*

Self-stabilizing Vertex Coloring of Arbitrary Graphs

Maria Gradinariuf Sébastien Tixeuil

fIRISA, Campus de Beaulieu, Rennes, France
'LRI-CNRS UMR 8623, Université Paris Sud, France.

Abstract

A self-stabilizing algorithm, regardless of the initial system state, converges in finite time to
a set of states that satisfy a legitimacy predicate without the need for explicit exception handler
of backward recovery. The vertex coloration problem consists in ensuring that every node in the
system has a color that is different from any of its neighbors.

We provide three self-stabilizing solutions to the vertex coloration problem under unfair
scheduling that are based on a greedy technique. We use at most B + 1 different colors (in
complete graphs), where B is the node degree, and ensure stabilization within O(n x B) processor
atomic steps. Two of our algorithms deal with uniform networks where nodes do not have identi-
fiers. Our solutions lead to directed acyclic orientation and maximal independent set construction
at no additional cost.

1 Introduction

1.1 Self-stabilization

Robustness is one of the most important requirements of modern distributed systems since various
types of (transient) faults are likely to occur as these systems are exposed to constant change of
their environment. One of the most inclusive approaches to fault-tolerance in distributed systems
is self-stabilization [Dij74, Sch93]. Introduced by Dijkstra [Dij74], this technique guarantees that,
regardless of the initial state, the system will eventually converge to the intended behavior. Since
most self-stabilizing fault-tolerant algorithms are nonterminating, if the distributed system is subject
to transient faults corrupting the internal node state but not its behavior, once faults cease, the
algorithms themselves guarantee to recover in a finite time to a safe state without any human
intervention. This also means that the complicated task of initializing distributed systems is no
longer needed, since self-stabilizing algorithms regain correct behavior regardless of the initial state.
Furthermore, in practice, the context in which we may apply self-stabilizing algorithms is fairly broad
since the program code can be stored in a stable storage at each node, so that it is always possible
to reload the program after faults cease or after every fault detection.

1.2 Vertex Coloring

The vertex coloring problem, issued from classical graph theory, consists in choosing different colors
for any two neighboring nodes in a arbitrary graph. In Distributed Computing, vertex coloring

*An extended abstract of this paper appeared in [GT00]

algorithms are mainly used for resource allocation (see [Lyn96] for more details). A vertex coloring
defines a partial order on processors allowing them, for example, to execute their critical section
according to the order defined by their respective colors.

Related problems include acyclic orientation of graphs (which can be induced by the partial
ordering on vertices) and maximal independent set (which requires that no two neighboring vertices
are colored black and that no extra vertex can be colored black without violating the first rule).

1.3 Related works

In uniform networks, it is well known that several problems cannot be solved self-stabilizingly using
deterministic algorithms (e.g. [IJ90] shows that there exists no deterministic self-stabilizing mutual
exclusion protocol for unidirectional uniform rings). Therefore, in the self-stabilizing setting, ran-
domization was mostly used for symmetry breaking and construction of algorithms that self-stabilize
with high probability (e.g. [BCD95, DGTO00] both provide randomized self-stabilizing mutual exclu-
sion protocols for unidirectional rings). Herman (in [Her92]) and Gradinariu and Tixeuil (in [GT00])
used randomization to reduce the memory space usually needed to solve the mutual exclusion prob-
lem and the [-mutual exclusion problem, respectively. Works by Israeli and Jalfon (see [IJ90]) and
by Durand-Lose (see [DL98]) use randomization to weaken the scheduling requirements. A number
of distributed algorithms are stabilizing only if the scheduling is constrained in scope (e.g. a single
processor is allowed to perform an action at the same time) or in fairness (e.g. every processors
performs an action infinitely often). Even with weaker scheduling requirements (where an arbitrary
subset of the processors may perform an action at the same time, or where simple progression wvs.
fairness is needed), randomness sometimes permit that the solution remains self-stabilizing.

Self-stabilizing distributed vertex coloration was previously studied for planar and bipartite
graphs (see [GK93, SS93, SRR94, SRR95]). Using a well-known result from graph theory, Gosh
and Karaata [GK93] provide an elegant solution for coloring acyclic planar graphs with exactly six
colors, along with an identifier based solution for acyclic orientation of planar graphs. This makes
their solution limited to systems whose communication graph is planar and processors have unique
identifiers. Sur and Srimani [SS93] vertex coloring algorithm is only valid for bipartite graphs. A
paper by Shukla et al. (see [SRR95]) provides a randomized self-stabilizing solution to the two col-
oring problem for several classes of bipartite graphs, namely complete odd-degree bipartite graphs
and tree graphs. Moreover, [SRR95] shows that there exist no deterministic self-stabilizing algorithm
that provides a two coloring of an arbitrary odd-degree bipartite graph, even assuming the stronger
scheduling hypothesis.

Recent works on self-stabilizing acyclic orientation have been presented in [DGPVO00] for non-
anonymous networks where a single vertex is distinguished. The maximal independent set problem
was solved in [Lub86] using randomization yet was not self-stabilizing. In [SRR95], a self-stabilizing
maximal independent set construction algorithm is given for general anonymous graphs, but assumes
that processors are fairly scheduled.

1.4 Our contribution

We present three self-stabilizing solutions to the vertex coloring problem that perform in spite of
unfair scheduling. The first two solutions are deterministic: one deals with anonymous networks
but assumes a locally central unfair scheduler (that does not activates two neighboring processors at
the same time), the other requires unique identifiers for processors but copes with unfair distributed

scheduling. The last solution is randomized and presents weakest hypothesis: anonymous networks
with unfair distributed scheduling.

Every solution do not need more than B + 1 colors, where B denotes the network degree. Note
that this bound is reached in the case of completely connected graphs. The time complexity is
O(n x B) processor atomic actions. A nice property of our algorithm is that once stabilized, a
directed acyclic orientation as well as a maximal independent set are obtained at no extra cost.

1.5 Outline

After defining the system setting in Section 2, we present our three solution to the coloration problem
in Section 4, along with their proofs of correctness. Section 5 presents two direct applications for
our work, while Section 6 provides concluding remarks.

2 Model

Distributed Systems We model a distributed system S = (C, T, I) as a transition system where
C is the set of system configurations, 7" is a transition function from C' to C, and I is the set of
initial configurations. A probabilistic distributed system is a distributed system where a probabilistic
distribution is defined on the transition function of the system.

We consider unidirectional ring networks where the processors maintain two types of variables:
local variables and field variables. Each processor, P;, has two neighbors named left; (its clockwise
neighbor) and right; (its counter-clockwise neighbor). The local variables of P; cannot be accessed
by any of its neighbors, whereas the field variables of P; are part of the shared register which is used
to communicate with P;’s right neighbor. A processor can write only into its own shared register and
can read only from the shared registers owned by its left neighbor or itself. The state of a processor
is defined by the values of its local and field variables. A processor may change its state by executing
its local algorithm (defined below). A configuration of a distributed system is an instance of the
state of its processors.

The algorithm executed by each processor is described by a finite set of guarded actions of the
form (guard) — (statement). Each guard of processor P; is a boolean expression involving P;’s
variables and left;’s field variables. A processor P; is enabled in configuration c if at least one of the
guards of the program of P; is true in ¢. Let ¢ be a configuration and C'H be a subset of enabled
processors in ¢. We denote by {c: CH} the set of configurations that are reachable from c if every
processor in C'H executes an action starting from c. A computation step is a tuple (¢, CH, '), where
¢ € {c: CH}. Note that all configurations € {c¢ : C H} are reachable from ¢ by executing ezactly one
computation step. In a probabilistic distributed system, every computation step is associated with
a probabilistic value (the sum of the probabilities of the computation steps determined by {c¢: CH}
is 1). A computation of a distributed system is a maximal sequence of computation steps. A history
of a computation is a finite prefix of the computation. A history of length n (denoted by h,,) can be
defined recursively as follows:

o= (co, CHy, 1) ifn=1
"7 [hn-1(cn-1,CHp 1,c,)] otherwise

The probabilistic value of a history is the product of the probabilities of all the computation steps
in the history. If h,, is a history such that

hn = [(Co, CH(), Cl) e (Cnfl, Canl,Cn)]

then we use the following notations: the length of the history h,, (equal to n) is denoted as length(h,),
the last configuration in h,, (which is ¢,) is represented by last(h,), and the first configuration in
hyn (which is ¢y) is referred to as first(h,) (first can also be used for an infinite computation).
A computation fragment is a finite sequence of computation steps. Let h be a history, = be a
computation fragment such that first(z) = last(h), and e be a computation such that first(e) =
last(h). Then [hz] denotes a history corresponding to the computation steps in h and z, and (he)
denotes a computation containing the steps in h and e.

3 Probabilistic Systems

In this section, we give an outline of the probabilistic model used in the rest of the paper. A detailed
description of this model is available in [BGJO1].

Scheduler. A scheduler is a predicate over the system computations. In a computation, a transition
(¢i, ciy1) occurs due to the execution of a nonempty subset of the enabled processors in configuration
c;- In every computation step, this subset is chosen by the scheduler. The interaction between
a scheduler and the distributed system generates some special structures, called strategies. The
scheduler strategy definition is based on the tree of computations (all the computations having the
same initial configuration). Let ¢ be a system configuration and S a distributed system. The tree
representing all computations in S starting from the configuration ¢ is the tree rooted at ¢ and is
denoted as Tree(S,c). Let n; be a processor in Tree(S,c). A branch originating from n; represents
the set of all Tree(S,c) computations starting in n; with the same first transition. The degree of n;
is the number of branches rooted in ny.

Definition 1 (Strategy) Let S be a distributed system, D a scheduler, and ¢ a configuration in S.
We define a strategy as the set of computations represented by the tree obtained by pruning Tree(S, c)
such that the degree of any processor is at most 1.

Definition 2 (Cone) Let s be a strategy of a scheduler D. A cone Cy(s) corresponding to a history
h is defined as the set of all possible computations under D which create the same history h.

The probabilistic value of a cone Cp,(s) is the probabilistic value of the history h (i.e., the product
of the probabilities of all computation steps in h).

Definition 3 (Subcone) A cone Cp(s) is called a subcone of Cy(s) if and only if h' = [hx], where
T 1s a computation fragment.

Let S be a system, D a scheduler, and s a strategy of D. The set of computations under D
that reach a configuration ¢ satisfying predicate P (denoted as ¢’ - P) is denoted as EP;, and its
associated probabilistic value as represented by Pr(EPs). We call a predicate P a closed predicate if
the following is true: If P holds in configuration ¢, then P also holds in any configuration reachable
from c.

Probabilistic Self-Stabilizing Systems. A probabilistic self-stabilizing system is a probabilistic
distributed system satisfying two important properties: probabilistic convergence (the probability of
the system to converge to a configuration satisfying a legitimacy predicate is 1) and correctness (once

the system is in a configuration satisfying a legitimacy predicate, it satisfies the system specification).
In this context, the correctness comes in two variants: weak correctness—the system correctness is
only probabilistic, and strong correctness—the system correctness is certain.

Definition 4 (Strong Probabilistic Stabilization) A system S is strong self-stabilizing under
scheduler D for a specification SP if and only if there exists a closed legitimacy predicate L such that
in any strategy s of S under D, the two following conditions hold:

(i) The probability of the set of computations under D, starting from c, reaching a configuration ¢,
such that ¢ satisfies L is 1 (probabilistic convergence). (Formally, Vs, Pr(ELs) =1).

(11) All computations, starting from a configuration ¢ such that ¢ satisfies L, satisfy SP (strong
correctness). (Formally, Vs,Ve,e' € s,e = (he') :: last(h) - L =€+ SP).

Convergence of Probabilistic Stabilizing Systems. We borrow a result of [BGJO01] to prove
the probabilistic convergence of the algorithms presented in this paper. This result is built upon some
previous work on probabilistic automata ([PSL00, Seg95, SL94, WSS94]) and provides a complete
framework for the verification of self-stabilizing probabilistic algorithms. We need to introduce
a few terms before we are ready to present this result. First, we explain a key property, called
local convergence and denoted by LC. Informally, the LC property characterizes a probabilistic
self-stabilizing system in the following way: The system reaches a configuration which satisfies a
particular predicate, in a bounded number of computation steps with a positive probability.

Definition 5 (Local Convergence) Let s be a strategy, and P, and Py be two predicates on con-
figurations, where P is a closed predicate. Let 0 be a positive number €]0,1[and N a positive integer.
Let Cp(s) be a cone with last(h) - Py and let M denote the set of subcones Cps(s) of Cp(s) such that
last(h') b Py and length(h') — length(h) < N. Then Cp(s) satisfies the local convergence property
denoted as LC(Py, P, 6,N) if and only if PT(Uch,(s)eM Cr(s)) > 4.

Now, if in strategy s, there exist d; > 0 and Ny > 1 such that any cone Cj(s) with last(h) F
P, satisfies LC(P1, Py, 05, N;), then the result of [BGJ01] states that the probability of the set of
computations under D reaching configurations satisfying P; A P, is 1. Formally:

Theorem 1 ([BGJO01]) Let s be a strategy. Let Py and Py be closed predicates on configurations
such that Pr(EP1s) = 1. If 365 > 0 and ANg > 1 such that any cone Cp,(s) with last(h) - Py satisfies
LC(Py, Py, 65, Ng), then Pr(EP12,) =1, where P = Py \ P;.

3.1 Distributed Systems

A distributed system is a set of state machines called processors. Each processor can communicate
with a subset of the processors called neighbors. We will use A, to denote the set of neighbors of
node z. The communication among neighboring processors is carried out using the communication
registers (called “shared variables” throughout this paper). The system’s communication graph is
drawn by representing processors as nodes and the neighborhood relationship by edges between the
nodes.

Any processor in a distributed system executes an algorithm which contains a finite set of guarded
actions of the form: (label) :: (gquard) — (statement), where each guard is a boolean expression
over the shared variables.

A configuration of a distributed system is an instance of the state of the system processors. A
processor is enabled in a given configuration if at least one of the guards of its algorithm is true.

A distributed system can be modeled by a transition system. A transition system is a three-tuple
S = (C,T,Z) where C is the collection of all the configurations, Z is a subset of C called the set of
initial configurations, and 7T is a function 7 : C — C. A transition, also called a computation step,
is a tuple (c1, c2) such that coa = T(c1). A computation of an algorithm P is a mazimal sequence of
computations steps e = ((cg,c1) (c1,¢2) ... (¢i,¢it1)-..) such that for i > 0,¢;01 = T (¢;) (a single
computation step) if ¢; 11 exists, or ¢; is a terminal configuration. Mazimality means that the sequence
is either infinite, or it is finite and no processor is enabled in the terminal (final) configuration. All
computations considered in this paper are assumed to be maximal.

A history of a computation is a finite prefix of a computation. A fragment of a computation e is
a finite sequence of successive computation steps of e.

3.2 Scheduler

In this model, a scheduler is a predicate over the system computations. In a computation, a transition
(i, ciy1) occurs due to the execution of a nonempty subset of the enabled processors in configuration
¢;. In every computation step, this subset is chosen by the scheduler. We refer to the following types
of schedulers in this paper: locally central scheduler ([GH99, AN99, BDGMOO0]) in every computation
step, neighboring processors are not chosen concurrently by the scheduler; distributed scheduler —
during a computation step, any nonempty subset of the enabled processors is chosen by the scheduler.

The interaction between a scheduler and the distributed system generates some special structures
called by us strategies. The strategy definition is based on the tree of computations. Let ¢ be a system
configuration. A TS-tree rooted in ¢, Tree(c), is the tree-representation of all computations beginning
in c. Let ny be a node in Tree(c), a branch rooted in ny is the set of all Tree(c) computations starting
in 1 having the same first transition. The degree of n; is the number of branches rooted in n;. A
sub-TS-tree of degree 1 rooted in c is a restriction of Tree(c) such that the degree of any Tree(c)’s
node is at most 1. A strategy is defined as follows:

Definition 6 (Strategy) Let T'S be a transition system, let D be a scheduler and let ¢ be a TS
configuration. We call a scheduler strategy rooted in ¢ a sub-TS-tree of degree 1 of Tree(c) such that
any computation of the sub-tree verifies the scheduler D.

Let st be a strategy. An st-cone Cj corresponding to a prefix h is the set of all possible st-
computations with the same prefix h (for more details see [Seg95]). In the deterministic systems a
cone of computations is reduced to a computation. The measure of an st-cone Cp, is the measure of
the prefix h (i.e., the product of the probability of every transition occurring in h). An st-cone Cp
is called a sub-cone of Cj, if and only if h’' = [hz], where z is a computation factor.

3.3 Deterministic self-stabilization

In order to define self-stabilization for a distributed system, we use two types of predicates: the
legitimacy predicate—defined on the system configurations and denoted by L£—and the problem
specification—defined on the system computations and denoted by SP.

Let P be an algorithm. The set of all computations of the algorithm P is denoted by £p. Let
X be a set and Pred be a predicate defined on the set X. The notation z - Pred means that the
element z of X satisfies the predicate Pred defined on the set X.

Definition 7 (Deterministic self-stabilization) An algorithm P is self-stabilizing for a specifi-
cation SP if and only if the following two properties hold:

1. convergence — all computations reach a configuration that satisfies the legitimacy predicate.
Formally,
Vee Epie=((co,c1)(e1,e2)...) :An > 1,en FC;

2. correctness — all computations starting in configurations satisfying the legitimacy predicate
satisfy the problem specification SP. Formally, Ve € Ep :: e = ((cp,c1) (c1,¢2) ...) 1o F L =
ek SP.

3.4 Probabilistic self-stabilization

A predicate P is closed for the computations of a distributed system if and only if when P holds in
a configuration ¢, P also holds in any configuration reachable from c.

Notation 1 Let S be a system, D be a scheduler and st be a strategy satisfying the predicate D. Let
CP be the set of all system configurations satisfying a closed predicate P (formally Ve € CP,ct P).
The set of st-computations that reach configurations ¢ € C'P 1is denoted by EPg and its probability
by Prst(gpst)'

In this paper we study silent algorithms - those for which the terminal configurations are le-
gitimate. The probabilistic stabilization for this particular case of algorithms is restricted to the
probabilistic convergence definition.

Definition 8 (Probabilistic Stabilization) A system S is self-stabilizing under a scheduler D
for a specification SP if and only if there exists a closed legitimacy predicate L on configurations
such that in any strategy st of S under D, the two following conditions hold:

The probability of the set of st-computations, starting from c, reaching a configuration c', such that
' satisfies L is 1 (probabilistic convergence). Formally, Vst, Prs(ELs) =1

3.5 Convergence of Probabilistic Stabilizing Systems

Building on previous works on probabilistic automata (see [SL94, WSS94, Seg95]), [BGJ99] presented
a framework for proving self-stabilization of probabilistic distributed systems. In the following we
recall a key property of the system called local convergence and denoted by LC.

Definition 9 (Local Convergence) Let st be a strategy, PR1 and PR2 be two predicates on con-
figurations, where PRI is a closed predicate. Let § be a positive probability and N o positive integer.
Let Cp, be a st-cone with last(h) = PR1 and let M denote the set of sub-cones Cyr of the cone Cp, such
that the following is true for every sub-cone Cp: last(h') = PR2 and length(h') — length(h) < N.
The cone Cy, satisfies LC (PR1, PR2,0,N) if and only if Pr(Uch,eM Cn) > 4.

Now, if in strategy st, there exist ds; > 0 and Ng > 1 such that any st-cone, C; with last(h) F
PRI, satisfies LC'(PR1, PR2,04;, Ng;), then the main theorem of [BGJ99] states that the probability
of the set of st-computations reaching configurations satisfying PR1 A PR2 is 1.

4 Self-stabilizing coloration algorithms

In this section we provide two deterministic and one probabilistic solutions for the coloration problem.
Our solutions are based on a greedy algorithm that takes the minimum available color.

The first deterministic algorithm (see Section 4.1) performs in anonymous networks yet requires
a locally central scheduler. The second deterministic algorithm (see Section 4.2) makes use of unique
identifiers but runs correctly under the unfair distributed scheduler. The probabilistic solution
(see Section 4.3) offers the best of both worlds: unfair distributed scheduler support in anonymous
networks.

4.1 Anonymous networks with locally central scheduler

The algorithm presented in this section requires a locally central scheduler, i.e. two neighboring
nodes may not execute their critical section simultaneously. There exist numerous papers in the
literature that provide such schedulers, e.g. [GH99], [AN99] and [BDGMO00]. Our algorithm can be
combined with any of those generic approaches to obtain a system that support stronger schedulers.
Sections 4.2 and 4.3 provide alternative ways to obtain the same result.

4.1.1 Algorithm overview

Each processor maintains a color, whose domain is the set {0,...,d}, where ¢§ is the node’s degree.
The neighborhood agreement of a particular processor p is defined as follows:

Definition 10 (Agreement) A processor p agrees with its neighborhood if the two following con-
ditions are verified:

1. p’s color is different from any of p’s neighbors,

2. p’s color is minimal within the set {0,...,0} \ Ujen, (R;).

When any of these two conditions is not verified, p performs the following actions: (i) p removes
colors used by its neighbors from the set {0,...,d} and (7i) takes the minimum color of the resulting
set as its new color. The resulting set is always non-empty. Core of the algorithm is presented in
Algorithm 4.1.

For example, assume that the color set is {0,1,2,3}, p’s color is 2 and p’s neighbors use the
colors 0 and 3. Then p does not agree with its neighborhood since Condition 2 of Definition 10
is not verified. After executing its algorithm, p’s color becomes 1, the smallest element of the set

{0,1,2,3} \ {0,3} = {1,2}.

Algorithm 4.1 Self-stabilizing Deterministic Coloration Algorithm
Shared Variable:
R;: integer € {0,...,0};
Function:
Agree(i) : Rj = min ({0, 00\ UjeNi{Rj}>
Actions:
C: ~Agree(i) —s R; := min ({0, T8 UjGNi{Rj})

4.1.2 Algorithm analysis

In this section, we first define legitimate configurations as configurations where every processor
agrees with its neighborhood. Since any terminal configuration of Algorithm 4.1 is legitimate, we
concentrate on proving convergence from any initial configuration.

Definition 11 A configuration is legitimate if and only if every processor p agrees (in the sense of
Definition 10) with its neighborhood.

In an arbitrary initial configuration ¢, a processor p may not agree with its neighborhood. From
Definition 10, this may occur in two (non mutually exclusive) cases:

1. First kind disagreement: there exists some ¢ € N, such that R, = R,. Let M{ be the set
of such processors p in c.

2. Second kind disagreement: there exists a color C' in {0,...,d,} \ Ugen, {Rq}, such that
R, < C. Let Mg be the set of such processors p in c.

We first show that for any processor p in M{, executing its action leads to a configuration ¢’
where p ¢ Mf' (see Lemma 1). Then we show that for any processor p in MZC, yet not in Mf', the
number of executed actions in any computation is bounded (see Lemma 2). We conclude that overall
any system computation ends up in a terminal configuration, which is legitimate (see Definition 11).

Lemma 1 Let e = ((c1,¢2),.-,(CkyCht1),-..) be a computation of Algorithm 4.1 under a locally
central scheduler. If (cg,cr+1) is an action of a processor of M*, then for any i > k, |M*| > | M{*].

Proof: Let p € M{* be a processor which executes Rule C at ¢;. None of p’s neighbors may execute
an action (by the locally central scheduler hypothesis), and Rule C gives p a color that is different
from any of its neighbors in cg1, therefore |M{*| > |M**|.
For any processor p, it is impossible that Rule C results in giving the same color to p that any of
its neighbors, thus for any i > k + 1, |M*™| > |M{%|. 0
A direct consequence of this proof is that any processor executes its action at most once for being
n Ml.

Lemma 2 Let e = ((c1,¢2),--,(CkyChi1),--.) be a computation of Algorithm 4.1 under a locally
central scheduler. If (cg,cry1) is an action of a processor p of My* not in M{*, then p may only
erxecute B — 2 actions in any subsequent computation.

Proof: Let p € Mj* \ M{* be a processor which executes Rule C at c;. None of p’s neighbors may
execute an action (by the locally central scheduler hypothesis), and Rule C gives p a color that is
strictly smaller than its previous one (its previous color was not minimal). Since its previous color
was at most ¢, its new color is at most § — 1. Since p’s color may only decrease to reach 0 and that
Rule C strictly increases p’s color, then starting from ciy1, p may only execute its action at most
B — 2 times. O

Theorem 2 Any computation of Algorithm 4.1 under a locally central scheduler eventually achieves
a legitimate configuration.

Proof: Let e be a computation of Algorithm 4.1 under a locally central scheduler starting in the
configuration ¢. By Lemmas 1 and 2, a processor p may execute at most B — 1 actions. Then after
at most n X (B — 1) actions, the system reaches a terminal configuration, where no rule is enabled.
Since any terminal configuration is legitimate, the theorem is proved. O

4.2 Identifier networks with unfair distributed scheduler

In this section, we transform Algorithm 4.1 such that it stabilizes in spite of any unfair distributed
scheduler. In order to break possible network symmetry we make use of unique processor identifiers.
In actual networks, such identifiers can be obtained from the network device.

4.2.1 Algorithm overview and analysis

Algorithm 4.2 differs from Algorithm 4.1 in two ways:

1. processors that are colored with the same color as one of their neighbors may execute Rule C;
if and only if their identifier is locally minimal between all identically colored neighbors,

2. processors colored with a color different from any of their neighbors may execute rule Cy as in
Algorithm 4.1.

Algorithm 4.2 Self-stabilizing Deterministic Coloration Algorithm under an unfair scheduler
Shared Variable:
R;: integer € {0,...,B};
Function:
Agree(i) : Rj = min ({0, ...,B}\ UjeNi{Rj}>
Actions:
Cy : ~Agree(i)A
(Hj € M,Rj = R; Nid; > min(idk,k eEN;ANR; = Rk)) —
R; = min ({0, . BY\ U].GM{R]-})
Cy : —Agree(i) N (Vj € Ni, R; # R;) —
R; := min ({o, ... B}\ UjeNi{Rj})

We use the same proof technique as that of Algorithm 4.2 by showing that any processor is able
to perform a bounded number of actions, implying that any computation of the system is finite.
For technical reasons, we split the set of processors in three mutually exclusive sets:

e S| — the set of processors having the same color as one of their neighbors. Formally,

Sy ={i| mAgree(i) A3j € N;, R; = R;}

e S¥ — the set of the k-colored processors (0 < k < B) that do not agree with their neighbors
and whose color is different from those of their neighbors. Formally,

S§ = {i | ~Agree(i) NR; = k A (Yj € Ni, R; # R;)}

e S¥ — the set of the k-colored processors (0 < k < B) that agree with their neighbors. Formally,

Sk = {i | Agree(i) A R; = k}

10

The first two sets we consider processors with some kind of disagreement (see Section 4.1.2), while
the third set includes processors that agree with their neighbors. We use these sets when proving
that any system computation eventually leads to a configuration where all processors are in the S
sets (0 < j < B). In such a configuration, no rule can be executed and the configuration is terminal.

In more details, we first show that a processor of S; may execute Rule C; and eventually become
an element of S’g. Then, a processor of S§ may execute Rule Co and then become a member of S; or
S% (with j > k). In turn, a processor of S§ may either remain forever in this set of move to set S%
if one of its neighbors, by executing Rule Cq, frees a color greater than k. Since the number of sets
S% and S5 (0 < k < B) is finite then, eventually, a terminal configuration is reached.

Lemma 3 Let e be a computation of Algorithm 4.2 starting in a configuration where |S; |+Z,?:_01 |S%| #
0. Then e eventually reaches a configuration where |S1| + E,?;Ol |S5| = 0.

Proof: Let ¢ be the initial configuration of e. We study the value of |S1|+ 2113;01 |S%| after execution
of some processor p action in ¢:

1. p€ Sy, and Vg € N,,,q € S%,(0 <t < B —1). Then p executes Rule C; and moves to S!f;

2. p € S4, and d¢ € S} such that p and ¢ are chosen by the scheduler at the same time and
simultaneously execute their action. After execution of Rule Cy, p has two possibilities: (i)
stepping out of Sy or (ii) coloring itself with a greater color s.

3. p€ S;and Vg € ./\fp, q € Sy orqe SP(m <r), qdoes not execute its action at c. Then, p may
only execute Rule C2 and move to S, with ¢ > r

4. p€ Sy and Ig € N, q € Sy or g € ST*(m < r) such that p and ¢ are chosen by the scheduler at
the same time and simultaneously execute their action. After executing Rule Cs, p can either
move to S3 or to S1, colored with s > r as its neighbor ¢g. Then, there are two possible cases:

(a) After execution of Rule Cy, p’s neighbors may choose a color that is different from p, which
makes p an element of S3.

(b) If p has the minimal identifier between its s-colored neighbors colored, then only p may
execute an action in its neighborhood and move to S§.

Note that a processor may move from S§ (0 < k < B — 1) to S% only if one of its neighbors (in S5,
with ¢ > k) executes Rule Cy so that color ¢ becomes available to p.

Now assume that there exists a processor ¢ that executes actions infinitely. We consider an
execution starting in configuration ¢’ where ¢ € S; is s-colored and chosen to execute its action.
Then g colors itself with k1. Processor ¢ would move again to Sy if there exists a free color greater
than k1. By hypothesis, g executes infinitely many actions. Using a similar argument as in the proof
of Lemma 2, ¢ may move to S; only a finite number of times, hence our hypothesis is false, and
the expression |S;| + 3P, |S¥| eventually decreases. Since the system only terminates when all
processors are in some Ss3, the preceding sum eventually reaches 0. O

4.3 Anonymous networks with unfair distributed scheduler

In this section we present the randomized variant of Algorithm 4.1. This algorithm works on anony-
mous networks and stabilizes with an unfair scheduler.

11

Algorithm 4.3 Self-stabilizing Randomized Coloration Algorithm
Shared Variable:

Vj € Ni, R;: integer € {0,...,B};
Function:

Agree(i) : R; = min ({0, ..., B}\ UjeNi{RJ'}>
Actions:

C: —-Agree(i) —

if random(0,1)=1 then

Ry = min ({0,..., B}\ Ujen, (Rj})

4.3.1 Algorithm overview and analysis

Compared to Algorithm 4.1, a processor which does not agree with one of its neighbors tosses a coin
before changing its color. Even if neighboring processors would compete for executing their action,
by randomization there exists a positive probability that only one of those processors executes its
actions.

In order to prove the correctness of Algorithm 4.3, we study an arbitrary strategy of this algo-
rithm under the distributed unfair scheduler. We prove that in this strategy, the set of computations
achieving a terminal configuration in a finite number of computation steps has a positive proba-
bility. Hence the strategy satisfies the local convergence property (see Definition 9) and the set of
computations reaching terminal configuration has probability 1. The proof is divided in two main
parts:

1. starting in an arbitrary configuration, the system eventually reaches a configuration where all
processors have a color that is different from their neighbors;

2. starting in such a configuration, the system eventually reaches a configuration where all pro-
cessors agree with their neighbors (see Definition 10).

Lemma 4 In any strategy st of Algorithm 4.8 under the unfair distributed scheduler, there exists a
positive probability to achieve a legitimate configuration in o finite number of steps.

Proof: Let ¢ be a starting configuration for the strategy. Assume that in ¢, both M{ and M$ (see
Section 4.1.2 for definition) are non-empty. We now prove the two previously outlined parts.

We consider the following scenario for the first part: (i) every time when some neighboring
processors are chosen simultaneously by the scheduler to execute their action, exactly one of them
execute its action, and (7i) only processors which neighbors have the same color execute their rule.
Note that Condition (3) of this scenario simulates the locally central scheduler.

This scenario repeats itself until there are no two neighboring processors colored identically.
Let us denote by ¢’ a configuration where |Mf'| = 0. In Strategy st, the probability of the set of

computations reaching ¢’ is
1\" [(1\Zid
€1 > | = X | =
(2) <)

where n is the network size and d; is the degree of the node 7. The lower bound for the probability

value is obtained by considering that a processor 4 executes its rule and none of its neighbors execute

their rule with probability % X (%)di, and that there are at most n processors in the network.

12

The scenario for the second part is reduced to Condition (%) of the first scenario. According to
Lemma 2, a processor can only execute a finite number of actions (bounded by B — 2). Therefore
the the set of computations reaching ¢ (with [M{"| = 0 and |M§ | = 0) has probability

e > € ><((%))(3(2);1 v ()%)(Bz)xz;;l d;
1\ (B=D)x(n+3™, d;
> (3) !
where n is the network size and d; is the degree of the node 1. O

Lemma 5 The average number of computations steps to reach a configuration ¢ where all processors
agree with their neighbors is O((B — 1) x logyn).

Proof: Let A be the set of processors which agree with their neighbors (see Definition 10). By
Lemmas 1 and 2, the probability for processor ¢ moving to A after at most B — 1 trials is

1\ B! 1\ Bx(B-1)
- > — X —
n2(z) <)
Therefore, for n-sized networks, the average number of processors in A after B — 1 trials is at least

l)(B*Fl)X(B*l) 1

”X(2 2

2
. This also means that at most n x (1 — ()(B 1)) processors are not in A.

2 T
After z x (B — 1) trials, the average number of processors in A is at least n x (1 - (%)(B 1)> .

The algorithm would stop when all processors agree. Then z is a solution of the following equation

[nx(l—()(Bzfl))le] = |z=log__ . n]

1_1(B2-1)
-3

N[=

log, n

=

= %0
log, 71_%(3271)
= z = O(logyn)

Therefore, on average, all processors agree with their neighbors within O((B—1) xlogn) computation
steps. O

5 Applications

In this section we present two immediate applications of our algorithms: acyclic orientation and
maximum independent set. In the following, we assume that each processor ¢ has a color R; that
satisfies Agree(i) (see Definition 10). Depending on the scheduling and system symmetry, one of
our algorithms will be used. In the following, we refer those algorithms under the common name of
Coloring Algorithm.

5.1 Acyclic orientation

A directed acyclic graph (or DAG) can be derived from any terminal configuration of our coloring
algorithm by using the following predicate:

13

Definition 12 Let ¢ be a terminal configuration of the coloring algorithm. Let (i,7) be an edge of
the communication graph. The edge (i, j) is oriented from i to j if in ¢, R; < R;.

That definition was used in [GK93, DDT99] with system-wide unique identifier. The following
lemma states that local coloration is sufficient.

Lemma 6 In any terminal configuration of the coloring algorithm, Definition 12 induces an acyclic
orientation.

Proof: Let ¢ be a terminal configuration of the coloring algorithm. Suppose that Definition 12
induces a cycle in the communication graph in ¢. Let pi,...,p, the processors in this cycle. By
Definition 12, we would then have R; < R;, which is impossible. O

All previously known self-stabilizing algorithms that require directed acyclic graphs (such as those
presented in [DDT99]) can be run on top of the coloring algorithm to obtain the same results on
anonymous networks.

5.2 Maximal independent set

Solving the maximal independent set problem enables to construct a set M of processors such that
the following two conditions are satisfied:

1. no two neighboring processors are in M,
2. there is no other set M’ such that M C M’ and no two neighboring processors are in M.

In this section we prove that a maximal independent set can be derived from any terminal
configuration of our coloring algorithm by using the following predicate:

Definition 13 Let ¢ be a terminal configuration of the coloring algorithm. Let M. be the set of
processors colored with B (where B is the bound used by the coloring algorithm).

Lemma 7 In any terminal configuration of the coloring algorithm, Definition 12 induces a mazimal
independent set.

Proof: Assume that there exists another set M. of independent processors such that M, C M..
This means that there exists at least one processor p in M. that is not in M,. Let us enumerate
the different possibilities:

1. processor p is colored with B and then M = M’ or

2. processor p has no neighbor in M and it is not colored with B, which means that Agree(p) is
false that Configuration c¢ is not terminal.

Any of those two case contradicts the hypothesis. O

Unlike the maximal independent set algorithm provided in [SRR95], we do not assume that the
scheduler is fair between system processors. Only simple progression is needed to ensure system
stabilization. The cost for this extra convenience is the additional memory space (that was O(1)
in [SRR95]).

14

6 Conclusions

We provided three self-stabilizing solutions to the vertex coloring problem that perform in spite of
unfair scheduling. In particular, the last solution is randomized and presents weakest hypothesis:
anonymous networks with unfair distributed scheduling. As direct application, we were able to solve
directed acyclic orientation as well as maximal independent set at no additional cost.

References

[AN99]

[BCDYS5]

[BDGMOO]
[BGJ99]
[BGJO1]
[DDTY9]

[DGPV00]

[DGTO0]

[Dij74]

[DLOg]

[GH99]

[GKO3]
[GT00]

[Her92]
[LJ90]

A. Arora and M. Nesterenko. Stabilization-preserving atomicity refinement. DISC’99, pages 254—
268, 1999.

J. Beauquier, S. Cordier, and S. Delaét. Optimum probabilistic self-stabilization on uniform rings.
In Proceedings of the Second Workshop on Self-stabilizing Systems (WSS’95), pages 15.1-15.15,
1995.

J. Beauquier, A. Datta, M. Gradinariu, and F. Magniette. Self-stabilizing local mutual exclusion
and daemon refinement. In Proceedings of DISC’2000, page to apear, October 2000.

J. Beauquier, M. Gradinariu, and C. Johnen. Randomized self-stabilizing optimal leader election
under arbitrary scheduler on rings. Technical Report 1225, LRI, September 1999.

J Beauquier, M Gradinariu, and C Johnen. Crossover composition. In Proceedings of the Fifth
Workshop on Self-stabilizing Systems (WSS 2001), pages 19-34, 2001.

S. K. Das, A. K. Datta, and S. Tixeuil. Self-stabilizing algorithms on dag structured networks.
Parallel Processing Letters, 9(4):563—-574, December 1999.

A. K. Datta, S. Gurumurthy, F. Petit, and V. Villain. Self-stabilizing network orientation al-
gorithms in arbitrary networks. In Proceedings of the Twenteeth International Conference on
Distributed Computing Systems (ICDCS’2000), pages 576-583, 2000.

A. K. Datta, M. Gradinariu, and S. Tixeuil. Self-stabilizing mutual exclusion using unfair dis-
tributed scheduler. In Proceedings of the IPDPS’2000 International Conference, pages 465—470,
Cancun, Mexico, May 2000.

E. Dijkstra. Self stabilizing systems in spite of distributed control. Communications of the ACM,
17:643-644, 1974.

J. Durand-Lose. Randomized uniform self-stabilizing mutual exclusion. In Proceedings of the
Second International Conference on Principles of Distributed Systems (OPODIS’98), pages 89—
98, 1998.

M. Gouda and F. Hadix. The alternator. In Proceedings of the Third Workshop on Self-Stabilizing
Systems (published in association with ICDCS99 The 19th IEEE International Conference on
Distributed Computing Systems), pages 48-53, 1999.

S. Ghosh and Mehmet Hakan Karaata. A self-stabilizing algorithm for coloring planar graphs.
Distributed Computing, pages 7:55-59, 1993.

M. Gradinariu and S. Tixeuil. Tight space uniform self-stabilizing /-mutual exclusion. Technical
Report 1249, LRI, March 2000.

T. Herman. Self-stabilization: randomness to reduce space. Distributed Computing, 6:95-98, 1992.

A. Israeli and M. Jalfon. Token management schemes and random walks yield self-stabilizing

mutual exclusion. In Proceedings of the International Conference on Principles of Distributed
Computing (PODC’90), pages 119-131, 1990.

15

[Lub86]

[Lyn96]
[PSLOO]

[Sch93]
[Seg95]

[SL94]

[SRRO4]

[SRR95)

[$S93]

[WSS94]

M. Luby. A simple parallel algorithm for the maximal independent set problem. In STAM, Journal
of Computing, volume 15(4), pages 1036-1053, 1986.

N Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

A. Pogosyants, R. Segala, and N. Lynch. Verification of the randomized consensus algorithm of
Aspen and Herlihy: a case study. Distributed Computing, 13(4):155-186, 2000.

M. Schneider. Self-stabilization. ACM Computing Surveys, 25:45-67, 1993.

R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD thesis,
MIT, Departament of Electrical Engineering and Computer Science, 1995.

R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In Springer-Verlag,
editor, Proceedings of the Fifth International Conference on Concurrency Theory (CONCUR’94)
LN(CS:836, Uppsala, Sweden, August 1994.

S. Shukla, D. Rosenkrantz, and S. Ravi. Developing self-stabilizing coloring algorithms via system-
atic randomization. In Proceedings of the International Workshop on Parallel Processing, pages
668-673, Bangalore, India, 1994. Tata-McGrawhill, New Delhi.

S. Shukla, D. Rosenkrantz, and S. Ravi. Observations on self-stabilizing graph algorithms
for anonymous networks. In Proceedings of the Second Workshop on Self-stabilizing Systems
(WS5°95), pages 7.1-7.15, 1995.

S. Sur and P. K. Srimani. A self-stabilizing algorithm for coloring bipartite graphs. Information
Sciences, 69:219-227, 1993.

S. H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors of probabilistic i/o au-
tomata. In Proceedings of the Fifth International Conference on Concurrency Theory (CON-
CUR’94) LN(CS:836, pages 513-528, 994.

16

