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Abstract dedicated devices in the network, all mobiles are potential

routers. Such networks have become very popular due to
In large scale multihop wireless networks, flat archi- theire:_ase of use. Th(_aira_pplications_range from the nej[work
tectures are not scalable. In order to overcome this ma- €Xt€nsion when cablmg is not possible or .too expensive to
jor drawback, clusterization is introduced to support self- ;pontaneous networks in case of natural d|sast§rs where the
organization and to enable hierarchical routing. When 'Nfrastructure has been totally destroyed by going through
dealing with multihop wireless networks, the robustness isthe monitoring and the collect of data with wireless sensor

a main issue due to the dynamicity of such networks. Sev_networks.

eral algorithms have been designed for the clusterization  Due to the dynamics of such networks (devices mobility
process. As far as we know, very few studies check the roand/or instability of the wireless medium), routing protocols
bustness feature of their clusterization protocols. for fixed networks are not adapted. Ad hoc routing proto-

In this paper, we show that a clusterization algorithm, COIS proposed in the MANET working group at IETEre
that seems to present good properties of robustness, is self@!l flat routing protocols. It means that there is no hierar-
stabilizing. We propose several enhancements to reduce th€hy and all terminals have the same role. If flat protocols
stabilization time and to improve stability. The use of a Di- &r€ quite effective on small and medium networks, they are
rected Acyclic Graph ensures that the self-stabilizing prop- N0t Suitable on large scale networks due to bandwidth and
erties always hold regardless of the underlying topology. Processing overhead. Hierarchical routing seems to be more
These extra criterion are tested by simulations. adapted to such large networks. It often relies on a specific
partition of the network, calledlusterization the devices
are gathered into clusters according to some criteria and
specific routing protocols are used within and between the
clusters. In addition to its scalability, such an organization
presents numerous advantages such as synchronizing mo-
1 Introduction biles in a cluster or attributing new services zones. Several
algorithms have been designed for the clusterization step.
As far as we know, very few studies check the robustness
Ad hoc networks or wireless sensor networks (wireless feature of their clusterization protocols. Moreover, when it

multihop networks) are composed of devices that commu-is the case, the evaluation is driven by simulations and never
nicate via wireless interfaces. They require no fixed in- py a theoretical approach.

frastructure and no human intervention. Both are strongly . . e .

based on self-organization and self-stabilization. Even if N this article, we apply self-stabilization principles
every mobile can move everywhere, and thus can disappeaPVer @ clusterization protocol proposed in [11] and which
or appear in the network at any time, the network man- presents good prppertles of robu'stness. With a theoretl-
ages the changes in topology and provides the connectiv—c_al approach, which can be applied to several clu_sterlza-
ity between any pair of terminals. If the current wireless 10N schemes, we show that, under some assumptions, the
cards allow the communication between mobiles that are in@90rithm is self-stabilizing. We also improve the robust-
communication range, a routing protocol is required to pro- N€SS by adding extra-advanced features and we show that

vide the full connectivity of the network. As there are no the resulting algorithm is still self-stabilizing. These prop-
erties are further validated by simulations. A state-of-the-art
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on clusterization in multihop wireless networks is given in 3 Density driven clusterization algorithm
Section 2. The description of the chosen clusterization al-

gorithm is done in Section 3. In Section 4, we provide a for-
mal analysis, showing that this algorithm is self-stabilizing.
We also discuss some improvements for robustness in thi
section. The properties of the proposed algorithm and the
differentimprovements are evaluated by simulations in Sec-
tion 5.

The model. The system is composed of a $&bf nodes
and each node has an unique identifier. Each nodan
communicate with a subsat, C V' of nodes determined by
the range of the radio signa\, is called the neighborhood
of nodep. Note thatp does not belong tdV,, (p ¢ N,).

We assume that communication capability is bidirectional:
q € N, iff p € N,. DefineN} = N, and fori > 1,

N = Nt U {r|(3ge N, 7',re Ny} (lets call N}
thei-neighborhood op). We assume that the distribution of

2 State-of-the-art nodes is sparse: there is some known constamtch that

for any nodep, |N,| < 4. Note that a control on density
can be done by adjusting their communication range and/or
powering off nodes in areas that are too dense.

Flat routing protocols (like the classical reactive or  The density metric criteria. The notion ofdensity
proactive protocols) are not really suitable for large wireless firstly introduced in [11], characterizes tihelative impor-
multihop networks. Indeed, such routing protocols becometance of a node in the network and in itsxeighborhood.
ineffective on a large scale because of bandwidth (flooding The underlying idea is that if some nodes moveNp,
of control messages) and processing (routing table compu-changes will affect the microscopic view of nogéfor in-
tation) overhead. One solution to solve this scalability prob- stance its degrelév, | will change) but its macroscopic view
lem is to introduce a hierarchical routing by gathering geo- will not drastically change since globally the network does
graphically close nodes into clusters [9]. Several techniquesnot change and itd/, globally remains the same. The den-
for clusters formation and cluster-heads selection have beersity will smooth changes down iV, by considering the
proposed. All solutions aim to identify subsets of nodes ratio between the number of links and the number of nodes
within the network and to bind each of them to an unique in the 1-neighborhood. The definition is the following:
leader. Some solutions try to gather nodes into homoge-
neous clusters by using either an identity critegay( the
lowest identity [2]) or a fixed connectivity criteria (for in-
stance maximum degree [5, 13}{;hops clusters [6]) or |[{e = (v,w) e Estwe {p}UN, and v € N,}|
a value computed from different metric (connectivity and “» — IN,|
identity criteria: max-mind-cluster [1], [4]). To maintain
the clusters structure, most of the solutions try to keep a
fixed cluster diameter [1], a fixed cluster radius [10] or a
constant number of nodes in the clusters [14].

Definition 1 Thedensityof a nodep € V' is

Cluster-heads selection and clusters formationDue
to space limitation, we describe the heuristic process in-
formally. The algorithm and its analysis are more detailed
in [11]. Each node watches its neighborhood. If this one

These solutions are not adapted to large multihop wire- changes at each step, the node is considered as too mobile
less networks. First, a small modification in the network to be integrated into a cluster and does not participate to the
topology (due to the mobility of one node for instance) often clusterization algorithm (or it may cause instability into the
implies new computations to build the new clusters and to cluster formation). Otherwise, it locally computes its den-
elect the cluster-heads. Moreover, building and maintaining sity value and regularly broadcasts it to all itmeighbors.
clusters with a constant feature (like diameter or the num- Each node is thus able to compare its density value tt its
ber of nodes) may generate a significant number of uselessieighbors’ and decide by itself whether it joins one of them
clusters. For instance, why separating a set of nodes thatthe one with the highest density value) or it wins inlits
can communicate just because it can not fit into one clus-neighborhood and elects itself as a cluster-head. If there are
ter since the constant feature is not respected? In [11], asome joint winners, the smallest identity is used to decide
density criteria is proposed. This metric allows to limit the between them. In this way, two neighbors can not be both
exchanged traffic generated while clusters are re-built andcluster-heads. If nodehas joined nodev, we will say that
the nodes’ tables updated. Therefore it presents good propw is nodep’s parent. A node’s parent can also have joined
erties of robustness. In this paper, we show that this algo-another node and so on. The cluster-head will be the node
rithm is self-stabilizing and its robustness can be enhancedwhich has elected itself as its own cluster-head. A cluster
with some extra rules. can then extend itself until it reaches a cluster frontier. A



cluster can also be seen as a tree where the cluster-head is Shared Variable Propagation.Some variables of nodes
the root. are designated asharedvariables. Following the scheme

Features. This metric has been studied in [11] with pre_sented in [8]_, nodes periodically_ transr_nit_th_e values of
both simulations and a stochastic analysis. It outlined that!€!r shared variables, based on a timed discipline. Beyond
the number of cluster-heads computed with this metric is periodic retransmission, an assignment to a shared variable
bounded and decreases when the nodes intensity increaseSaYSes peremptory transmission: if a statenient 5 as-

This is an advantage because if many nodes are in the coms'ans a shared variable, then we suppose that there is a trans-

munication range of each other, there is no need to Sepa]‘ormatlon of the statement into a computation that slows ex-

rate them into different clusters as they can hear each otherfecmIon down so that it does not exceed some desired rate,

Moreover, this heuristic has revealed to be more stable to-2nd also provides randomization to avoid collision in mes-

wards nodes mobility than other metrics, like the degree andSa9es that carry the shared vqriable vaIueg. One technique
the max-min metrics [11]. for implementing suclz — S is presented in [8]. In the

remaining of the section, we assume that nodes use this
scheme to leartV,, and V.
4  Self-stabilization

4.1 Constant Height DAG Construction
In this section we study the self-stabilizing properties

of the density-driven clusterization algorithm presented  |n the chosen clusterization algorithm, as in every clus-
in [11]. We follow the same assumptions and principles terization algorithm using the node identification as last de-
as the ones given in [8]. Due to space limitation, we briefly ¢jsjon, the worst case is met when every nodes has the same
describe these points. We consider that the algorithm hasjeciding valuei.e. in our case the density value, and when
stabilized when each node knows to which cluster it belongsnodes’ identifiers are unique in the network and badly dis-
toi.e. when its knows its cluster-head identity. This time is tjpyted. In such a case, the algorithm builds only one clus-
thus related to the depth of the clusterization trees. ter which may have a diameter as big as the diameter of

Hypothesis. We assume that the implementation of the network. This may cause scalability problems because
CSMA/CA satisfies the following point: there exists a con- the stabilization time is likely to depend on this diameter.
stantr > 0 such that the probability of a frame transmission Moreover, it is obvious that building such a cluster is use-
without collision is at least (this corresponds to typical as- less as we could have used the network without clusters in-
sumptions for multi-access channels [3]; the independencestead. To overcome this drawback, it can be useful to give
of 7 for different frame transmissions indicates that we as- nodes smaller names (also named colors), from a constant

sume a memoryless probability distribution in a Markov Space of names, in a way which ensures that names are lo-
model). cally unique. A DAG (Directed Acyclic Graph) can be con-

structed by using these identifiers and by orienting edges
between neighbors from the higher identifier to the lower
one.

Notation. We describe algorithms using the notation
of guarded assignment statements: — S represents a
guarded assignment, whe¢é is a predicate of the local
variables of a node, arfilis an assignment to local variables ~ Our constant height DAG construction is based on the
of the node. If predicaté& (called theguard) holds, then ~ randomized technique described in [8], but uses a much
assignmentS is executed, otherwiss is skipped. Some smaller name-space (|| is equal tos® in [8], while >
guards can be event predicates that hold upon the event ofr evend is sufficient in our case). Leld,, be a shared vari-
receiving a message. We assume that all such guarded agble that belongs to the domajpnvariable/d,, is thename
Signments execute atomica”y when a message is received_)f nodep. Another variable is used to collect the names of

At any system state, where a given guétdolds, we say ~ neighboring nodesCids, = {[]1d, | ¢ € N,}, where
thatG is enabledat that state. []1d, refers to the cache copy of the shared variallg

at nodep. Letrandom(.S) choose with uniform probability
some element of s&t. Nodep uses the following function
éo computeld,,:

Execution Semantics. The life of computing at every
node consists of the infinite repetition of evaluating its
guarded actions. We assume that every action is execute
within a constant time finding a guard and executing its .yi4(7q ) — { U 1d, . if []1d, ¢ Cids,,
corresponding assignment or skipping it when the guard is b random(y \ Cids,) otherwise
false Generally, we suppose that when a node executes The algorithm for constant height DAG construction is
its program, all statements witihue guards are executed the following:
within a constant time (done, for example, in round-robin

order). N1: true — Id, := newld(ld,)



Theorem 1 AlgorithmN1 self-stabilizes with probability

R2 is executed at nodes at distance- 1 from the roots

in an expected constant time to a DAG which height is at of DAG., those nodes get a correct cluster-head value (be-

most|y| + 1.

The proof of this theorem is similar to the one in [8].
There are two competing motivations for tuning the para-
metery. On one hand, a large value pf| decreases the
expected convergence time NfL.. On the other hand, a
small value of|y| decreases the DAG's height, and thus the
expected convergence time of subsequent algorithms.

4.2 Density-driven Clusters Construction

Each node maintains two shared variables, denoted by
d, and’H(p). d, denotes the density of nogegiven in
Definition 1 andH(p) denotes the cluster-head chosen by
p. We define< as a binary total order such that< ¢ if
and only ifd, < d, or (d, = d,) A (Id, < 1d,). Letmax_

cause the cluster-head is deterministically determ(i)daly
the density and local topology — which are fixed — dind
by the cluster-head values of nodes at distance wpftom
the roots of the DAG). By induction, the time needed for
stabilization is proportional to the height of the DAG

We now prove that the height of the DAGs bounded by
a constant value. Node identifiers are bounded by a constant
~. The number of edges in the neighborhood at distance one
is bounded by?, the number of neighborhors at distance
one is bounded by, so the number of possible values for
the density function is at mosgt. Overall, the name-space
of values in the DAG is ~¢2, which is bounded by a con-
stant. As a result, the height of the DAGs also bounded
by a constant.

The algorithm stabilizes in an expected time proportional
to the height of the DAG, and the height of the DAG is

denote the maximum function associated to this total order. constant, so the expected time for stabilization is also con-

When a node computes the result ok or max_, it uses
the cached values of its neighborhood (assunfitid,, =
Id, and[]d, = d,).

We now define thelusterHead choice function:
Id, if Vg € Np,g<p
H(max~{q € N,}) otherwise

The cluster-head algorithm runs as follows:

clusterHead =

R1:
R2:

true — d, := density
true — H(p) := clusterHead

Lemma 1 Each nodep has a correct density value,
within an expected constant time.

Proof: After an expected constant time, each npdes
a correct view of its neighborhood at distance two. Then,
after R1 is executed, the density of p is correct. O

Lemma 2 Each nodep has a correct cluster-head value
H(p) within an expected constant time.

Proof: Assume that all nodes have correct density values
(this is true after an expected constant time by Lemma 1).

After the shared variablé, has been communicated with-
out collision to all nodes inV,, (this occurs in an expected

stant. O

4.3 Improving Stability

We improve the stability of the algorithm by adding
some selection criterion. First, when two nodes compete for
being cluster-heads (they have the same density value), the
winner will be, first, the one which was cluster-head before
(if it exists), then the one with the lowest DAG Id (as de-
fined in Section 4). This scheme adds stability into clusters
organization by limiting clusters reconstruction. Cluster-
heads remain cluster-heads as long as possible. It is a
good property since the only cluster-heads’ role is to give
an identity to the clusters. This refinement preserves the
structure of our stabilization proof, since it is equivalent to
define the total order relatior asp < ¢ if and only if
(dp < dg) or(d, =dg) N (H(g) =1dg) A (H(p) # Id,) or
(dp = dg) A (H(p) # 1d,) A (H(q) # 1dg) A (Id, < Id).

In addition, the height of the new DAGis similar to the
height of the previous one.

Second, if a node is a 1-neighbor of two different
cluster-heads andv (which are not directly linked), it will
initiate a fusion betweenandv’s clusters: ifp has chosen

constant time), each node has a correct cache value ofs cluster-head, that means that v and that will remain

all density values in its neighborhood. We now consider
the DAG induced by the< relation (thereafter denoted by
DAG.). In an expected constant time, the roots of DAG

have a correct cluster-head value (that is their own identi-

fier). Now assume that all nodes up to distandeom the
roots of the DAG, have a correct cluster-head value. When

a cluster-head unlike. This ensures thdt) a cluster-head

is not too off-centered in its own clusté) a cluster has at
least a diameter of two, an(di) that two cluster-heads are
distant of at least three hops. Again, this refinement pre-
serves our stabilization proof, since it is sufficient to use the
alternativeclusterHead function:



order to evaluate time of stabilization as they are propor-
) tional) and cluster-head eccentricity. Table 1 shows these
Id, if (Zq € Ny, g < p)A criteria for A = 1000 and different values oR. We note
clusterHead = ¢ (Vg € Nys.t.H(q) =1d;, = ¢ <p) e(H(u)/C) = max,cc(u)(d(H(u),v)) in number of hops,
H(max-{g € Np}) otherwise the eccentricityof the cluster-head of nodeinside its clus-
ter, whered(u, v) is the minimum number of hops to reach
v from u. Whatever the transmission radius is (and so the
degree), we can note that the mean cluster-head eccentricity
and tree length do not vary too much. This confirms our
assumption that the transmission of the cluster-head iden-
tity can be expected within a constant and low time. At last,
let's note that in the cases where nodes and node’s Id are ho-
5 Simulations mogeneou;ly and randomly o_lis_tributed, the use of th_e DAG
does not bring much help. This is due to the fact that in such
a nodes distribution, a node uses very rarely the Id to choose
As mentioned in Section 4, we suppose that there ex-his parent because density values are well-distributed and
ists a constant > 0 such that the probability of a frame scarcely equal.

transmission without collision is at least Yet, we can . io wh L
suppose that in a bounded tinie(r), each node is able We noyv co.nS|der'a scengrlo where node§ are distributed
over a grid with Ids increasing from left to right and from

to locally broadcast one frame and then receive all packets he b h linteri q ih h
sent by itsl-neighbors. Such &(7) time unit is called a the bottom to the top. All interior nodes will have the same

step, during which each node can receive each packet of aWalue density and the only criteria to select a cluster-head is

its 1-neighbors. After one step, each node can discover itsthe Id. As the nodes’ Ids are not well distributed, all nodes
1-neighbors. After two steps, each node can discover itsWi" finally join the same head. Table 2 shows the obtained

2-neighbors and then compute its density. After only three results in this case. One can note that the DAG construction

steps, each node knows its parent. Then, the number Of's very useful in such a case as it allows to drastically reduce

steps required to discover its cluster-head identity directly the number of steps needed before stabilization.
depends on the distance from the node to its cluster-head We have also tested the extra criterion given in Sec-

and is bounded by the depth of the tree. tion 4.3 to improve the stability. Due to space limitation, we

We performed simulations in order to evaluate the per- will not present all the results. We performed simulations
formance of the proposed heuristic and estimate the impor-where nodes move randomly at a randomly chosen speed
tance of the introduction of the DAG. Nodes are randomly during 15 minutes. We computed the percentage of cluster-
deployed using a Poisson process with different intensity heads which remained cluster-heads after each 2 seconds.

levels A (\ corresponds to the mean number of nodes perFor @ node mobility betweento 1.6m/s (for pedestrians)
surface unit) in al x 1 square with various transmission the percentage of cluster-heads reelection is about 82% with
rangesR varying from0.05 to 0.1. Each given statistic ~ Our improvement rules and 78 % without. For a mobility

is the average over 1000 simulations. All these results arefrom 0 to 10m/s (for cars) this percentage is 31 % with the
fully described in [12]. new rules against 25 % without. Thus, our improvements

) are useful in terms of cluster-head stability.
To build the DAG, each node randomly chooses a DAG

Id between0 and 62 wheres is the maximum node’s de-

gree in the graph as defined in Section 3. For this, each
node randomly chooses a DAG Id and then compares it to
its neighbors’ones. If DAG Ids are the same, the node with
the smallest "normal” Id chooses another DAG Id and so

on until every node has a different DAG Id than the ones . In this paper, we h"?‘VG addressed sev_era[ ISSues concern-
. . . . . ing the self-stabilization on the clusterization process in
of its 1-neighbors. For simulations on a grid and on a ran-

dom geometry topology with equal t01000, the number multihop wireless network. We have proved that the clus-

of steps required to build the DAG does not take a lot of _terlzatlon algorithm based on the density criteria, defined

. : ) : in [11] is self-stabilizing. We have proposed different en-
time since it only requires two steps on average, Whateverhancements to reduce the stabilization time and to improve
Ris. Therefore, building the DAG is not costly. P

stability of the cluster-heads. Note that our contribution
We measure the following criteria: number of cluster- regarding the self-stabilization could be applied to several
heads per surface unit, clusterization tree length (also inclusterization metrics as for instance the node’s degree ([2]).

The condition for being a cluster-head thus becomes “l am
locally maximal (in the sense o) and any cluster-head

in my 2-neighborhood is smaller than me (and they should
not remain cluster-heads)”. The remaining of the algorithm
(and thus proof) is the same.

6 Conclusion



R =0.05 R =0.08 R=0.1
With DAG | No DAG | With DAG | No DAG | With DAG | No DAG
# clusters 61.0 61.4 19.2 19.5 11.7 11.7
e(H(u)/C(u)) 2.6 2.6 31 31 32 3.2
average tree length 2.7 2.7 3.3 3.3 3.5 3.5
Table 1. Clusters features on a random geometric graph for A = 1000.
R =0.05 R =0.08 R=0.1
With DAG | No DAG | With DAG | No DAG | With DAG | No DAG
# clusters 52.8 1.0 29.3 1.0 18.5 1.0
e(H(u)/C(u)) 34 29.1 41 19.1 3.6 6.5
average tree length 3.7 83.4 4.7 100.5 4.5 32.1
Table 2. Clusters characteristics on a grid for A = 1000.

In the future, several possible extensions of this work are [9] P. Krishna, N. H. Vaidya, M. Chatterjee, and D. K. Pradhan.
open to investigation. It could be interesting to derive sharp
bounds on the stabilization as a function of the mobility,

e.g, speed of the nodes, mobility model, frequency of links [10]
failure, etc. Based on these bounds, we also plan to study hi-
erarchical self-stabilizing algorithms. Finally, we also want [11]
to consider energy constraints in the stabilization algorithm

and we are investigating energy-efficient organization algo-

rithms.
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