorphism of(S;�)— calledr-mapping and denoted byr — such that/ satisfies, for anyx andy inS,x/y = x�r(y).

The following proposition states thatr-operators consti-
tute a larger class of operators ass-operators (infimum). Hence
some results proved forr-operators still apply fors-operators.

Proposition 1. Let / be anr-operator onS, based on thes-
operator� and ther-mappingr. Then it satisfies the follow-
ing properties :(i) r-associativity:(x/y)/ r(z) = x/ (y/z);
(ii) r-commutativity:r(x)/y = r(y)/x; (iii) r-idempotency:r(x) / x = r(x) and(iv) identity:x / e� = x.

The followingproposition allows us to introduce thestrict
idempotencythat will be useful below.

Proposition 2. Let/ be anr-operator based on thes-operator�. Then the following propositions are equivalent: (i)/ is
idempotent; (ii) for anyx 2 S, x �� r(x). Moreover, if/ is
idempotent, thenr(e�) = e�.

1 The prefixsemimeans that the structure cannot be completed to
obtain a group, since the law� is idempotent.

Mv[��(v) + 1]Mv[0]r1r2r��(v) r01r02r0k
Fig. 3.Nodev Simplified Layout

Definition 5 (Strict idempotency). An r-operator / based
on thes-operator� is strictly idempotentif, for any x 2Sn fe�g, x �� r(x) (i.e.x �� r(x) andr(x) 6= x).

For example, the operatorminc(x; y) = min(x; y+1) is a
strictly idempotentr-operator onZ[f+1g, with+1 as its
identity element. It is based on thes-operatormin and on the
bijectiver-mappingr(x) = x+ 1. Such an operator can also
be defined on the finite setf0; 1; : : : ; 255g. In that case, ther-mapping is defined byr(x) = x+ 1 for x 2 f0; : : : ; 254g
andr(255) = 255.

We now definer-operators that accept an arbitrary num-
ber of arguments.

Definition 6 (r-operator). A mappingC from Sn into Sis
an r-operatorif there exists ans-operator� onSandn � 1
homomorphisms (calledr-mappings)r1; : : : ; rn�1 of (S;�)
such thatC (x0; : : : ; xn�1) = x0�r1(x1)�� � ��rn�1(xn�1)
for anyx0; : : : ; xn�1 inS.

Definition 7. Ther-operatorC fromSn intoSbased on thes-operator� is idempotent (resp. strictly idempotent) if, for
anyx 2 S(resp.x 2 Sn fe�g) and anyr-mappingri (1 �i < n), x �� ri(x) (resp.x �� ri(x), i.e.x �� ri(x) andri(x) 6= x).

4.3 Hypothesis

In the rest of the paper, we assume that every processorPv
of S uses thePAjCv local algorithm instantiated with anr-
operatorCv. We do not require that all thoser-operatorsCv
be the same for each nodev. However we assume the follow-
ing hypothesis.

Hypothesis 1 Ther-operators used by the processors ofS
are all based on the sames-operator�, and the ordering
relation defined by� is a total order relation onS.

Hypothesis 2 All operators are defined on setS. Moreover,
if Sis infinite, then the two following conditions are satisfied:
(i) any sequence of strictly increasing elements is unbounded
and (ii) no initial datum contains thee� element.

Hypothesis 1 implies that for any set of datafx0; : : : ; xkg,
we have�fx0; : : : ; xkg 2 fx0; : : : ; xkg. Hypothesis 2 is
satisfied byN orZ, but not byQorR. In practice, since mem-
ory is only available in bounded flavor, all considered sets are
finite.

When each processor performs local computations using
an r-operator, each edge of the distributed system is associ-
ated with anr-mapping (see figure 3). The result of anr-
mapping associated to an edge is called anr-augmented vari-
able. Note that if all ther-mappings of a nodev are equal, the
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operator used by processorPv is a binaryr-operator, while if
they are all equal to the identity functionId, it is ans-operator.

Notation 2 We callrInd(u;v)v ther-mapping corresponding to
the incoming edge(u; v) of v. When no confusion is possible,
we also denote thisr-mapping byriv, with1 � i � ��(v). To
shorten our notations, we assume that, for any nodev, there
is also anr-mappingr0v corresponding to the initial datum,
and we state thatr0v � Id.

Notation 3 LetPu0!un be a path(u0; u1) : : : (un�1; un) inG. To each of its edges(ui; ui+1) corresponds ther-mappingrInd(ui;ui+1)ui+1 . The composition of suchr-mappings along the
path is calledr-path-mapping and is denoted asrPu0!un =rInd(un�1;un)un � � � � � rInd(u0;u1)u1 (French composition of the ap-
plications).

5 Proof of Correctness

In this section, we prove that(i) rules of thePA local para-
metric algorithm can be considered as atomic although RuleR2 contains oneread and onewrite actions (see Sec-
tion 5.1),(ii) if every local parametric algorithm is instanti-
ated by anr-operator that is strictly idempotent, the resulting
distributed protocol is self-stabilizing for the intendedspec-
ification (see Sections 5.2 and 5.3), whereas(iii) if somer-
operators are not strictly idempotent, the resulting distributed
algorithm is not self-stabilizing (see Section 5.4), and finally
(iv) we investigate complexity results related with the stabi-
lization time of our algorithm (see Section 5.5).

5.1 Read/write Atomicity

In this section, we prove that our local parametric AlgorithmPA conforms to theread/write atomicity specifications
as stated in [14]. In the algorithm, the first rule can be safely
assumed atomic, but the second rule has to be checked thor-
oughly.

Proposition 3. RulesR1 andR2 of local parametric Algo-
rithmPA can be considered as atomic.

Proof. RuleR1 contains only oneread statement and some
internal actions, and hence, can be considered atomic in the
read/write atomicity model.

RuleR2 contains oneread statement and onewrite
statement, both using the same registerregu. In theread /
write atomicity model, these two actions can be interleaved
with other processor actions. Now we prove that any such
interleaving is equivalent to an execution where RuleR2 is
executed atomically.

Let u be the owner ofregu and�+1G (u) denote the set ofu’s direct descendants. Interleaving RuleR2 atu and RuleR2
at v (v 6= u) is equivalent to considering them as executing
atomically since they apply to different registers (R2 apply
both of its two actions to the same register). For the same rea-
son, interleavingR2 atu andR1 atv =2 �+1G (u) is equivalent
to considering them as executing atomically.

There remains the case when RuleR2 atu (that includesreadu(regu) action following bywriteu(regu) action) is in-
terleaved with RuleR1 at v 2 �+1G (u). The two actions in-
volve the same registerregu, and the resulting computation
would be as follows:: : : ; readu(regu); readv(regu); writeu(regu); : : :
Now this computation is equivalent to the following, where
RuleR2 is executed atomically:: : : ; readv(regu); readu(regu); writeu(regu); : : :
Thus, any interleaved computation is equivalent to a compu-
tation where RuleR2 is executed atomically.ut
5.2 Idempotency yields silent distributed computations

Proposition 4 (Silence).Consider a distributed systemS that
satisfies Hypotheses 1 and 2, and where each processorPv
runs the local parametric AlgorithmsPAjCv instantiatedwith
a strictly idempotentr-operatorCv. Then each execution is
finite.

Proof. We wish to prove that, starting from any initial con-
figurationc1, any execution is finite,i.e. after finite time, no
rule (R1 orR2) is enabled.

In any initial configurationc1, there exists a finite number
of data in the network, either stored in the Read Only Mem-
ory, in some incoming variablesMv[i], 1 � i � ��(v), for
anyv in the network, or in some outgoing variableMv[��(v)+1]. Without loss of generality, one can consider that all the
results built by the processors of the distributed system are
stored into a formal expression where ther-mappings are
not computed. For example, if the processorPv hasx0 inMv[0] andx1; : : : ; x��(v) in Mv[1::��(v)], then the infor-
mation stored intoMv[��(v) + 1] after applying RuleR2 isriv(Mv[i]), for onei in f0; : : : ; ��(v)g, whereriv (Mv[i]) = r0v (Mv[0])� r1v (Mv[1])� � � �� r��(v)v (Mv[��(v)])
We are now able to consider moves of the initial data during
an execution of the system.

Any copying RuleR1 moves ther-augmented datum of
the outgoing variableMu[��(u) + 1] of each direct ances-
tor u of v into the incoming variablesMv[Ind(u; v)] of v.
This erases the previously stored expression in these incom-
ing variables. The execution of a copying rule can be inter-
preted as ahorizontal movebetween two neighbor nodes.

Any computing RuleR2 moves ther-augmented datum
stored intoMv[i] for a singlei in f0; : : : ; ��(v)g, in a new
expressionriv(Mv[i]) which is stored intoMv[��(v) + 1].
This erases the previously stored expression inMv[��(v) +1]. The execution of a computing rule can be interpreted as a
vertical moveinside one node.

From the construction of the algorithm, the two following
properties hold in any execution at any nodev: (i) between
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any two executions of RuleR2 on v, at least one RuleR1 is
executed onv, (ii) between any two executions of RuleR1 onv, at least one RuleR2 is executed on some direct ancestoru
of v. Since the network is finite, it is sufficient to prove that
either a nodev may not execute RuleR1 forever or that a
nodev may not execute RuleR2 forever. We choose the later
approach.

Suppose that there exists some nodev of S such thatv executesR2 infinitely often. Since initially there are a fi-
nite number of values, there exists one value! that is moved
vertically through RuleR2 infinitely often at nodev. By hy-
potheses, anyr-mappingr verifies that, for anyy 2 S, y ��r(y). From Hypothesis 2, there exists a configurationc such
that either (1) Mv[0] �� r(: : : (!) : : : ) or (2) Mv[0] =r(: : : (!) : : : ) = e�, the maximum element ofS(in sense of��), holds.

(1) For the first case, consider that the result of the local
computation is always lower or equal (in the sense of�) thanMv[0]. It is then different fromr(: : : (!) : : : ). Hence, from
this point, no vertical move of! may occur atv, which con-
tradicts the hypothesis.

(2) In the second case, wherer(: : : (!) : : : ) = Mv[0] =e�, any subsequentr-mapping would leave the result un-
changed. (idempotency yieldsr(e�) = e�, see Proposition2).
Then from this point, no additional vertical move of! may
occur atv, which also contradicts the hypothesis.

In any of the two possible cases, the hypothesis that there
exists one nodev that executes RuleR2 infinitely often is
contradicted, which proves that ruleR2 is executed only a fi-
nite number of times in systemS. From the strict interleaving
relation between rulesR2 andR1, we can conclude that no in-
finite execution (in the sense that some rules remain enabled)
may occur in the distributed system we consider.ut
5.3 Strict-idempotency yields self-stabilizing distributed
computations

We define the legitimate property for nodes through the le-
gitimate property for node variables. We denote byL(x) the
legitimate value of variablex. We state:

Definition 8 (Legitimate output).L �Mv[��(v) + 1]� = �8<: rP (Mu[0]),u 2 ��G (v),Pu!v an elementary path

9=;
For any nodev, if Mv[��(v) + 1] = L (Mv[��(v) + 1])

the outgoing variableMv[��(v)+1] is legitimate. An incom-
ing variableMv[Ind(u; v)] is legitimateif Mv[Ind(u; v)] =L (Mu[��(u) + 1]). For any nodev, the initial datumMv[0]
is legitimate in any configuration, since this datum is stored
in Read Only Memory. A nodev is legitimateif its outgoing
variableMv[��(v)+1] is legitimate. Given these definitions,
a legitimate configurationis simply a configuration where all
nodes are legitimate: the setL of legitimate configurations forS is defined as:8l 2 L, 8v in V , v is legitimate in configura-
tion l.

We now wish to prove that the system isL-stabilizing (see
Definition 2). This is by proving that in any terminal config-
uration (which is eventually reached by Proposition 4), all

nodes in the system are legitimate (and a configuration inL
is reached).

Since we supposed that thes-operator� defines a total
order, one can sort, for any given configuration, the legitimate
incoming variables of all the nodes of the system.

Definition 9 (�c). Let c be a configuration,�c denotes the
sorted set of all legitimate incoming variables inc. Using the
total ordering relation�� induced by�,�c = f�c0; �c1; : : : ; �ckcg
with�ci �� �cj for i < j. For anyi in f0; : : : ; kcg, �ci denotes
theith element of�c.

Moreover, for any given configuration, one can sort out
the nodes of the system into several distinct sets. Informally,
the partition ofV into the	 cn sets collects nodes sharing a le-
gitimate variable. Then	 c0 contains nodes having the small-
est legitimater-augmented variable�c0, 	 c1 contains nodes
having smallest remainingr-augmented legitimate variable�c1 2 �c n f�c0g, and so on. Since all nodes have at least one
legitimate variable (Mv[0] is stored in ROM), the	 ci sets de-
fine a partition ofV at configurationc.
Definition 10 (	 cn). Let c be a configuration,	 cn is the set of
the nodes of the system satisfying the following criteria:	 cn = 8><>:v 2 V s.t.

9i; 0 � i � ��(v);L (Mv[i]) = Mv[i]riv(Mv[i]) = �cn;8n0 < n; v =2 	 cn0 9>=>;
Lemma 1. In any configurationc, there is no legitimate out-
going variable smaller than�c0.
Proof. Any legitimate variable is equal to an expression built
with initial data increased by strictly idempotentr-path-map-
pings. Suppose that there exists a configurationc such thatL �Mv[��(v) + 1]� �� �c0
Then we have�� rPu!v (Mu[0]) ; u 2 ��G (v);Pu!velementary path

� �� �c0
and then there existsu 2 ��G (v) and anr-path-mappingrP
such that Mu[0] �� rP (Mu[0]) �� �c0
which is impossible, by definition of�c0. ut
Lemma 2. Any nodev of 	 c0 verifiesL(Mv[��(v) + 1]) =L(Mv[0]) = Mv[0] = �c0.

Proof. We have:L(Mv[��(v) + 1]) = riv (L (Mv[i])) for onei in f0; : : : ; ��(v)g
and sincev is in	 c0 ,L(Mv[��(v) + 1]) �� �c0
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But, following Lemma 1, no legitimate variable is smaller
than�c0, which means thatL(Mv[��(v) + 1]) = �c0

Now suppose thati > 0:L(Mv[��(v) + 1]) = riv (L(Mv[i]))
Since ther-mappings are strictly idempotent, we have:L(Mv[i]) �� riv (L(Mv[i]))�� �c0
which is impossible by definition of�c0. HenceL(Mv[��(v) + 1]) = L(Mv[0]) = Mv[0]ut

For a given configurationc, we consider the following As-
sertionP cn;k, which is of technical use in the induction proofs,
and informally described hereafter.P cn;k : 9v 2 G; 9nv � n; v 2 	 cnv ;9u1 2 ��1G (v); : : : ; uk 2 ��kG (v);8i; 1 � i � k; 9ni � n; ui 2 	 cni ;(uk; uk�1) 2 E; : : : ; (u2; u1) 2 E; (u1; v) 2 EMuk [��(uk) + 1] �� : : :�� Mu1 [��(u1) + 1]�� �cn

Informally,P cn;k states that there exists an elementary path
of lengthk of illegitimate distinct vertices in configurationc
(and such that the illegitimate values are smaller than�n). In-
deed,v 2 	 cnv withnv � nmeans that the smallest legitimater-augmented incoming variable ofv is �cnv , which is greater
or equal to�cn. If the outgoing variable ofv is smaller than�cn,
then this value has been obtained by anotherr-augmented in-
coming variable, smaller than�cn. Hence, this incoming vari-
able cannot be legitimate, and thereforev cannot be legiti-
mate too. Using the same reasoning, all nodes on the path are
non-legitimate.

We now wish to prove that in a terminal configurationct,
all nodes ofV are legitimate. The proof is by recurrence on
the	 ctn sets, which define a partition ofV at configurationct.

This recurrence is segmented into base case (Lemma 5)
and induction step (Lemma 8). The first part (base case) is
proved by recurrence onk in P ct0;k wherect is a terminal con-
figuration (base case: Lemma 3, induction step: Lemma 4 and
conclusion: Lemma 5). In the same way, the induction step is
proved by recurrence onn in P ctn;k (base case: Lemma 6, in-
duction step: Lemma 7 and conclusion: Lemma 8).

For each part, the proof is based on the fact that since the
network is finite, there can not exist an infinite elementary
path of non-legitimate nodes.

Lemma 3. In any terminal configurationct where there existsv 2 	 ct0 such thatv is non-legitimate,P ct0;1 holds.

Proof. We explicitly expandP ct0;1 as follows:P ct0;1 : 9v 2 G; 9nv � 0; v 2 	 ctnv ;9u1 2 ��1G (v);9n1 � 0; u1 2 	 ctn1 ;(u1; v) 2 E;Mu1 [��(u1) + 1] �� �ct0
Consider a nodev 2 	 ct0 . Following Lemma 2, we haveL(Mv[��(v) + 1]) = Mv[0] = �ct0
Suppose now that in configurationct, the nodev is non-legi-
timate: Mv[��(v) + 1] 6= L �Mv[��(v) + 1]�
Since the configurationct is terminal, RuleR1 is not enabled,
which means that:Mv[��(v) + 1] = ��riv (Mv[i]) ; 0 � i � ��(v)	�� Mv[0]

(can not be greater;

if equal then legitimate)�� �ct0
Hence the nodev has at least one incomingr-augmented vari-
able smaller than�ct0 :9u1 2 ��1G (v); rInd(u1;v)v (Mv[Ind(u1; v)]) �� �ct0
Since all ther-mappings are strictly idempotent, we have:9u1 2 ��1G (v);Mv[Ind(u1; v)] �� rInd(u1;v)v (Mv[Ind(u1; v)])�� �ct0
Again, since the considered configurationct is terminal, all
the incoming variables of the nodev have correctly been co-
pied (RuleR2 is not enabled) from the direct ancestors ofv.
Formally, we have:9u1 2 ��1G (v);Mu1 [��(u1) + 1] = Mv[Ind(u1; v)]�� rInd(u1;v)v (Mv[Ind(u1; v)])�� �ct0
Note that(u1; v) is a path of length one. SinceMu1 [��(u1) + 1] �� �ct0
the nodeu1 is non-legitimate (Lemma 2). We proved that,
if there exists a terminal configurationct in which nodev is
non-legitimate, then AssertionP ct0;1 holds, which means that
there exists a path of length one of non-legitimate distinct
nodes. ut
Lemma 4. In any terminal configurationct where there existsv 2 	 ct0 such thatv is non-legitimate,P ct0;k holds, for anyk 2 N n f0g.
Proof. We prove by recurrence that, if there exists a terminal
configurationct where nodev 2 	 ct0 is non-legitimate, then,
for anyk 2 N n f0g, P ct0;k holds.
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Base case.The base case (k = 1) is proved by Lemma 3.

Induction step.Suppose that there exists a terminal configu-
rationct and an integerk > 1 such thatP ct0;k�1 holds:P ct0;k�1 : 9v 2 G; 9nv � 0; v 2 	 ctnv ;9u1 2 ��1G (v); : : : ; uk�1 2 ��(k�1)G (v);8i; 1 � i < k; 9ni � 0; ui 2 	 ctni ;(uk�1; uk�2) 2 E; : : : ; (u2; u1) 2 E; (u1; v) 2 EMuk�1 [��(uk�1) + 1] �� : : :�� Mu1 [��(u1) + 1]�� �ct0
Sincect is terminal, RuleR2 is not enabled and the outgo-
ing variablesMuk�1 [��(uk�1) + 1] of any nodeuk�1 of��(k�1)G (v) is equal to its initial datumMuk�1 [0] or to one
of its incoming variable, augmented by itsr-mapping,riv �Muk�1 [i]� ; 1 � i � ��(uk�1)
However, by definition, there is no initial datum smaller than�ct0 . Then, we have:9uk 2 ��kG (v); (uk; uk�1) 2 E;rInd(uk;uk�1)uk�1 �Muk�1 [Ind(uk; uk�1)]�= Muk�1 [��(uk�1) + 1]�� : : :�� Mu1 [��(u1) + 1]�� �ct0
Sincect is terminal, RuleR1 is not enabled and each incom-
ing variable of the nodes in��(k�1)G (v) have correctly been
copied from the outgoing variables of the nodes in��kG (v).
Then, we have:9uk 2 ��kG (v); (uk; uk�1) 2 E;Muk [��(uk) + 1] = Muk�1 [Ind(uk; uk�1)]
Ther-mappings are strictly idempotent, so :9uk 2 ��kG (v); (uk; uk�1) 2 E;Muk [��(uk) + 1] �� Muk�1 [��(uk�1) + 1]�� : : :�� Mu1 [��(u1) + 1]�� �ct0
Which in turn is a rewriting of assertionP ct0;k.

Conclusion. Hence we proved by recurrence that assertionP ct0;k holds for anyk 2 N n f0g. ut
Lemma 5. In any terminal configurationct, no node in	 ct0
is non-legitimate.

Proof. From Lemma 4, in any terminal configurationct,P ct0;k
holds for anyk 2 N n f0g. SinceP ct0;k cannot hold fork
greater than the number of nodes in the system, no vertex of	 ct0 is non legitimate. ut

Lemma 5 established the base case for the recurrence on
the	 ctn sets. We now prove the induction step with Lemmas 6
and 7.

Lemma 6. If there exists a terminal configurationct such that
all nodesu 2 	 ct0 [ : : :[	 ctn�1 are legitimate and there exists
a nodev in 	 ctn which is non-legitimate, thenP ctn;1 holds forn 2 N.

Proof. We explicitly expandP ctn;1 as follows:P ctn;1 : 9v 2 G; 9nv � n; v 2 	 ctnv ;9u1 2 ��1G (v);9n1 � n; u1 2 	 ctn1 ;(u1; v) 2 E;Mu1 [��(u1) + 1] �� �ctn
Consider a nodev 2 	 ctn . By definition of	 ctn , there exists an
integerq, 0 � q � ��(v), such thatMv[q] is legitimate andrqv (Mv[q]) = �ctn . Suppose now that there exists a terminal
configurationct such that the nodev is non-legitimate:Mv[��(v) + 1] 6= L �Mv[��(v) + 1]�
Since the configurationct is terminal, RuleR2 is not enabled,
which means that:Mv[��(v) + 1] = ��riv (Mv[i]) ; 0 � i � ��(v)	�� �ctn
Suppose thatMv[��(v) + 1] = Mv[0]. Then we haveMv[0] �� �ctn
But sinceMv[0] = L(Mv[0]), v would not be in	 ctn . Hence
we have9u1 2 ��1G (v);rInd(u1;v)v (Mv[Ind(u1; v)]) = Mv[��(v) + 1]�� �ctn
Since all ther-mappings are strictly idempotent, we have:9u1 2 ��1G (v);Mv[Ind(u1; v)] �� rInd(u1;v)v (Mv[Ind(u1; v)])�� �ctn
Again, since the considered configurationct is terminal, all
the incoming variables of the nodev have correctly been copied
from the direct ancestors ofv (RuleR1 is not enabled). For-
mally, we have:9u1 2 ��1G (v);Mu1 [��(u1) + 1] = Mv[Ind(u1; v)]�� rInd(u1;v)v (Mv[Ind(u1; v)])�� �ctn
SinceMv[Ind(u1; v)] �� �ctn andv 2 	 ctn , Mv[Ind(u1; v)]
cannot be legitimate. ThusMu1 [��(v) + 1] is not legitimate
and the nodeu1 is not legitimate, which means that there ex-
ists somen1 � n such thatu1 2 	 ctn1 .

We proved that, if there exists a terminal configurationct
in which nodev 2 	 ctn is non-legitimate, then AssertionP ctn;1
holds, which means that there exists a path of length one of
non-legitimate distinct nodes.ut
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Lemma 7. If there exists a terminal configurationct such that
all nodesu 2 	 ct0 [ : : :[	 ctn�1 are legitimate and there exists
a nodev in 	 ctn which is non-legitimate, thenP ctn;k holds forn 2 N andk 2 N n f0g.
Proof. We will prove by recurrence that, if there exists a ter-
minal configurationct where nodev 2 	 ctn is non-legitimate,
then, for anyk 2 N n f0g, P ctn;k holds.

Base case.The base case (k = 1) is proved by Lemma 6:P ctn;1 holds.

Induction step.Suppose that there exists a terminal configu-
rationct such thatP ctn;k�1 holds:P ctn;k�1 : 9v 2 G; 9nv � n; v 2 	 ctnv ;9u1 2 ��1G (v); : : : ; uk�1 2 ��(k�1)G (v);8i; 1 � i < k; 9ni � n; ui 2 	 ctni ;(uk�1; uk�2) 2 E; : : : ; (u2; u1) 2 E; (u1; v) 2 EMuk�1 [��(uk�1) + 1] �� : : :�� Mu1 [��(u1) + 1]�� �ctn
Sincect is terminal, the outgoing variablesMuk�1 [��(uk�1) + 1]
of any nodeuk�1 of ��(k�1)G (v) is equal to its initial datumMuk�1 [0] or to one of itsr-augmented incoming variableriv �Muk�1 [i]� ; 1 � i � ��(uk�1)
No r-augmented legitimate variable is smaller than�ctn onuk�1, elseuk�1 would be in	 ctn0 with n0 < n. In particular,Muk�1 [0] 6�� �ctn . Thus we have:9uk 2 ��kG (v); (uk; uk�1) 2 E;rInd(uk;uk�1)uk�1 �Muk�1 [Ind(uk; uk�1)]�= Muk�1 [��(uk�1) + 1]�� : : :�� Mu1 [��(u1) + 1]�� �ctn
Sincect is terminal, RuleR1 is not enabled and each incom-
ing variable of the nodes in��(k�1)G (v) have correctly been
copied from the outgoing variables of the nodes in��kG (v).
Then, we have:9uk 2 ��kG (v); (uk; uk�1) 2 E;Muk [��(uk) + 1] = Muk�1 [Ind(uk; uk�1)]
Ther-mappings are strictly idempotent, so :9uk 2 ��kG (v); (uk; uk�1) 2 E;Muk [��(uk) + 1] �� Muk�1 [��(uk�1) + 1]�� : : :�� Mu1 [��(u1) + 1]�� �ctn
Finally, Muk�1 [Ind(uk; uk�1)] is not legitimate, elseuk�1
would not be in	 ctn .ThusMuk [��(v) + 1] is not legitimate
and nodeuk is not legitimate, which means thatuk 2 	 ctn0
with n0 � n. That givesP ctn;k.

Conclusion.Hence we proved by recurrence that AssertionP ctn;k holds for anyk 2 N n f0g and anyn 2 N. ut
Lemma 8. If sets	 ct0 ; : : :	 ctn�1 are legitimate, then	 ctn is le-
gitimate.

Proof. In Lemma 7, we proved that if there exists a terminal
configurationct such that all nodesu 2 	 ct0 [ : : : [ 	 ctn�1
are legitimate and there exists a nodev in 	 ctn which is non-
legitimate, thenP ctn;k holds fork 2 Nn f0g andn 2 N. Since
the network is finite,P ctn;k may not hold fork greater than the
number of nodes in the system, and then all nodes of	 ctn are
legitimate. ut
Proposition 5 (Correctness).Consider a distributed systemS that satisfies Hypotheses 1 and 2, and where each processorPv runs the local parametric AlgorithmsPAjCv instantiated
withr-operatorCv. If all r-operators are strictly idempotent,
then in any terminal configurationct of any execution, all
nodes inS are legitimate.

Proof. We show that any node inS is legitimate in configura-
tion ct by recurrence on the	 ctn sets, which define a partition
of the vertices ofS.

Base Case.The fact that	 ct0 is legitimate is proven by Lem-
ma 5.

Induction Step.If sets 	 ct0 ; : : : ; 	 ctn�1 are legitimate, then	 ctn is legitimate, was proven in Lemma 8.

Conclusion.All nodes inS are legitimate in configurationct. ut
Then from Proposition 4 and 5, we can state the following

sufficient condition:

Proposition 6 (Sufficient condition).Consider a distributed
systemS that satisfies Hypotheses 1 and 2, and where each
processorPv runs the local parametric AlgorithmsPAjCv
instantiated with anr-operatorCv. If ther-operatorsCv are
all strictly idempotent, then the distributed protocol is self-
stabilizing.

Proof. We proved that each executione of our distributed
protocol terminates in configurationct, where no rule is ap-
plicable (Proposition 4, Silent). Moreover, we proved that
each suchct configuration is legitimate (Proposition 5, Cor-
rectness). Hence, the set of terminal configurations is legiti-
mate and a closed attractor for our distributed protocol, which
means that AlgorithmPA instantiated withr-operators that
are strictly idempotent leads to self-stabilizingdistributed pro-
tocols. ut
5.4 Strict Idempotency is Necessary for Self-stabilization

In this section, we show that strict idempotency of ther-
operators is a necessary condition to insure self-stabilization
of the distributed algorithm based on local parametric Algo-
rithmPA instantiated byr-operators.



Bertrand Ducourthial, Sébastien Tixeuil: Self-stabilization withr-operators 11ab r
Fig. 4. Necessary Condition

Proposition 7 (Necessary condition).Consider a distribu-
ted systemS that satisfies Hypotheses 1 and 2, and where
each processorPv runs the local AlgorithmPAjCv instanti-
ated with anr-operatorCv. If somer-operatorsCv are not
strictly idempotent, the distributed algorithm is not self-sta-
bilizing.

Proof. To prove that the distributed algorithm is not self-sta-
bilizing, it is sufficient to exhibit a particular system anda
particular initialization from which the distributedsystem does
not stabilize.

Consider the distributed system composed of a single pro-
cessorPv and a single link, which is a loop fromPv to Pv
(see Figure 4). Assume thatPv uses the non-strictly idem-
potent binaryr-operator/ defined byx / y = x � r(y) for
all x andy in S, where� is ans-operator onSand r is an
homomorphism of(S;�) (see Section 4). Leta be an ele-
ment ofSn fe�g satisfyinga = r(a), that contradicts the
strict idempotency hypothesis. Now consider the case where
the processorPv is initialized with a datumb strictly greater
(in sense of��, the total order relation induced by�) thana:a �� Mv[0] = b. We suppose moreover thatMv[1] = e� at
the beginning. Without any subsequent transient fault,Mv[1]
andMv[2] stabilize on the valueb.

Now suppose that, after a transient failure,Mv[2] con-
tains an erroneous datuma. This datum will be copied intoMv[1]. The execution will then terminate on the erroneous
resulta (becauser(a) = a andb � a = a). Hence, thePAj/
local algorithm instantiated with the non strictly idempotentr-operator/ does not lead to a self-stabilizing distributed al-
gorithm. ut

From Propositions 6 and 7, we deduce the following re-
sult.

Theorem 1 (Necessary and sufficient condition).Consider
a distributed systemS that satisfies Hypotheses 1 and 2, and
where each processorPv runs the local parametric Algo-
rithmsPAjCv instantiated with anr-operatorCv. Then the
distributed algorithm is self-stabilizing if and only if the r-
operatorsCv are all strictly idempotent.

As a result, in Sections 5.5 and 6, we only consider strictly
idempotentr-operators.

5.5 Complexity

In this section, we investigate the memory space and time
needed for the system to stabilize into a legitimate configura-
tion.

In order to give an upper bound on the space and time
requirements, we assume that the setSis finite. (Note that
this assumption is used for complexity results only, since our

algorithm was proved to be correct even in the case whereS
is infinite and Hypothesis 2 holds.)

The space complexity result is immediately given by the
assumptions made when writing the local parametric Algo-
rithmPA.

Proposition 8 (Space complexity).For executing local para-
metric AlgorithmPA, each processorv 2 S needs���(v) + 1�� log2(jSj)
bits, wherejSj denotes the number of elements in the input
data set.

Proof. Each processorv has��(v) local variables that hold
the value of the register of the corresponding direct ancestor,
and one register used to communicate with its direct descen-
dants. Each of these local variables or register may hold a
value in a finite setS, then needlog2(jSj) bits. Note that the
constant stored in ROM is not taken into account in this re-
sult. ut

In the convergence part of the proof, we only assumed that
the executions were maximal. In order to provide an upper
bound on the stabilization time for our algorithm, we assume
strong synchrony between nodes. (Note that this assumption
is used for complexity results only, since our algorithm was
proved to be correct even in the case of asynchronous and
unfair executions.)

Proposition 9 (Time complexity).Assuming a synchronous
systemS, the stabilization time of the distributed protocol
based on local parametric AlgorithmPA is O(D + jSj),
whereD is the diameter of the network.

Proof. We define� as the function that returns the index of
a given element ofS. This index always exists sinceSis or-
dered by a total order relation. The signature of� is as fol-
lows: � : S! Ns 7! �(s)
and we have: s1 �� s2 ) �(s1) < �(s2)
After O(D) steps, every node in the network has received
values from all of their ancestors. If those values were badly
initialized, then the received values are also possibly badly
valued.

For each nodeu, we consider the difference between the
index of its final value (since the algorithm terminates) and
the index of the smallest received value which is badly ini-
tialized. The biggest possible difference isM �m, whereM
is the maximum index value ofSandm the minimum index
value ofS. This difference is calledd and isO(jSj).

Let l be the length of the smallestr-path-mapping. Anyr-path mapping increases a value index by at leastl.
In the worst case, there exists a node that has an incor-

rect input value indexed withm, a correct input value in-
dexed withM , so it has to wait that the incorrect value index
is increased byM � m before the incorrect value effect is
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canceled. Eachl times units at least, this incorrect value in-
dex is increased byl. Again, in the worst case, ifbdl c < dl ,
another incorrect value may still be lower than the correct
value, and the greatest cycle may be followed, inducing an
extrad time delay. Overall, after the firstO(D) times units,�bdl c � l� + d = O(d) time units are needed.ut
6 Applications

In this section, we briefly give some examples ofr-operators
designed to solve particular problems. Those examples use
different techniques to illustrate the expressiveness ofr-ope-
rators in distributed systems.

In the first three applications given in this section,ROM
are used to differentiate a particular set of nodes from the
others, leading to a semi-uniform algorithm: all nodes execute
the same overall code, but based on some hardwired values,
some internal functions may not have the same behavior.

6.1 Distance Computation, Shortest Dipath Spanning Tree
and Forest

Computing the distance from some patriarchu of the network
requiresu-sourced paths length computations. Such a compu-
tation can be done using incrementation (x 7! x + 1) on the
edges. Moreover, if two different paths fromu arrive at nodev by two different incoming edges, thenv should choose the
paths with the smallest length. Hence,v performs a minimum
computation. Intuitively, an operator such as(x; y) 7! min(x; y + 1)
should solve the problem. We now prove that this operator is
correct.

Suppose that registers in the distributed system arek bits
wide, and that2k is larger than the distance fromu to any
other node in the network (if not, the problem can not be
solved). LetSbe thefinite set f0; : : : ; 2k � 1g (Hypothe-
sis 2 is satisfied). The operatormin is an s-operator onS
which defines atotal order relation usually denoted by<
(Hypothesis 1 is satisfied). Its identity element is2k � 1. Letr be a mapping fromSto Sdefined byr(x) = x + 1 for0 � x < 2k � 1 andr(2k � 1) = 2k � 1. This mapping is
an homomorphism of(S;min). Let minc(x; y) be the binaryr-operator defined onSby minc(x; y) = min(x; r(y)) (Defi-
nition 4). Sincex < r(x) = x+ 1 for anyx 2 Sn f2k � 1g,minc is a strictly idempotentr-operator onS(Definition 5).

Let S be a distributed system such that there exists a pa-
triarchu with its constantMu[0] = 0 and all others nodesv 6= u with their constantsMv[0] = 2k � 1. Moreover, we
assume that each processorPv of S runsPAjminc.

According to Theorem 6, this distributed systemS is self-
stabilizing. When the system is stabilized, each nodew has
the following legitimate value (see Definition 8):M [��(w) + 1] = min� rPv!w (Mv[0]); v 2 ��G (w);Pv!w elementary path

�

00 71 31 4181 21 41+1 +1 +1 +1+1+1+1
(a) Faulty Configuration00 11 21 3161 51 41+1 +1 +1 +1+1+1+1

(b) Terminal Configuration

Fig. 5.Distance Computation

This is equivalent toM [��(w) + 1] = rdG(u;w)(Mu[0]) =dG(u;w). Hence, ther-operatorminc solves the distance com-
putation in any network from a patriarchu in a self-stabilizing
way.

After stabilization of systemS, a shortest path spanning
tree rooted at the patriarch is maintained by the knowledge,
on each node, of one incoming variable containing the small-
est datum of all those in the incoming variables. Figure 5
shows two possible configurations forS: the first is an incor-
rect configuration due to a transient failure, while the second
is a legitimate configuration obtained after stabilizationof the
algorithm.

If there are several patriarchs in the system, each node will
be in the tree that has the closest patriarch from itself. This
completes our solution of the shortest path spanning forest
problem.

6.2 Single and Multiple Source Shortest Path

The single source shortest path problem is similar to the dis-
tance computation, except that the edge weights are not nec-
essarily equal to 1. Assume that!iv is the weight of theith
incoming edge of nodev. As in Section 6.1, we consider the
samefinite setS, assuming that2k is larger than the maxi-
mal weighted distance from the patriarchu to any other node
in the network (if not, the problem can not be solved). The
operator� defined byx � y = min(x; y) is an s-operator
onSthat defines atotal order relation onS. Hence Hypothe-
ses 1 and 2 are satisfied. For each weight!iv, the mappingriv defined byx 7! min(2k � 1; x + !iv) is an homomor-
phism of(S;�): r(x� y) = min(2k � 1;min(x; y) + !iv) =min �min(2k � 1; x+ !iv);min(2k � 1; y + !iv)� = riv(x) �riv(y).
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We then define ther-operatormincv as follows:mincv �x0; : : : ; x��(v)�= min x0;min(2k�1; x1 + !1v);: : : ;min(2k�1; xn�1+ !��(v)v )!
Then we have:mincv �x0; : : : ; x��(v)�= min 2k�1; x0; x1 + !1v;: : : ; xn�1+ !��(v)v !

If each!iv is strictly larger than 0, then eachr-mappingriv(x) = min(2k � 1; x+ !iv) verifiesx �� riv(x) for all x 2Snf2k�1g. Themincv r-operator is thus strictly idempotent
(Definition 7).

As in previous application, suppose that the patriarchu
has its constantMu[0] = 0 and others nodesv 6= u have their
constantMv[0] = 2k�1. Depending on the implementations,
such a setting should not require more than one bit per node.
Moreover, assume that each processorPv runs thePAjmincv
local algorithm.

According to Theorem 6, this distributed systemS is self-
stabilizing. WhenS is stabilized, each nodew has the follow-
ing legitimate value (see Definition 8):M [��(w) + 1] = min� rPv!w (Mv[0]); v 2 ��G (w);Pv!w elementary path

�
This is equivalent toM [��(w)+ 1] = rPu!w (Mu[0]), whererPu!w (Mu[0]) is the smallest weighted distance fromu tow. Hence, ther-operatormincv solves the weighted distance
computation in any network from a patriarchu in a self-sta-
bilizing way.

Figure 6 shows two possible configurations of such a dis-
tributed systemS.

After stabilization ofS, a “lightest” path spanning tree
rooted atu is maintained provided that each node chooses
one of the incoming variables that lead to the smallest path
weight. That solves the single source shortest path problem.
As in Section 6.1, the same operator solves the problem with
multiple patriarchs.

6.3 Best Reliable Path from some Transmitters

In hazardous telecommunication networks where nodes must
choose their “best” transmitter, distance is not always therel-
evant criterium. When the failure rate of neighbor connec-
tions is computable and keeps more or less constant, it is in-
teresting to know the transmitter from which the failure rate
path is the lowest, and to know the path itself.

We suppose that all registers arek-bits wide and that re-
liability rates of the links are sampled from0 (link out of
order) to2k � 1 (no failure at all). The best reliable path
is computed from node to node: for all its ancestorsu, each
nodev computes a reception rate� by multiplying the recep-
tion rate�u of u by the edge rate�(u;v) of the edge(u; v):� = b�u � �(u;v)=255c. Nodev can then compute its best
reception rate�v by a maximum computation, and determine

00 71 31 4181 21 41 4180 21 41 41
+1 +2 +3 +2+1 +1 +2 +2 +1+2 +2 +5 +3 +7 +1 +5

(a) Faulty Configuration00 11 31 6121 31 111 10100 21 51 61
+1 +2 +3 +2+1 +1 +2 +2 +1+2 +2 +5 +3 +7 +1 +5

(b) Terminal Configuration

Fig. 6.Multiple Source Shortest Path Computation

its best incoming edge. Hence, to know the best reliable path
from a transmitter, each node has to perform multiplications
and maximum computations. We now build anr-operator that
performs these computations, and solves the problem in a
self-stabilizing way.

Let Sbe thefinite set f0; : : : ; 2k � 1g. The maximum
operatormax is ans-operator onSthat defines atotal order
relation�max which is, in fact, the usual order� on the inte-
gers. We denote by� iv the reliability rate of theith incoming
edge of the nodev. We suppose that there is no edge with a
reliability rate equal to2k � 1 (on each link, there is some-
times some failures). Hence� iv 2Sn f2k� 1g. Hypotheses 1
and 2 are then satisfied. For each rate� iv, the mappingriv de-
fined byriv(x) 7! bx� � iv=(2k� 1)c is an homomorphism of(S;max). Indeed,riv(max(x; y)) = bmax(x; y) � �iv(2k�1)c= bmax(x� �iv(2k�1) ; y � �iv(2k�1))c= max(bx� �iv(2k�1)c; by � �iv(2k�1)c)= max(riv(x); riv(y))

We then define ther-operatormaxmulv onSby:maxmulv(x0; : : : ; xn�1)= max0@x0; bx1 � �1v(2k�1)c;: : : ; bxn�1� �n�1v(2k�1)c1A
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Since we assume that0 � � iv < 2k�1, we havex �max riv(x)
for all r-mappingsriv (which means thatx > riv(x)). Thus ther-operatormaxmulv is strictly idempotent (Definition 7).

Suppose that for any transmitteru, Mu[0] = 2k � 1 and
that for all other nodesv, Mv[0] = 0. Moreover, assume that
each processorPv runs thePAjmaxmulv local algorithm. Ac-
cording to Theorem 6, such a distributed systemS is self-sta-
bilizing. WhenS is stabilized, each nodew owns the follow-
ing legitimate value (see Definition 8):M [��(w) + 1] = max� rPv!w (Mv[0]); v 2 ��G (w);Pv!w elementary path

�
which is equivalent toM [��(w)+1] = rPu!w(Mu[0]), whererPu!w (Mu[0]) is the best reliability rate of a pathP from
one ancestor transmitteru of w to the nodew. Hence, ther-operatormaxmulv allows to solve the best reliability path
from a transmitter in any network in a self-stabilizing way.
Each node should keep the information corresponding to the
greatest reliability rate.

Figure 7 shows two possible configurations of such a sys-
temS where the reliability rates of the links are sampled from0 (link out of order) to255 (no failure at all),i.e. where reg-
isters are8-bits wide.

Note that our approach makes the algorithm input adap-
tive: if reliability rates are adjusted online during the dis-
tributed application, then the forest of the best reliable paths
is updated without the need of human intervention.

6.4 Depth-first Search Tree

In this section, we give anr-operator that allows to find a
depth-first-search tree rooted on a patriarchu in the network,
despite transient failures.

To solve this fundamental problem, we assume that each
processor holds a constant unique identifier, and that a to-
tal order can be defined on those identifiers. Consider the or-
dered lists of node’s identifiers;; denotes the empty list. We
denote bymin the binary operator that returns the smallest
list of its two operands using the lexicographical order. For
instance, if the identifiers are lettersa; b; c; : : : ordered by
the alphabetical order, the operatormin gives the following
results:min ((a; b; d; e; ); (a; b; c; d; e; f)) = (a; b; c; d; e; f),
andmin ((a; a); (a)) = (a).

Let L be the greatest list (in sense ofmin) that can be
coded in thek-bits wide registers of the distributed systemS. We then consider the setScomposed of the lists of iden-
tifiers l verifying min(l; L) = l. HenceS is the finite setf;; : : : ; Lg (Hypothesis 2). The operator� defined byl1 �l2 = min(L; l1; l2) is ans-operator onSthat defines atotal
order relation (Hypothesis 1). Its identity element isL. We
assume that there exists no elementary pathP in the network
such that the list composed of the identifiers of the nodes ofP is greater thanL (which means that the registers are wide
enough to store all necessary lists).

For each nodev, consider ther-mappingsrv defined onSby rv(l) = min(L; l [ (v)), wherev is the identifier of the
node and[ denotes the concatenation operator of two lists.

62255 50 2550 2410630 650 320 2110121255 280 360 2200
224 221 235 245251 50 4 20 23565 201 214 222 102 75 231

(a) Faulty Configuration255255 2240 1940 1780650 1680 1570 1710255255 2010 1740 510
224 221 235 245251 50 4 20 23565 201 214 222 102 75 231

(b) Terminal Configuration

Fig. 7.Best Reliable Path from Some Transmitters Construction

Such mappings are homomorphisms of(S;�):rv(l1 � l2) = min(L;min(L; l1; l2) [ (v))= min(L;min(L; l1 [ (v));min(L; l2 [ (v)))= rv(l1)� rv(l2)
We then define the binaryr-operatorlexicatv on Sbylexicatv(l1; l2) = l1 � rv(l2) (Definition 4). For any listl 2Sn fLg, l �� rv(l). Ther-operatorlexicatv is then strictly-

idempotent (Definition 5).
Suppose that the patriarchu (root of the depth-first-search

tree) hasMu[0] = ; while other nodesv 6= u are such thatMv[0] = L. Moreover, we assume that each processorPv
runs thePAjlexicatv local parametric algorithm.

According to Theorem 6, any induced distributed system
is self-stabilizing. When the system is stabilized, each nodew owns the following legitimate value (rP concatenates the
list of identifiers of the nodes ofP to any list sent alongP ):M [��(w) + 1] = min� rPv!w (Mv[0]); v 2 ��G (w);Pv!w elementary path

�
which is equivalent toM [��(w)+1] = rPu!w (Mu[0]), whererPu!w (Mu[0]) is the smallest (in sense ofmin) list of iden-
tifiers of all the paths from the patriarchu to the nodew.
We now prove that this result induces a depth-first-search tree
rooted atu.

First, all legitimate values are lists beginning byu, the
identifier of the root. Moreover, all nodesv 6= u have in their
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incoming dataMv[1]::Mv[��(v)] a smaller list than their own
legitimate valueMv[��(v) + 1]. This smallest incoming list
is the legitimate value of one ancestor. Hence, if each node
chooses one of its incoming edge, corresponding to the small-
est received value, we obtain a tree, rooted atu, that we will
denotesTu.

Now, to prove that this tree is a depth-first-search tree, it
is sufficient to verify that the numbering of each node given
by the legitimate values is a depth-first-search numbering of
the networkG(V;E):8v; w 2 V; w 2 �+G (v))8>>>><>>>>: � w 2 �+Tu(v)

and Mv[��(v) + 1] �� Mw [��(w) + 1]�or � w 62 �+Tu(v)
and Mw[��(w) + 1] �� Mv[��(v) + 1]�

The legitimate values are all unique since they denote a unique
path. Moreover the numbering increases along the edges ofTu. Hence, if this numbering is not a depth-first-search num-
bering, there exists an edge(v; w) inG such thatMv[��(v)+1] �� Mw[��(w) + 1] andw 62 Tv whereTv denotes the
subtree ofTu rooted atv. In this case, we havew 62 Tv andv 62 Tw (see Figure 8).

Then there exists a nodet which is an ancestor of bothv
andw in Tu and yet different from bothv andw. Let v0 be
the first node in the path fromt to v in Tu and letw0 (resp.w00) be the first (resp. the last) one in the path fromt to w.
We haveMv[��(v) + 1] = Mt[��(t) + 1][ (v0) [ � � � [ (v)
andMw [��(w) + 1] = Mt[��(t) + 1][ (w0)[ � � �[ (w00)[(w). SinceMv[��(v) + 1] �� Mw[��(w) + 1], we have(v0) �� (w0). Thus the incoming list received byw from
its direct ancestorv (Mt[��(t) + 1] [ (v0) [ � � � [ (v)) is
smallest (in sense of the lexicographical order�) than the one
received by its direct ancestorw00 (Mt[��(t) + 1] [ (w0) [� � � [ (w00)), which contradicts the fact thatw has chosen one
of its smallest ancestor to construct the depth-first-search treeTu.

HenceTu is a depth-first-search tree rooted at the patri-
archu; the legitimate values give a depth-first-search num-
bering, and indicates the list of the nodes from the root to
themselves in the tree. They allow also to compute the dis-
tance from the root to the node in this depth-first-search tree
(length of the list).

The lexicatv r-operator allows to solve the depth-first-
search problem in any network, in spite of transient failure.

7 Conclusion

We characterized a set of silent tasks that can be solved in a
self-stabilizing way using a single algorithm parameterized
by an r-operator. This operator must conform to some re-
strictions, namely being strictly idempotent and that thes-
operator it is based on induces a total order on the elements
of the computing setS. Moreover, such a condition is local
to each node and thus easily checkable. Note that our para-
metric algorithm can be used in any directed graph even if
its underlying topology does not allow the building of well
known topologies (i.e. trees or rings).

v ww00v0 w0tu Mu[��(u) + 1] = (u)Mt[��(t) + 1] = (u : : : t)Mw0 = (u : : : t)[ (w0)Mw00 = (u : : : t)[ (w0)[ � � �[ (w00)Mw = (u : : : t)[ (w0)[ � � �[ (w00)[ (w)
Mv0 = (u : : : t)[ (v0)Mv = (u : : : t)[ (v0)[ � � �[ (v)

Fig. 8.Depth-first-search Tree Construction

Although being simple in its formulation, the parameter-
ized algorithm can be applied to a broad range of distributed
tasks such as Distance Computation, Shortest Path Calcu-
lus, Depth-first Search Tree Construction and Best Reliability
Path. A nice property of our approach is that no knowledge on
the communication graph is needed: the resulting algorithm
does not need any information about the network topology,
size, degree or diameter to stabilize. Of course, if such in-
formation is available, the stabilization time will be reduced
appropriately.

It should be interesting to further develop our approach
using the layered scheme of [18]. In [18], the lower layer,
that ensures stabilization, is basically ther-operatorminc (see
Section 6.1) along with some bound on the network diame-
ter, while the higher layer computes a maximum metric tree
with an operator that is not strictly idempotent. By consider-
ing appropriate domains for local algorithms, this layering of
operators would lead to solve problems (e.g.maximum flow
routing) for which strictly idempotentr-operators are not eas-
ily found. Still any such solution would benefit from our weak
hypothesis (read-write atomicity, unfair scheduling, no global
knowledge about topology required).

Acknowledgements.We are grateful to the anonymous referees for
helping us to improve this paper, both in presentation and intechni-
cal correctness.

References

1. L. O. Alima, J. Beauquier, A. K. Datta and S. Tixeuil.
Self-stabilization with Global Rooted Synchronizers.
In Proceedings of the Eighteenth International Confer-
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