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Abstract

The advent of large scale multi-hop wireless networks highlights problems of fault

tolerance and scale in distributed system, motivating designs that autonomously recover

from transient faults and spontaneous reconfiguration. Self-stabilization provides an ele-

gant solution for recovering from such faults. We present complexity analysis for a family

of self-stabilizing vertex coloring algorithms in the context of multi-hop wireless networks.

Such ”coloring” processes are used in several protocols for solving many different issues

(clustering, synchronizing...). Overall, our results show that the actual stabilization time

is much smaller than the upper bound provided by previous studies. Similarly, the height

of the induced DAG is much lower than the linear dependency on the size of the color

domain (that was previously announced). Finally, it appears that symmetry breaking

tricks traditionally used to expedite stabilization are in fact harmful when used in net-

works that are not tightly synchronized.
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1 Introduction

Wireless multi-hop networks (such as ad hoc or sensor networks) consist of sets of independent

mobile wireless nodes that operate without the support of a pre-existing fixed infrastructure.

They offer unique benefits for certain environments and applications as they can be quickly

deployed. Nodes are self-contained, battery-powered computers with radio links that enable

the entities to self-organize into a network, communicate with each other and exchange data.

The advent of large-scale multi-hop wireless networks highlights problems of fault tolerance

and scale in distributed system, motivating designs that autonomously recover from transient

faults and spontaneous reconfiguration. Resuming correct behavior after a fault occurs can

be very costly [9]: the whole network may have to be shut down and globally reset in a

good initial state. While this approach is feasible for small networks, it is far from practical

in large networks such as forecast sensor networks. Self-stabilization [2, 3] is an attractive

approach for such problems. It provides a way to recover from faults without the cost and

inconvenience of a generalized human intervention: after a fault is diagnosed, one simply has

to remove, repair, or reinitialize the faulty components, and the system, by itself, will return

to a good global state within a relatively short amount of time.

Distributed self-stabilizing algorithms may thus be used for organizing and/or managing

multi-hop wireless networks. For example, the self-stabilizing distributed vertex coloring

algorithm can be used for resource allocation [7] or distributed local organization [6, 8] in

such networks. The vertex coloring problem, issued from classical graph theory, consists

in choosing different colors for any two neighboring nodes in a graph. This problem can

easily be generalized to distance k, requiring that any two nodes that are up to k hops away
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must have different colors. Intuitively, the vertex coloring algorithm runs as follows: every

node repetitively collects colors chosen by its neighbors, and if it detects a conflict with its

own color, randomly chooses a fresh color (not taken by its distance-k neighborhood). Such

algorithms in multi-hop wireless networks do not try to minimize the number of used colors,

but when the graph degree is bounded by a small constant (as it is the case in sensor networks),

the expected local stabilization time (i.e. the stabilization time in any neighborhood) of the

algorithm is also constant. This makes the algorithm independent on n, the number of the

nodes in the network, and thus scalable to large networks. Moreover, the directed acyclic

graph that is induced by the colors is of constant height, so that self-stabilizing algorithms

that are composed with the coloring can stabilize also in constant time. This property was

used, in the context of multi-hop wireless networks, in [6] to compute a minimal distance-

2 coloring, and in [8] to self-organize the network into clusters, both locally stabilizing in

expected constant time. While this distance-k coloring algorithm has provenly fast local

stabilization time, the influence of system parameters remains unknown.

In this paper, we study the stabilization time of distance-k coloring algorithms in various

settings that are relevant to wireless multi-hop networks. We first provide a theoretical study

in synchronous and anonymous networks: we extend the analysis carried out in [1] to the

context of anonymous networks. Using simulations, we consider various topologies (grids and

random graphs), different kinds of scheduling hypothesis (synchronous and probabilistically

asynchronous), and variants of the algorithm that uses network wide identifiers so that pri-

orities can be derived for neighboring nodes. We study the impact of these parameters on

the stabilization time of distance-k coloring algorithms.
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The remaining of the paper is organized as follows: Section 2 formally presents the system

model and the coloring algorithm. In Section 3, we analytically study the stabilizing time

considering a synchronous setting, while in Section 4 we provide extensive simulations and

comments on various parameters. Section 5 gives concluding remarks.

2 Preliminaries

System model. The system is composed of a set V of nodes in a multi-hop wireless net-

work and each node has a unique identifier. Communication between nodes uses a low-power

radio. Each node p ∈ V can communicate with a subset Np ⊆ V of nodes determined

by the range of the radio signal R; Np is called the neighborhood of node p. p does not

belong to Np (p /∈ Np). In the wireless model, transmission is omni-directional: each mes-

sage sent by p is effectively broadcast to all nodes in Np. We also assume that commu-

nication capability is bidirectional: q ∈ Np iff p ∈ Nq. Define N1
p = Np and for i > 1,

N i
p = N i−1

p ∪ { r | (∃q : q ∈ N i−1
p : r ∈ Nq) } (let’s call N i

p the distance-i neighborhood of

p). We assume that the distribution of nodes is sparse: there is some known constant δ such

that for any node p, |Np| ≤ δ. Note that sensor networks can control density by adjusting

their radius R and/or powering off nodes in areas that are too dense, which is one aim of

topology control algorithms.

Notation. We describe algorithms using the notation of guarded assignment statements:

G → S represents a guarded assignment, where G is a predicate of the local variables of

a node, and S is an assignment to local variables of the node. If predicate G (called the

guard) holds, then assignment S is executed, otherwise S is skipped. We assume that all

4



such guarded assignments execute atomically when a message is received. At any system

state, where a given guard G holds, we say that G is enabled at that state.

Execution and scheduling. The life of computing at every node consists of the infinite

repetition of evaluating its guarded actions. The scheduler is responsible for choosing enabled

processors for executing their guarded rules. In this paper, we consider three possible sched-

ulers: the synchronous scheduler, the probabilistic central scheduler, and the probabilistic

distributed scheduler. With the synchronous scheduler, nodes operate in lock steps, and at

every step, every node is activated by the scheduler. At every step, the probabilistic central

scheduler randomly activates exactly one node. With the probabilistic distributed scheduler,

at each step, each node is activated with probability 1/n. The two last schedulers model the

fact that although nodes execute their actions at the same speed on average, there is a chance

that their clocks or speeds are not uniform, so that the system is slightly asynchronous. The

distributed scheduler is more realistic than the central one, but the latter is often used for

proving self-stabilizing algorithms.

Shared Variable Propagation. Nodes communicate with their neighbors using shared

variables. To keep the analysis simple, we assume that there exists an underlying shared

variable propagation scheme that allows nodes to collect shared variables in their neighbor-

hood at distance k, for a fixed k. A possible implementation can be found in [6]. For our

purpose, we simply assume that a node is able, in one ”macro” step, to read all shared vari-

ables in its neighborhood at distance k. This assumption is justified in Appendix.

Coloring Algorithm and DAG construction. The coloring algorithm that we consider

uses a single shared variable for each node. Let Cp be a shared variable that belongs to the
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domain ∆; variable Cp is the color of node p. The SCp predicate refers to the set of colors that

have been used in the neighborhood at distance k of p: SCp = {Cq | q ∈ Nk
p }. Let random(S)

choose with uniform probability some element of set S. Node p uses the following function

to compute Cp:

newC(Cp) =





Cp if Cp 6∈ SCp

random(∆ \ SCp) otherwise

The algorithm for vertex coloring is the following: N1:true → Cp := newC(Cp)

As colors are ordered and unique in a node neighborhood, such a coloring algorithm can lead

to the construction of a Directed Acyclic Graph (DAG) when (virtually) drawing a directed

edge from each node to its only neighbor with the lowest color (if such a node exists).

Local Stabilization. With respect to any given node v, a solution for the coloring problem

at distance k is locally stabilizing for v with convergence time t if, for any initial system

state, after at most t time units, every subsequent system state satisfies the property that

any node w at distance less than k from v is such that Cw 6= Cv. For randomized algorithms,

this definition is modified to specify expected convergence times (all stabilizing randomized

algorithms we consider are probabilistically convergent in the Las Vegas sense). In [6], the

authors show that Algorithm N1 self-stabilizes with probability 1 and has constant expected

local stabilization time.

Uniform vs. Non Uniform Networks. In theory, the coloring algorithm N1 could

work in uniform and anonymous networks (where nodes do not have unique identifiers and

execute the same code). Collecting the neighborhood at distance k generally requires identi-

fiers. Then, it is possible to tweak the algorithm to use these identifiers to break symmetry

and expedite convergence: when at least two neighbors have a conflicting color, the node with
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the lowest identifier never changes its color. Thus, we have the guarantee that at any step,

at least one of the conflicting nodes gets a stable color. In the remaining of the paper, we

distinguish two operating modes for the algorithm: the all mode refers to the mode where all

conflicting nodes draw a new color (anonymous networks), while the all but one mode refers

to the version where the previous algorithm applies (uniform networks where one conflicting

node does not change its color).

3 Analysis

In this section, we theoretically compute the expected stabilization time of the coloring

protocol N1, i.e. the expected number of steps before a node has a color that is not already

used in its distance-k neighborhood. From [6], we already know that when the degree is upper

bounded by a constant(δ), the expected local stabilization time is also upper bounded by a

constant. However, the actual constant is not given in [6], and the one that can be derived

from the algorithm is high (about δ6 for a distance-3 coloring).

The other metric of interest for our purpose is the height of the DAG that is induced by

the colors. Indeed, when the coloring algorithm is used as a building block for subsequent

algorithms, the stabilization time of those algorithms is generally in the order of the color

DAG height, a lower DAG height inducing a smaller stabilization time. In [6], the authors

show that the height of the DAG is bounded by |∆|+ 1, where ∆ denotes the color domain.

For the theoretical study, we consider only the synchronous scheduler, and we model the

coloring protocol by a successive set of random draws. The main goal is to assign a color to

each node. A way to model this problem is to consider that the color domain is represented
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by a set of M urns in which one must randomly distribute L balls which are going to represent

the nodes. In each neighborhood, the goal is then to have only one ball (one node) associated

to a given urn (one color).

This model has already been used in [1] (for the NAP protocol), in which the authors

analyze the stabilization time of a self-addressing network where two links must receive a

unique prefix in the network. In this model, the urns symbolize the prefix and the balls the

links. Each link chooses a random prefix in a prefix domain. If two links have chosen the

same prefix, the one with the lowest ID keeps it while the other one(s) choose(s) a new prefix

among the ones not already assigned. The analysis and the calculus carried out in [1] thus

roughly correspond to our all but one mode. In this section, we extend the analysis in the

all mode.

Note that this theoretical study only matches for complete networks, i.e. where each node

can communicate with all the other nodes. In multi-hop networks, it is possible that two

neighboring nodes (A and B) with no conflicting colors simultaneously draw a new identical

color, because they each have another conflicting neighbor (not visible to A or to B). But, it is

important to note that this theoretical study gives a lower bound on the actual stabilization

time (this is further refined in Section 4).

The algorithm can be modeled in terms of urns/balls as follows.

Algorithm 1 Coloring Process(L, M)

. Input: M urns and L balls

. Pre-condition: M ≥ L

if (L 6= 0) then
Randomly throw the L balls in the M urns;
if (case = ’all’) then

Keep aside all urns that contain exactly one ball with their ball inside ;
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end
if (case = ’all but one’) then

Keep aside all urns containing at least one ball and one of their balls;
end
Let note c ≤ M the number of ”correct” urns that we keep aside;
Call Color Process(L− c, M − c);

end

By repeating the process, eventually every ball will be stored in a correct urn and every

urn will contain at most one ball. Let N denote the number of iterations needed to reach

such a configuration, i.e. the number of calls to the recursive procedure of coloring. We are

interested in computing the distribution and the expectation of the random variable N . We

consider the homogeneous discrete-time Markov chain X = {Xn, n ∈ N}, on the finite state

space I = {0, 1, . . . , L} where the event {Xn = i} represents the fact that, after n transitions

(or calls to the coloring procedure), the procedure Color Process(M−i, L−i) is currently

executed. In other words, {Xn = i} represents the fact that, after n transitions, exactly i

urns and balls have been kept aside, i.e. exactly i urns contain exactly one ball. The Markov

chain starts in state 0 with probability 1, which means that at the beginning, none of the

urns and balls have been kept aside. The random variable N can be defined more formally,

for L ≥ 1, as N =
∑

n≥0

∑L−1
i=0 1{Xn=i}. N is the number of transient states of X visited

before absorption.

We denote by P(L,M) = (pi,j(L,M))(i,j)∈I2 the transition probability matrix of the

Markov chain X, where pi,j(L, M) represents the probability to have exactly j urns and

balls kept aside at the time n + 1 given that i urns and balls have been kept aside at time

n. pi,j(L,M) is thus the probability to obtain exactly j − i urns each with one ball when
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throwing L− i balls into M − i urns. For all i ≤ j, we thus have

pi,j(L,M) = pi,j = p0,j−i(L− i,M − i). (1)

The Markov chain X is clearly acyclic and the state L is the absorbing state of X.

This means that for every i ∈ I − {L} and j ∈ I, we have pi,j(L, M) = 0 for i > j and

pL,L(L,M) = 1.

The transition probability matrix P(L, M) has thus the following form:

P(L, M) =




p0,0 p0,1 p0,2 · · · · · · p0,L

0 p1,1 p1,2 p1,3 · · · p1,L

...
...

. . . . . . . . .
...

0 0 · · · 0 pL−1,L−1 pL−1,L

0 0 · · · · · · 0 1




.

The computation of the matrix P(L,M) depends on the drawing hypothesis (all but

one or all mode). But, once the transition probability matrix is computed, the way of

evaluating the stabilization time of the coloring algorithm is the same whatever the drawing

hypothesis. The all but one mode is a little bit simpler because it implies pi,i(L,M) = 0

for every 0 ≤ i ≤ L− 1, which means that the stabilization time N of the coloring algorithm

is bounded: N ≤ L. We give in the following subsection the transition probability matrix of

each mode before giving the distribution and the expectation of the stabilization time N of

the coloring algorithm.
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Computation of the transition matrix P(L, M). We now explicit the transition prob-

ability pi,j(L,M) of the Markov chain X for all i ≤ j for both modes.

Matrix for the all mode: In the all mode, all nodes in conflict choose a new color among

the free ones. At each step, we keep aside the urns and their balls if they contain exactly one

ball. Unlike the all but one mode, we may keep none urn and ball at a step and thus the

diagonal values of P(L,M) are not null.

From relation (1), we only have to compute the transition probability p0,j−i(L− i,M − i)

for i ≤ j. The computation of the transition probabilities pi,j(L, M) yields to the computation

of the transition probabilities p0,j(L,M).

By definition of the transition matrix as stated above, the transition probability p0,j(L,M)

is the probability to obtain exactly j urns containing only one ball when throwing randomly

L balls into M urns. The case j = L yields to the generalized birthday problem and thus we

have:

p0,L(L,M) =
M !

(M − L)!ML
(2)

For j < L, we proceed as follows. We throw L balls into M urns. We denote by K0(L,M)

the number of empty urns and by K1(L,M) the number of urns with exactly one ball in-

side. Let aL,M (k, j) denote the joint distribution of both random variables K0(L,M) and

K1(L,M), that is aL,M (k, j) = P[K0(L,M) = k, K1(L,M) = j]. The transition probability
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p0,j(L,M) can thus be expressed as

p0,j(L,M) = P[K1(L,M) = j] =
M∑

k=0

aL,M (k, j).

In order to compute all the probabilities aL,M (k, j) we can proceed by recursion on integer

L by conditioning on the result of the throw of the last ball. More precisely, in order to obtain

k empty urns and j urns with only one ball inside when throwing L balls in M urns we need:

1. Either obtaining k + 1 empty urns and j − 1 urns with exactly one ball inside at the

end of the L− 1 first throws of L− 1 balls in M urns and throwing the last ball in one

of the k + 1 empty urns.

2. Either obtaining k empty urns and j + 1 urns with exactly one ball inside at the end

of the L− 1 first throws of L− 1 balls in M urns and throwing the last ball in one of

the j + 1 urns containing exactly one ball.

3. Or obtaining k empty urns and j urns with exactly one ball inside at the end of the

L − 1 first throws of L − 1 balls in M urns and throwing the last ball in one of the

M − (j + k) urns that contain at least 2 balls.

Thus, from that decomposition and for L ≥ 2, we have:

aL,M (k, j) =
k + 1
M

aL−1,M (k+1, j−1)1{j≥1}+
j + 1
M

aL−1,M (k, j+1)+
M − (j + k)

M
aL−1,M (k, j)

where 1{c} is the indicator function equal to 1 if condition c is true and 0 otherwise. For
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L = 1 we trivially have as initial value for the recursion:

a1,M (k, j) = 1{k=M−1, j=1}. (3)

It is also easy to check that aL,M (k, j) = 0 if either j > L either k = M or j + k > M . Note

that for j = L, we have aL,M (k, L) = 0 for k 6= M − L and aL,M (M − L,L) = p0,L(L,M)

which is given by relation (2) and that clearly satisfies the recurrence relations.

Matrix for the all but one mode: This case is the one given in [1]. We only give here the

results. In the all but one mode, at each step, we keep aside at least one urn together with

one of the balls contained inside. This means that the transition probability pi,i(L,M) = 0

for every 0 ≤ i ≤ L − 1. The Markov chain X is thus strictly acyclic and the stabilization

time N of the coloring algorithm is bounded by L.

Based on a well-known result about the number of ways of throwing r different balls in n

different urns such that exactly m urns are non-empty [4], the transition probability matrix

is given according to (1), for i < j, by

pi,j(L, M) =
(

M − i

j − i

) j−i∑

k=0

(
j − i

k

)
(−1)k

(
j − i− k

M − i

)L−i

.

Distribution and expectation of N . Now, given the transition probability matrix of the

Markov chain X, we are able to determine the distribution (P [N = n] for n = 0, . . . ,∞) and

the expected value E [N ] of the random variable N for both modes. The mean value E [N ] is

also actually the mean number of steps needed before stabilization of our coloring algorithm

and so its stabilization time.
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These calculus are detailed in [1]. We directly use them here. They are easily derived from

the classical results on Markov chains. Let Q denote the sub-matrix obtained from P(L,M)

by removing the last line and the last column which correspond to the absorbing state L.

We denote by α the row vector containing the initial probability distribution of the transient

states of X, i.e. α = (P [X0 = i])i=0,...,L−1. As already seen, the Markov chain starts in state

0 with probability 1 and, thus we have α = (1, 0, . . . , 0). With these notations, we have

P [N = n] = αQn−1(I −Q)1, for n ≥ 1,

P [N > n] =
∞∑

k=n+1

αQk−1(I −Q)1 = αQn1, for n ≥ 0,

and

E [N ] =
∞∑

n=0

P [N > n] = α (I −Q)−1 1,

where I is the identity matrix and 1 is the column vector with all entries equal to 1, both of

dimension L. If V = (Vi)0≤i≤L−1 is the column vector defined by Vi = E [N |X0 = i], we have

E [N ] = V0. The vector V of conditional expectations is given by V = (I −Q)−1 1, which

means that it is solution to the linear system (I − Q)V = 1, which can also be written as

V = 1+ QV or equivalently, since the matrix P(L,M) is acyclic, as

Vi =
1

1− pi,i


1 +

L−1∑

j=i+1

pi,jVj


 for i = L− 2, . . . , 0,

with VL−1,L−1 = 1/(1− pL−1,L−1).

We are now able to compute E [N ] = V0 by recurrence from Vi. We use these theoretical
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results in the next sections to compare with the simulation outcomes.

4 Simulations

We performed simulations to evaluate the stabilization time of the coloring algorithms over

different assumptions, to analyze the directed acyclic graph deriving from it in each case, and

to compare those values to the theoretical ones in order to validate our analytical model. As

mentioned in the previous sections, we are mainly interested in the stabilization time under

several scheduling and coloring hypothesis but also on the height of the derived DAG.

Simulation model. We use a simulator we developed and that assumes an ideal MAC

layer. In each case, each statistic is the average over 1000 simulations. All coloring algorithms

studied below are analyzed over a same node distribution.

We say that a node executes an action (or acts, for short) when it checks its neighbors’

color and if needed, chooses another color among the available ones. For a distance-k coloring,

a color c ∈ ∆ is said available for a node u if ∀v ∈ Nk
u , Cv 6= c. As mentioned in Section 2,

we studied the coloring algorithm for different kinds of scheduling hypothesis: Synchronous

(every node acts at every step), Probabilistic Central (exactly one random node acts at every

step) and Probabilistic Distributed (at each step, each node acts with probability 1
n). Each

scheduling hypothesis is studied for both modes of coloring: all but one mode (for each

pair of conflicting nodes, every node but one chooses another color) and all mode (every

conflicting node chooses another color).

We have run Algorithm N1 for distance-1 and distance-2 colorings with these scheduling
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hypothesis and modes over a random geometric topology and a grid with a varying number

of neighbors per node and different sizes of color domain ∆ . The initial stabilizing algorithm

has been designed using |∆| = (maxp∈V |Np|)2×k, k being the coloring distance, but as we

are interested in the impact of this domain size over the stabilization time and the DAG

height, we have also run Algorithm N1 for |∆| = 2× (
maxp∈V |Nk

p |
)
. Moreover, as in sensor

networks, nodes do not have a general view of the network and thus have no way a priori to

know the maximum degree in the graph, we have also run simulations where each node has

its own color domain size such that ∀p ∈ V, |∆p| = (|Np|)2×k. In these settings, we collect the

stabilization time of the coloring algorithm as well as the height of the induced DAG. In the

synchronous mode, every node acts with probability 1 (so the expected time before acting

is 1 step) whereas in both probabilistic modes, every node acts within expected n steps.

As schedulers are meant to model scheduling properties rather than implemented scheduling

mechanisms, in a “real” system a particular node would act within a constant expected time.

So, in order to be able to compare the three schedulers and to be fair when considering

the stabilization time of different schedulings, the number of steps before stabilization in

probabilistic modes is divided by n.

In the geometric approach, nodes are randomly deployed using a Poisson Process in a 1×1

square with various levels of intensity λ (from 500 to 1000). In such processes, λ represents

the mean number of nodes per surface unit. The communication range R is set to 0.1 in all

tests. We thus have a mean number of neighbors per node ranging from 15 to 32. In the

grid, we consider topologies where each central node has 4 and 8 neighbors.
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Theory vs. Simulation. As mentioned in Section 3, we expect that our theoretical results

give an accurate lower bound on the stabilization time of the coloring algorithm. Indeed,

when considering a complete graph, once a node u has chosen an available color, every other

node in the network knows that color (as a neighboring node of u) and thus will not choose

it anymore. However, in a non-complete graph, a situation such as illustrated in Figure 1

(for distance-1 coloring) may occur and thus, the average stabilization time would be higher

than the one in a complete graph, therefore our theoretical analysis only leads to a lower

bound. For example, let’s run the algorithm over the graph plotted on Figure 1, under the

synchronous scheduling and the all mode. Every node has to choose a color from 0 to 4 until

getting a locally unique color. Node B has two neighbors, A and C. The example shows the

colors drawn at each step by each node. As there still exist conflicts at the end of the three

steps, the algorithm would not stop yet. But, from the theoretical analysis, if we consider

that A, B and C are in a complete graph, then at step 2, C has its color (3) and at step 3,

A and B have their color (1 and 2). So at the end of the three steps, with the theoretical

analysis, every urn has been kept aside and the system should have stabilized.

A,0 B,0 C,0 D,0Step 1

System execution

A,1 B,1 C,3 D,3

A,1 B,2 C,2 D,4

Step 2

Step 3

Available colors to B

1 32 4

0 2 4

0 3 4

Kept aside balls by B

C

CA

Figure 1: A possible execution for distance-1 coloring in a synchronous network.

In order to evaluate the difference between the analytical lower bound and the simulated

stabilization time, we compute by simulation the number of times that two neighboring nodes

not originally in mutual conflict have to both choose another color and both get the same
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color. Results for a distance-1 synchronous scheduling coloring are given in Figure 2. As we

can see, the greater the color domain size, the more unlikely this case is to appear (almost 0%

of the cases when the color domain size is quadratic in the maximum degree of the nodes).

We also note that, even for a small color domain size (such as twice the maximum degree),

this case does not occur very often (less than 18% in the worst case). Thus, we can expect

that in practice, our analytical result gives a very accurate lower bound on the stabilization

time of the coloring protocol.
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Figure 2: Proportion of nodes creating a new conflict over the number of nodes choosing
another color.

Tables 1 and 2 compare analytical and simulation results for the Synchronous scheduling in

both modes, when using two different color domain sizes |∆|, for grids and random topologies.

As expected, theoretical results give tight lower bounds of the simulation outcome. Note that

the size of the grid has no influence on the results, the number of neighbors being the only

key parameter.

Stabilization time. Figure 3 presents the stabilization time for each scheduling hypothesis

and both modes when using different sizes of color domain, for a random spatial distribution

of the nodes. The most striking result compared to those of [6] is that the stabilization
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4 neighbors
all but one all

2 ∗Max Max2 2 ∗Max Max2

Theory Simulation Theory Simulation Theory Simulation Theory Simulation
1.88 1.89 1.51 1.64 2.14 2.14 1.56 1.61

8 neighbors
all but one all

2 ∗Max Max2 2 ∗Max Max2

Theory Simulation Theory Simulation Theory Simulation Theory Simulation
1.51 1.56 1.14 1.22 1.56 1.67 1.15 1.21

Table 1: Theory and simulations results for the stabilization time for synchronous distance-1
coloring with |∆| = (maxp∈V |Np|)2) and |∆| = 2× (maxp∈V |Np|) in grids.

500 nodes 600 nodes 700 nodes 800 nodes 900 nodes 1000 nodes
Mean degree 15.7 18.8 22.0 25.1 28.3 31.4

all but one
Theory 2.35 2.40 2.44 2.50 2.53 2.56
Simulation 2.78 2.91 2.87 2.94 2.99 2.97

all
Theory 2.83 2.91 2.94 2.95 3.05 3.08
Simulation 3.25 3.31 3.29 3.28 3.42 3.41

Table 2: Theory and simulations results for the stabilization time for synchronous distance-1
coloring with |∆| = 2× (maxp∈V |Np|) in random geometry topologies.

time is much lower than expected. From the results of [6], the stabilization time is at least

linear in |∆| (being upper bounded by a constant when δ also is a constant). In contrast,

our simulation results show a sub-linear (in |∆|) stabilization time, since considering |∆| =

2×maxp∈V |Np| vs. |∆| = maxp∈V |Np|2 merely divides by two the stabilization time. Also,

doubling the degree of the nodes (when the network grows from 500 nodes to 1100 nodes)

does not double the stabilization time. Especially, with the synchronous and distributed

probabilistic schedulers, the stabilization time remains upper bounded by a constant.

In all cases, whatever the coloring distance k and the color domain ∆, we can note that

the behavior of both probabilistic schedulers is similar. With the probabilistic scheduling

hypothesis, in order to stabilize, the scheduler has to choose a node in conflict. In the all

but one mode, only one node per pair of conflicting nodes actually chooses another color.
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The probabilistic schedulers thus have less chance to elect a conflicting node in the all but

one mode than in the all mode (almost half chances less). Therefore, with the all mode,

these probabilistic schedulings achieve better stabilization time (almost half time) than with

the all but one mode. In the synchronous mode, at each step, every node acts. As in the

all but one mode, in any pair of conflicting nodes, already one of those nodes has a stable

color, so the stabilization time is lower than in the all mode. Note that for sensor networks,

nodes are rarely tightly synchronized, so that the most realistic model is the distributed

probabilistic scheduler, so the all mode is to be preferred in this context. This mode also is

the easiest to implement in sensor networks as it does not require that every node knows the

identity of the nodes in its k-neighborhood.

Influence of the size of the color domain. Since the most realistic model for sensor

networks is the distributed probabilistic one with all mode, Figures 4(a) and 4(b) plot the

stabilization time with these hypothesis for the distance-1 coloring algorithm as well as the

height of the induced DAG, using different sizes of color domain. Nevertheless, results for

the DAG height are similar whatever the coloring hypothesis.

Results clearly show that a higher domain size |∆| induces a lower stabilization time and

a higher DAG. There thus is a trade-off to do between these two characteristics depending

of the application that will use the coloring. However, and although theoretical results show

that the DAG height can be up to |∆| − 1, simulation results show that the actual height is

in fact much lower, and most certainly sub-linear in |∆|.
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Figure 3: Stabilization time of the distance-1 coloring process for different modes and schedul-
ing hypothesis over a geometric node distribution with different sizes of color domain.

Influence of the coloring distance. Figure 5 plots the stabilization time for distance

k-coloring with all mode, assuming the distributed probabilistic scheduler in 4-neighbor and

8-neighbor grids, respectively. The used color domain size is (maxp∈V |Np|)2×k. In order to

evaluate the time to collect all colors from the neighborhood at distance k in a wireless sensor

network, we reason as follows. Consider the subgraph that is centered in node p and contains

all nodes up to k hops away from p. Now assume that the expected time for nodes in a

1-hop neighborhood to communicate with all their neighbors is upper bounded by a constant

C (See Appendix). In the worst case, this subgraph is a tree where each node has degree
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Figure 4: Influence of the color domain size on the stabilization time and the DAG height.

δ except for the leaves that have degree 1, overall δk−1 nodes. After one time unit, 1/C of

the nodes have transmitted correctly. After one extra time unit, 1/C of the remaining nodes

have transmitted correctly. So, after logC(δk−1) time units, all nodes up to k hops from p

have transmitted correctly. So, those nodes have correct distance-one information. Repeating

this pattern k times, after k × logC(δk−1) = O(k2), nodes are aware of the colors of their

k-neighborhood. In Figure 5, values have thus been multiplied by k2.
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Figure 5: Stabilization time with respect of time for message transmission as a function of
the coloring distance.

It turns out that when k increases, the stabilization time eventually increases as fast as

k2, independently of the topology. This means that the number of colors used is sufficiently
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large so that the coloring itself is almost performed in constant time, but the communication

time becomes the main bottleneck of the algorithm.

5 Concluding remarks

Distance-k coloring is a useful mechanism for multi-hop wireless networks. In [6], distance-3

coloring was used to construct a TDMA schedule and in [8], distance-2 coloring permitted

to expedite density-based cluster construction. Further applications could be derived, e.g.

distance-k maximal independent set construction, by having nodes that have locally minimal

color in their k-neighborhood be part of the independent set, and remaining nodes that do

not see distance-k neighbors with lower colors in the independent set join the independent

set.

In this paper, we have first extended the theoretical analysis of [1] to anonymous networks

(all but one mode). Then, by simulations, we have evaluated the impact of two considered

modes (all but one and all modes), of different scheduling policies and of the color domain

on the stabilization time and the induced DAG height. We have shown analytically and

by simulation that the stabilization time and the DAG height of such coloring protocols in

multi-hop wireless networks are low.

Further studies are needed to get a more realistic bound that takes into account the

probabilistic nature of the MAC layer used in such networks. Indeed, as k grows, the size of

the messages gets longer (in the order of δk−1, since a node needs to communicate information

about its neighborhood at distance k − 1 to each of its neighbors), so the probability that

collisions occur between neighbors grows, and the delay increases.
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A Appendix

In this section, we justify the following assumption ”a node is able, in one step, to read all

shared variables of its neighbors”. In more details, we show that the expected time before

receiving information from every neighbor is upper bounded by a constant.

In [10], the authors provide a performance analysis of IEEE 802.11 MAC protocols in

wireless LANs. By considering a graph with n stations that are all within the transmission

range of one another (i.e. the communication graph is a complete graph), the authors model

the backoff timer nodes trigger in 802.11 before transmitting, which depends on the collisions

that have occurred before. They deduce in particular the probability Psuc that there is one

successful transmission among the n stations in a considered time slot. A transmission is

considered as successful if there is exactly one station that emits in this slot. If pc is the

probability that there is at least one packet transmission in the medium among n stations

(pc is also given in [10]), we have:

Psuc = (n− 1)((1− pc)(n−2)/(n−1) + pc − 1)

We now show that the time before all neighbors of a node successfully communicate is

upper bounded by a constant, on average. Let the random variable X be the number of slots

needed before the n stations be able to transmit information to their neighbors. In the best

case, each station chooses a time slot to transmit different from every other. We thus have:

P [X < n] = 0 and P [X = n] = Pn
suc.

Then, P [X = k, k > n] is the probability that at the end of the (k − 1) first time slots,
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(n−1) stations have successfully emitted and that the nth station succeeds to transmit during

slot k. We thus have: P [X = k, k > n] =
(

k−1
k−n+1

)(
n

n−1

)
(1− Psuc)(k−n+1)Pn

suc

We can deduce the mean number of slots E [X] needed before every n stations are able

to transmit an information to their neighbors.

E [X] =
∞∑

k=0

kP [X = k]

= nP [X = n] +
∞∑

k=n+1

kP [X = k]

= Pn
suc ×

(
n +

∞∑

k=n+1

k

(
k − 1

k − n + 1

)(
n

n− 1

)
(1− Psuc)(k−n+1)

)

This can be derived into:

E [X] = Pn
suc ×

(
n + n(n + 1)(

1
Pn

suc

− (n + 1) + nPsuc)
)

= nPn
suc ×

(
1 + (n + 1)(

1
Pn

suc

− (n + 1) + nPsuc)
)

As Psuc only depends on n and that we assume that n is upper bounded by a constant,

E [X] also is a constant. Therefore, in average, a node is able to read all shared variables in

its neighborhood within constant time.
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