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Abstract. In this paper we review several existing tools for fault injection and 
dependability benchmarking in grids. We emphasis on the FAIL-FCI fault-
injection software that has been developed in INRIA Grand Large, and a bench-
mark tool called QUAKE that has been developed in the University of Coim-
bra. We present the state-of-the-art and we explain the importance of these 
tools for dependability assessment of Grid-based applications and Grid mid-
dleware. 

1   Introduction 

One of the topics of paramount importance in the development of Grid middle-
ware is the impact of faults since their probability of occurrence in a Grid infrastruc-
ture and in large-scale distributed system is actually very high. So it is mandatory that 
Grid middleware should be itself reliable and should provide a comprehensive sup-
port for fault-tolerance mechanisms, like failure-detection, checkpointing-recovery, 
replication, software rejuvenation, component-based reconfiguration, among others. 
One of the techniques to evaluate the effectiveness of those fault-tolerance mecha-
nisms and the reliability level of the Grid middleware it to make use of some fault-
injection tool and robustness tester to conduct some experimental assessment of the 
dependability metrics of the target system. In this paper, we will present and review 
several software fault-injection tools and workload generators for Grid Services that 
can be used for dependability benchmarking in Grid Computing.  

The ultimate goal of our common work is to provide some contributions for the 
definition of a dependability-benchmark for Grid computing and to provide a set of 
tools and techniques that can be used by the developers of Grid middleware and Grid-
based applications to conduct some dependability benchmarking of their systems. 

Dependability benchmarking must provide a uniform, repeatable and cost-effective 
way of performing experiments in different systems, mechanisms or components. 
Those three metrics can be achieved with the development of software tools that will 



be used in the process and in the definition of the dependability benchmark. Accord-
ing to [1] a dependability benchmark should provide the following components: 

- Workload: which represents the work the system must do during the execu-
tion of the benchmark; 

- Faultload: represents a set of faults and stressful conditions to emulate real 
faults that experienced in the real systems; 

- Measures: characterize the performance and dependability of the system un-
der benchmark in the presence of the faultload when executing the workload; 

- Experimental setup and benchmark procedure: describes the setup re-
quired to run the benchmark and the set of rules that should be followed dur-
ing the benchmark execution. 

In this paper we present the two tools that have been developed by the two partners 
of WP4 from CoreGrid (INRIA and Univ. Coimbra) and we explain some of our on-
going projects with these tools. 

2 Related Works 

2.1 Fault-injection 

When considering solutions for software fault injection in distributed systems, 
there are several important parameters to consider. The main criterion is the usability 
of the fault injection platform. If it is more difficult to write fault scenarios than to 
actually write the tested applications, those fault scenarios are likely to be dropped 
from the set of performed tests. The issues in testing component-based distributed 
systems have already been described and methodology for testing components and 
systems has already been proposed [2,3]. However, testing for fault tolerance remains 
a challenging issue.  Indeed, in available systems, the fault-recovery code is rarely 
executed in the test-bed as faults rarely get triggered. As the ability of a system to 
perform well in the presence of faults depends on the correctness of the fault-
recovery code, it is mandatory to actually test this code. Testing based on fault-
injection can be used to test for fault-tolerance by injecting faults into a system under 
test and observing its behavior. The most obvious point is that simple tests (e.g. every 
few minutes or so, a randomly chosen machine crashes) should be simple to write and 
deploy. On the other hand, it should be possible to inject faults for very specific cases 
(e.g. in a particular global state of the application), even if it requires a better under-
standing of the tested application. Also, decoupling the fault injection platform from 
the tested application is a desirable property, as different groups can concentrate on 
different aspects of fault-tolerance. 
Decoupling requires that no source code modification of the tested application should 
be necessary to inject faults. Also, having experts in fault-tolerance test particular 



scenarios for application they have no knowledge of favors describing fault scenarios 
using a high-level language, that abstract practical issues such that communications 
and scheduling. Finally, to properly evaluate a distributed application in the context 
of faults, the impact of the fault injection platform should be kept low, even if the 
number of machines is high. Of course, the impact is doomed to increase with the 
complexity of the fault scenario, e.g. when every action of every processor is likely to 
trigger a fault action, injecting those faults will induce an overhead that is certainly 
not negligible. The following table captures the main differences between the main 
solutions for distributed fault injection relatively to those criteria. 

 
Criteria ORCHESTRA 

[5] 

NFTAPE 

[6] 

LOKI 

[7] 

FAIL-FCI 

[This paper] 

High Expressiveness no yes no yes 

 

High-level Language no no no yes 

 

No Source Code 
Modification 

yes no no yes 

 

Scalability yes no yes yes 

 

Probabilistic Scenario yes yes no yes 

 

Global-state-based 
Injection 

no yes yes yes 

 

 

2.2 Dependability benchmarking 

The idea of dependability benchmarking is now a hot-topic of research and there 
are already several publications in the literature. The components of a dependability 
benchmark have been defined in [1]. In [18] is proposed a dependability benchmark 
for transactional systems (DBench-OLTP). Another dependability benchmark for 
transactional systems is proposed in [19]. Both benchmarks adopted the workload 
from the TPC-C performance benchmark. While [18] used software-based faults, the 
work described on [19] considered a fault-load based on hardware faults. The Special 
Interest Group on Dependability Benchmarking (SIGDeB), created by the IFIP WG 
10.4 in 1999, released a preliminary proposal with a set of standardized classes for 
the classification of dependability in transactional database systems [20]. The goal is 



to help out the comparison of computer systems concerning four different dimen-
sions: availability, data integrity, disaster recovery and security.  

 
A dependability benchmark for operating systems was proposed by [21]. That 

benchmark was targeted for the study of the operating system robustness in the sce-
nario of faulty applications. Another study about the behavior of the operating system 
in the presence of software faults in OS components was presented in [22]. 

 
The research presented in [23] addresses the impact of human errors in system de-

pendability. In [24] is presented a methodology to evaluate human-assisted failure-
recovery tools and processes in server systems. That methodology was illustrated 
with a case study of undo/redo recovery tool in email services. Another work was 
presented in [25] that focus on the availability benchmarking of computer systems. 
The authors propose a methodology, including single and multi-fault workloads, and 
they applied that methodology to measure the availability of software RAID systems 
in different operating systems. 

 
Research work at Sun Microsystems defined a high-level framework that is tar-

geted to availability benchmarking [26]. That framework decomposes availability in 
three main components: fault-maintenance rate, robustness and recovery. Within the 
scope of that framework, they have developed two benchmarks: one that addresses 
specific aspects of a system's robustness on handling maintenance events such as the 
replacement of a failed hardware component or the installation of software patch 
[27]; and another benchmark that is related to system recovery [28].  

 
At IBM, the Autonomic Computing initiative is also developing benchmarks to 

quantify the autonomic capability of a system [29]. In that paper they have discussed 
the requirements of benchmarks to assess the self-* properties of a system and they 
proposed a set of metrics for evaluation. In [30] is presented a further discussion 
about benchmarking the autonomic capabilities of a system. The authors present the 
main challenges and pitfalls. In [31] is presented an interesting approach to conduct 
benchmarking of the configuration complexity. This is a valuable contribution since 
one of the main problems of current IT systems is the complexity of deployment and 
management. A benchmark for assessing the self-healing capabilities of a system was 
presented in [32]. Two metrics were introduced: (a) the effectiveness of the system to 
heal itself in the occurrence of some perturbations; (b) a measure of how autonomic 
that healing action was achieved. This paper has clear connections with the work we 
are conducting in the study of self-healing techniques for SOAP-based servers. 

 
In [33] the authors present a dependability benchmark for Web-Servers (Web-DB). 

This tool used the experimental setup, the workload and the performance measures 
specified in the SPECWeb99 performance benchmark. Web-DB defined measures in 
the baseline performance, in the performance in presence of faults and some depend-
ability measures, like autonomy, availability and accuracy. 

 



The dependability benchmark tool that is presented in this paper is targeted to Grid 
and Web-Services. We are mainly interested in the study of potential software aging 
problems and the effectiveness of self-healing techniques like software rejuvenation. 

3 Our proposal 

3.1 FAIL-FCI 

FAIL-FCI [15] is a recently developed tool from INRIA. First, FAIL (for FAult In-
jection Language) is a language that permits to easily described fault scenarios. Sec-
ond, FCI (for FAIL Cluster Implementation) is a distributed fault injection platform 
whose input language for describing fault scenarios is FAIL. Both components are 
developed as part of the Grid eXplorer project [10] which aims at emulating large-
scale networks on smaller clusters or grids. 

The FAIL language allows defining fault scenarios. A scenario describes, using a 
high-level abstract language, state machines which model fault occurrences. The 
FAIL language also describes the association between these state machines and a 
computer (or a group of computers) in the network. The FCI platform is composed of 
several building blocks: 

1. The FCI compiler: The fault scenarios written in FAIL are pre-compiled 
by the FCI compiler which generates C++ source files and default con-
figuration files. 

2. The FCI library: The files generated by the FCI compiler are bundled 
with the FCI library into several archives, and then distributed across the 
network to the target machines according to the user-defined configura-
tion files. Both the FCI compiler generated files and the FCI library files 
are provided as source code archives, to enable support for heterogeneous 
clusters. 

3. The FCI daemon: The source files that have been distributed to the tar-
get machines are then extracted and compiled to generate specific execu-
table files for every computer in the system. Those executables are re-
ferred to as the FCI daemons. When the experiment begins, the distrib-
uted application to be tested is executed through the FCI daemon installed 
on every computer, to allow its instrumentation and its handling accord-
ing to the fault scenario. 

 
The approach is based on the use of a software debugger. Like the Mantis parallel 

debugger [11], FCI communicates to and from gdb (the Free Software Foundation's 
portable sequential debugging environment) through Unix pipes. But contrary to 
Mantis approach, communications with the debugger must be kept to a minimum to 
guarantee low overhead of the fault injection platform (in our approach, the debugger 
is only used to trigger and inject software faults). The tested application can be inter-
rupted when it calls a particular function or upon executing a particular line of its 



source code. Its execution can be resumed depending on the considered fault sce-
nario. 

 
With FCI, every physical machine is associated to a fault injection daemon. The 

fault scenario is described in a high-level language and compiled to obtain a C++ 
code which will be distributed on the machines participating to the experiment. This 
C++ code is compiled on every machine to generate the fault injection daemon. Once 
this preliminary task has been performed, the experience is then ready to be launched. 
The daemon associated to a particular computer consists in: 

1. a state machine implementing the fault scenario,  
2. a module for communicating with the other daemons (e.g. to inject faults 

based on a global state of the system),  
3. a module for time-management (e.g. to allow time-based fault injection), 
4. a module to instrument the tested application (by driving the debugger), 

and  
5. a module for managing events (to trigger faults). 

 
FCI is thus a Debugger-based Fault Injector because the injection of faults and the 

instrumentation of the tested application is made using a debugger. This makes it 
possible not to have to modify the source code of the tested application, while ena-
bling the possibility of injecting arbitrary faults (modification of the program counter 
or the local variables to simulate a buffer overflow attack, etc.). From the user point 
of view, it is sufficient to specify a fault scenario written in FAIL to define an ex-
periment. The source code of the fault injection daemons is automatically generated. 
These daemons communicate between them explicitly according to the user-defined 
scenario. This allows the injection of faults based either on a global state of the sys-
tem or on more complex mechanisms involving several machines (e.g. a cascading 
fault injection). In addition, the fully distributed architecture of the FCI daemons 
makes it scalable, which is necessary in the context of emulating large-scale distrib-
uted systems. FCI daemons have two operating modes: a random mode and a deter-
ministic mode. These two modes allow fault injection based on a probabilistic fault 
scenario (for the first case) or based on a deterministic and reproducible fault scenario 
(for the second case). Using a debugger to trigger faults also permits to limit the in-
trusion of the fault injector during the experiment. Indeed, the debugger places break-
points which correspond to the user-defined fault scenario and then runs the tested 
application. As long as no breakpoint is reached, the application runs normally and 
the debugger remains inactive. 

3.2 QUAKE: A Dependability Benchmark Tool for Grid Services 

QUAKE is a dependability benchmark tool for Grid and Web-Services. The fol-
lowing sub-sections present the QUAKE tool and the relevant metrics for dependabil-
ity benchmark. 



3.2.1- Experimental Setup and Benchmark Procedure 

The QUAKE tool is composed by the following components presented in Figure 2. 
The main components are the Benchmark Management System (BMS and the System 
Under Test (SUT). The SUT consists of a SOAP server running some Web/Grid 
service. From the point of view of the benchmark the SUT corresponds to a web-
based application server, a SOAP router and a web-service. That web-service will 
execute under some workload, and optionally will be affected by some fault-load. 
There are several client machines that invoke requests in the server using SOAP-
XML requests. All the machines in the infrastructure are clock-synchronized using 
NTP. The application under test is not limited to a SOAP-based application: in fact, 
the benchmark infrastructure can also be used with other examples of client-server 
applications that use other different middleware technologies.  

The Benchmark Management System (BMS) is a collection of software tools that 
allows the automatic execution of the benchmark. It includes a module for the defini-
tion of the benchmark, a set of procedures and rules, definition of the workload that 
will be produced in the SUT, a module that collects all the benchmark results and 
produces some results that are expressed as a set of dependability metrics. The BMS 
system may activate a set of clients (running in separate machines) that inject the 
defined workload in the SUT by making SOAP requests to the Grid Service. The 
execution of the client machines is timely synchronized and all the partial results 
collected by each individual client are merged into a global set of results that gener-
ated the final assessment of the dependability metrics. The BMS system includes a 
reporting tool that presents the final results in a readable and graphic format. 
 

           

 
Figure 2: Experimental setup of the QUAKE tool. 

 



The Benchmark Management System (BMS) is a collection of software tools that 
allows the automatic execution of the benchmark. It includes a module for the defini-
tion of the benchmark, a set of procedures and rules, definition of the workload that 
will be produced in the SUT, a module that collects all the benchmark results and 
produces some results that are expressed as a set of dependability metrics. The BMS 
system may activate a set of clients (running in separate machines) that inject the 
defined workload in the SUT by making SOAP requests to the Web Service. The 
execution of the client machines is timely synchronized and all the partial results 
collected by each individual client are merged into a global set of results that gener-
ated the final assessment of the dependability metrics. The BMS system includes a 
reporting tool that presents the final results in a readable and graphic format. 

 
The results generated by each benchmark run are expressed as throughput-over-

time (requests-per-second in a time axis), the total turnaround time of the execution, 
the average latency, the functionality of the services, the occurrence of failures in the 
Web-Service, the characterization of those failures (crash, hang, zombie-server), the 
correctness of the final results and the failure scenarios that are observed at the client 
machines (explicit SOAP error messages or time-outs). 

 
From the side of the SUT system, there are four modules that also make part of the 

QUAKE benchmark tool: a fault-load injector, a configuration manager, a collector of 
logs with the benchmark results and a watchdog of the SUT system. 

 
The configuration manager helps in the definition of the configuration parameters 

of the SUT middleware. It is absolutely that the configuration parameters may have a 
considerable impact in the robustness of the SUT system. By changing those parame-
ters in different runs of the benchmark it allow us to assess the impact of those pa-
rameters in the results expressed as dependability metrics. 

 
The SUT system should also be installed with a module to collect raw data from 

the benchmark execution. This log data will be then sent to the BMS server that will 
merge and compare with the data collected from the client machines. The final mod-
ule is a SUT-Watchdog that detects when a SUT system crashes or hangs when the 
benchmark is executing. When a crash or hang is detected the watchdog generates a 
restart of the SUT system and associated applications, thereby allowing an automatic 
execution of the benchmark runs without user intervention. 

 
There is another external module that will be used but is related with the software 

rejuvenation study. This module includes two main components: 
(a) An online Surveillance System: this component is responsible for the 

online monitoring of some key parameters that may indicate the occur-
rence of software aging, namely: throughput (requests-per-second), av-
erage response time of requests and the memory usage at the server un-
der test. 

(b) A Software Rejuvenation Agent: this module applies some predictive 
techniques based on time-series analysis to indicate in advance the prob-



ability of software aging in the server system. It is used to trigger reju-
venation actions to study the impact of the self-healing capability in the 
system-under-test. 

 
In this particular study, this predictive system does not trigger automatically a re-

juvenation action: it is mainly used to study the likelihood of software aging in some 
packages of SOAP middleware. The rejuvenation actions in this study are triggered 
by a threshold metric based on the SLA parameters of the web-service. We are not 
only concerned in software aging that results in hang or crash situations. We are also 
considering the cases where the software aging manifests as a clear performance 
degradation that may violate the SLA for that service component, and surely result in 
profit-loss. In this case, we do apply a rejuvenation action. 

3.2.2 Benchmark Procedure 

The benchmark can run in three modes: 
(a) Learning mode: in this mode the main performance metrics of the web-

service application are collected. The idea is to take a “picture” of the web-
service parameters while it is “young” and to compare it in a long-running 
execution where it may get “old”. In other words, we get the baseline per-
formance parameters and define a SLA for that service with thresholds. Dur-
ing the long-run execution we collect the same parameters and when they 
deviate from the baseline (as defined in the SLA) more than a certain thresh-
old the SRA agent will trigger a rejuvenation action.  

(b) Workload-only: in this mode the web-service will be tested under stress 
situations of workload to see its behavior and the likelihood of software ag-
ing. No faultload is injected in this mode, so the web-service will use all the 
available system resources in the SUT server. In this mode the web-service 
parameters are monitored in order to detect deviations from the SLA defined 
from the baseline parameters.   

(c) Workload and faultload: in this mode, the behavior of the web-service will 
be studied when we apply simultaneous a defined workload and some par-
ticular faultload in the system resources of the server machine. 

3.2.3 Workload 

Since we want to study the response of a web-service in some stress situations we 
decided to include a list of different workloads that can be chosen at the beginning of 
each experiment. Currently, it is possible to use any of the following distributions: 

WL1- Continuous burst with a maximum workload; 
WL2- Steady-state distribution (N requests-per-second); 
WL3- Burst for X minutes, quiet for Y minutes; 
WL4- Surge load (fixed request rate and then a peak value in the load). 
WL5- Ramp-up distribution: starts with an initial defined request-rate and in-

creases at discrete intervals. 



 
The client machines are all timely synchronized: they start executing at the same 

time and all of them use the same distribution for the request workload. 
 
There are some other tools in the market that can be used for performance bench-

marking of SOAP web-services, namely: SOAtest [34] and TestMaker [35]. However 
those tools are mainly targeted for testing the functionality of the SOAP applications 
and to collect some performance figures. QUAKE has some fundamental differences: 
it is targeted to study the dependability attributes, it includes a different approach for 
the workload distributions, a fault-load module that will be explained next and is used 
to evaluate the self-healing capabilities of a SOAP server that provides support for 
some Grid or Web-Services. 

 

3.2.4 Faultload 

The faultload injector does not inject faults directly in the software or in the SOAP 
messages like in the traditional fault injection tools. This injector is obviously ori-
ented for the problem of software aging. We do not inject any software fault, any 
hardware fault or any operator fault. Instead, we just emulate resource exhaustion to 
accelerate the occurrence of software aging and to see the impact in the web-service 
under test. Other types of stressful condition can also be used in future experiments. 
The faultload is introduced by an external program that runs in the same server (SUT) 
and thus compete for the same system resources, consuming one or several of the 
following operating systems resources: 

FL1- Consumption of memory using a ramp-up distribution; 
FL2- Creation of a large number of threads; 
FL3- Extensive usage of file-descriptors; 
FL4- Consumption of database connections; 

 
This list of system resources (the targets of our faultload) may be extended in fu-

ture versions, but for the time being, those resources seemed to be the most critical 
ones in a web-service application server. The main point here is that the faultload we 
“inject” is representative of real scenarios.  

3.2.5 Measures 

The resulting measures are computed from the data that is collected by the BMS sys-
tem in the several test-runs. They are grouped in four categories: 

(a) Baseline performance measures; 
(b) Performance measures in the presence of stress workload distributions; 
(c) Performance measures in the presence of stress workload and injected 

fault-loads at the server side; 
(d) Dependability related measures. 



The baseline performance measures correspond to the sustained response that is 
obtained when the SUT is “young”. These figures are obtained in short-term runs to 
avoid the possible occurrence of software aging. The baseline measures that we have 
considered are the following: 

- THR: corresponds to the sustained throughput (requests-per-second); 
- ART: average response time for a request; 
- CR: this corresponds to the number of conforming requests that were 

performed with a response time lower than a maximum value 
(Max_RT). Any request to the web-service that exceeds this value may 
generate a “time-out” and thereby it is important to measure the number 
of CR (conforming requests) in every test-run; 

 
The performance measures in the presence of workload are THRw, ARTw and 

CRw, while the performance measures in the presence of workload and faultload are 
THRwf ARTwf and CRwf. 

 
Independently from the performance measures, several system parameters are also 

collected during the benchmark runs to feed the knowledge base of the SRA agent, as 
explained before. 

 
In addition to the performance-oriented measures, we also consider a set of de-

pendability measures directly obtained by the QUAKE tool. Since we are particularly 
interested in studying software aging and the effectiveness of potential self-healing 
mechanisms we consider the following measures, taking into account the work pub-
lished in [32] and [33]: 

- Integrity: reports the number of errors that were found in the data of the web-
service under test, in the presence of the workload and our faultload. At the 
end of each test-run we have a procedure for checking the integrity of the final 
state of the database. Since we are not injecting software/hardware faults it is 
expected that this metric will always report a value of 100%; 

- Availability: represents the time the system is available to execute the work-
load of each test run. The watchdog module that was included in the QUAKE 
tool is responsible for the assessment of this metric. In this metric we distin-
guish downtime when the server is down due to a failure from the downtime 
that may be introduced in a rejuvenation operation. In this latter case, we as-
sume that in production cases there is a cluster with a load-balancer that sends 
the incoming requests to another server while a SOAP-server is being rejuve-
nated. It is worth noting that the availability measure is related to the experi-
mental conditions of the QUAKE tool and does not represent field availability 
(unconditional availability). As it is typically the case for dependability 
benchmarking, this availability measured is meant to be used for comparison 
purposes. 

- Autonomy: this measure shows the need for manual intervention from the sys-
tem manager to repair the SOAP server in the presence of a hang situation. 
Hang-type failures are much more expensive than clean crash-failures: while in 
the latter case the application server may recover autonomously with a restart 



operation, the hang-scenario requires the manual intervention of a system man-
ager to kill processes and clean some system resources.  

- Self-Healing Effectiveness:  this measure is only considered in some test-runs, 
where we want to study the effectiveness of the SRA to perform proactive re-
juvenation of the SUT. More than the effectiveness of the technique, it meas-
ures the positive impact in the autonomy, availability and the performance of 
the web-service.  

3.2.6 Benchmark Properties 

As was explained in [36] a benchmark should offer the following properties: 
- Repeatable: our QUAKE infrastructure obtains similar results when running 

several times with the same workload in the same SUT; 
- Portable: as will be presented later, our QUAKE tool allows the comparison 

of different applications in this domain, that maybe implemented with different 
SOAP packages and even with other communication middleware; 

- Realistic: the scenario portrait by the QUAKE tool represents typical Web-
service applications and the harsh load conditions represented by QUAKE 
workload are actually common in this type of system.  Furthermore, as the 
fault load does not inject any software or hardware faults (only consumes sys-
tem resources), the QUAKE tool does not suffer from the representativeness 
difficulties that affect typical dependability benchmarks.  

 
So, in summary the QUAKE tool is able to be used in other environments for test-

ing traditional client-server and Grid-based applications where the subject of software 
aging and self-healing would be a point of concern. This section presented a general 
description of QUAKE. 

4 Experimental Results 

4.1 Fault Injection 

We conducted a series of tests to validate our approach by injecting faults on ac-
tual distributed applications. We chose the XtremWeb platform [22] to perform our 
experiments. XtremWeb is a general purpose platform that can be used for high per-
formance distributed calculus. The original XtremWeb application is written in Java, 
but we used FCI on the C++ version of the software, that is meant to be the most 
efficient version. XtremWeb participants are usually divided according to the kind of 
jobs they are doing: the dispatcher distributes jobs that are to be executed by the 
clients, each client querying and performing the actual work. The XtremWeb applica-
tion that was run on the platform is POV-Ray, which creates three-dimensional, 
photo-realistic images using a rendering technique called ray-tracing. We used the 



same cluster of computers as in the FCI overhead experiment, but only 35 cluster 
nodes were participating to the ray-tracing to the calculus. 

We considered the task of calculating the same picture twice. Calculating a POV-
Ray picture runs as follows: first, the dispatcher divides the image to be calculated 
into parts, each to be computed by a client, then, after each client has computed its 
image portion and sent it back to the dispatcher, the dispatcher selects a simple client 
to collect parts of the image and aggregate them into a single final image, that is fi-
nally sent back to the dispatcher.  

With this application, we designed a fault scenario using FAIL. The dispatcher is 
run on Computer 1 and is not subject to faults (it simply waits for clients to connect 
and feeds them jobs). Then, XtremWeb clients are run on the remaining 34 computers 
and are subject to fault events. The fault scenario that is run on every client is as fol-
lows: 

1. Every 5 seconds, an XtremWeb client is likely to crash with probability 
x, 

2. After a crash, every 5 seconds, a client may restart with probability 0.3, 
3. A client may crash only once. 

 
We carried out this test using various values for x (0.1, 0.3, 0.5, 0.7, and 0.9), and 

the experiment results are summarized in Figure 3.  
 

 
Figure 3: FCI fault-injection results 

 
In this Figure, Added 1 and Added 2 correspond to the time when the dispatcher 

collected all image parts from all concerned clients for the first and second images, 
respectively. Completed 1 and Completed 2 correspond to the time when the dis-
patcher received the final first and second images, respectively. Also, the test for 
failure probability 0 serves as a reference test. 

The outcome of these fault injections is consistent with what could be expected. 
First, for any fault appearance probability, the time needed to complete the second 
image is less than twice the time to complete the second image. This is due to our 
scenario where a machine may not fail twice, so that if it failed while calculating the 



first image and recovered (this happens with probability 0.3), it may not fail again 
while calculating the second image. 

When the probability x of fault appearance is low (under 0.5), the execution time 
of the image parts calculation is kept low, since clients are only responsible for a 
small percentage of the global result, so that the load of crashed clients can be carried 
out by someone else quickly. However, the full image completion time is high, be-
cause if a node crashes in that part, it is the only one responsible for carrying out the 
final image, so its failure has high impact. When the probability of fault appearance is 
high (more than 0.5), the execution time of the image parts calculation is very high 
since a large number of clients are likely to crash in this process. The final image 
completion time is high too, but the overhead of this part is not as high as when the 
fault appearance probability is low, simply because most faults occurred while calcu-
lating the images, so most clients will not fail again in the last phase of the calculus. 

4.2 Dependability Benchmarking 

In this section we present some experimental results taken with the QUAKE bench-
mark. To easily evaluate the correctness of the application after the execution of sev-
eral benchmark runs we have developed a SOAP service that make access to a data-
base and provide a simulated online e-banking application. This way we can easily 
check at the end of each run if the database contains corrected data and the at-most-
once semantics has been followed in the execution of the SOAP service. This was the 
synthetic application that has been used in the experiments that will be described 
herein. Other Web-Services and Grid Services are currently under assessment by the 
QUAKE tool. 

 
The testing infrastructure was composed by a cluster with 12 machines running 

Linux and Java 1.4. The SOAP service was running on a central node (dual-
processor) of the cluster and we have use a TOMCAT-AXIS server running on top of 
Linux. As far as we know, most of the Java-based Web-Services and Grid-Services 
are currently using Tomcat-Axis so we were interested to evaluate the robustness of 
this middleware. 

 
From those 12 machines, one was running the SUT application, other was dedi-

cated to the BMS system, and the remaining 10 machines were running instances of 
the clients that were in practice the workload generators. For these results herein 
presented we have chosen the following parameters: 

(a) default configuration parameters of the JVM, Tomcat and Axis; 
(b) the Tomcat JVM was running with the implicit Java garbage-collector. 
(c) in the overall, the client machines will send 1 million of SOAP requests; 
(d) the request will follow the “continuous-burst” distribution; 
(e) there are no retransmission of SOAP requests when a client gets a response 

error. This way there are no repeated messages and the “at-most-once” se-
mantics is not violated; 



(f) No fault-load is introduced in the SUT system. We ran the SOAP services in 
a dedicated server and all the operating system resources were available to 
the application. This means we are testing a Web-Service in a normal envi-
ronment with any perturbations at the system-level. 

 
The results of the first experiment are presented in Figure 4. The Figure presents 

the number of requests-per-second that is served by the SOAP service over the time 
axis. In this benchmark run, the client machines sent 1 million of requests to the 
SOAP service running in a dedicated machine with a dual-processor. We used the 
default configuration of Tomcat/Axis, that as matter of information allocates a Java 
JVM of 64Mb.  

 
This first run produced impressive results: this test took 31 minutes, and only 

73.740 of the 1 million requests were processed (about 7.37% of the total). The re-
maining requests were not processed by the server due to “out of memory”. It was 
observed that the reason for this failure was directly related with the occurrence of 
memory leaks in the Tomcat/Axis middleware. 
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         Figure 4: Results for the first test run, with default-configuration 
 
 
More interesting that this result is the type of failure that happened in the SUT 

server: the Tomcat processes did not crashed, they were left in a completely hang-
status that even the shutdown command of Tomcat was not able to restart the 
server. It was necessary to kill explicitly all the processes and restart the Tomcat 
server.  

 
This would be that type of failures that would require a human intervention in a 

production system. These type of failures are very expensive to maintain since they 



require human intervention. When the systems start growing in complexity the man-
agement will be almost virtually impossible [24]. The vision for autonomic comput-
ing defended by IBM researchers is entirely shared by the authors of this paper that 
recognize the strategic importance for creating self-healing Grid Services. 

 
From the first test run was clear that the SOAP server was under-configured in 

terms of memory for the selected workload. So, in the second test run the memory of 
the Tomcat JVM was increased from 64Mb up to 1Gb. The results are presented in 
Figure 5.  

 
This time the SOAP server did not crash and executed all the 1 million requests. 

The total turnaround the execution was 737 minutes. Those peaks that show up in the 
graphic have to due with the execution of the garbage collector at the server side. We 
can conclude from the graphic that the SOAP service is maintained running but the 
throughput (requests-per-second) drops heavily over time, which ends in the observa-
tion: the SOAP service does not crash, but it runs slower and slower over time.  
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            Figure 5: Results for the second test run, with a JVM of 1Gb. 
 
Once again the reason for this performance drop-out has to due with memory leak-

age in the SOAP middleware. In the third test run we tried to observe the impact of 
the garbage collector so we changed the default configuration, optimized the gc pa-
rameters and ran it explicitly in a periodic basis. The results are presented in Figure 6. 
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     Figure 6: Results for the third test run, with a JVM of 1Gb but explicit GC. 

 
The performance drop-out is still clear but there was a clear improvement in the 

response of the SOAP service: the turnaround time of the run was reduced from 737 
to 580 minutes.  

 
One point of concern that we get even in this configuration scenario is the sharp 

decrease in the QOS level of the SOAP service: at the beginning it was able to sustain 
about 230 requests-per-second. At the end of the test run the throughput was less than 
20 requests-per-second, so 10% of the initial throughput. 

 
This observation led us to think: how can we improve the throughput level of the 

SOAP service and maintain it at acceptable levels? How can we provide some self-
healing mechanisms to this SOAP server? How can we prevent the SOAP server to 
fail and be left in a hang-status? 

 
With these questions in mind we start thinking about applying some software-

rejuvenation technique to increase the throughput of that SOAP service. And the 
decision was to implement a preventive rebooting to avoid a zombie crash (hang 
status) of the server but also to avoid that the server would fall down into a lower 
level of throughput: when the throughput level decrease down to 20% of the initial 
throughput the watchdog produced a restart of the Tomcat/Axis server. This restart 
was done in a clean way: the SOAP server closed the service to new requests and all 
the on-going requests were finished before applying the shutdown-restart to the Tom-
cat. At the end of the test run the correctness of the application was successfully veri-
fied. 

 
In Figure 7 we present the results of this test run. Those deep peaks in the through-

put level correspond to a restart event. Every shutdown-restart of the Tomcat took 
between 14 to 16  seconds, in average. 
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Figure 7: Results for the fourth test run with a preventive shutdown of the 
server 

 
 
At first sight it seems that this technique would not produce interesting results, 

since it creates some seconds of downtime at the SOAP server. As can be seen in the 
Figure there was 15 preventive restarts and this may had resulted in 225 second of 
downtime in the overall. So this technique is not good from the point of view of 
availability metric.  

But the result obtained in the turnaround metric is quite interesting: the total turn-
around the test run was 146 minutes. This means the SOAP service was 5 times faster 
when compared with the second test run. It is clear that this “wise-reboot” technique 
is a potential technique to increase the sustained throughput level of the SOAP server 
and to avoid the zombie crashes of the server that would normally require human 
intervention. 

 
There are more results taken with the QUAKE tool, but these small set of results is 

clear representative of the interest of using dependability benchmarking to assess the 
robustness of SOAP services and Grid services 

5   Conclusions and Current Status 

We reviewed several available tools for software fault injection and dependability 
benchmarking tools for grids. We emphasized on the FAIL-FCI fault injector devel-
oped by INRIA, and on the QUAKE dependability benchmark developed by the 
University of Coimbra. 
The FAIL-FCI tool has so far only provided preliminary results on desktop grid mid-
dleware (XtremWeb) and P2P middleware (the FreePastry Distributed Hash Table). 
These results permitted to identify quantitative failure points in both tested middle-
ware, as well as qualitative issues concerning the failure recovery of XtremWeb. 
With the QUAKE tool we have been conducting the following experimental studies: 



(a) Evaluate the robustness of some existing SOAP servers (Apache Axis, 
JBoss, gSOAP, MS.NET); 

(b) Assess the reliability of different middleware for client/server applications; 
(c) Evaluate the effectiveness of some mechanisms for software rejuvenation; 
(d) Study the reliability of OGSA-DAI implementation; 

After that last phase we are planning to assess the dependability level of further mod-
ules from the Globus middleware (GT4). 
After the core of the tool set is properly packaged for clusters, our goal is to enable 
larger scale experiments by (i) using Grids instead of clusters, and (ii) integrate with 
emulation mechanisms. 
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