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Abstract

The advent of large scale multi-hop wireless networks highlights problems of fault
tolerance and scale in distributed system, motivating designs that autonomously recover
from transient faults and spontaneous reconfiguration. Self-stabilization provides an ele-
gant solution for recovering from such faults. We present complexity analysis for a family
of self-stabilizing vertex coloring algorithms in the context of multi-hop wireless networks.
Such ”coloring” processes are used in several protocols for solving many different issues
(clustering, synchronizing...). Overall, our results show that the actual stabilization time
is much smaller than the upper bound provided by previous studies. Similarly, the height
of the induced DAG is much lower than the linear dependency on the size of the color
domain (that was previously announced). Finally, it appears that symmetry breaking
tricks traditionally used to expedite stabilization are in fact harmful when used in net-
works that are not tightly synchronized.
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1 Introduction

Wireless multi-hop networks (such as ad hoc or sensor networks) consist of sets of independent
mobile wireless nodes that operate without the support of a pre-existing fixed infrastructure.
They offer unique benefits for certain environments and applications as they can be quickly
deployed. Nodes are self-contained, battery-powered computers with radio links that enable
the entities to self-organize into a network, communicate with each other and exchange data.
The advent of large-scale multi-hop wireless networks highlights problems of fault tolerance
and scale in distributed system, motivating designs that autonomously recover from transient
faults and spontaneous reconfiguration. Resuming correct behavior after a fault occurs can
be very costly [9]: the whole network may have to be shut down and globally reset in a
good initial state. While this approach is feasible for small networks, it is far from practical
in large networks such as forecast sensor networks. Self-stabilization [2, 3] is an attractive
approach for such problems. It provides a way to recover from faults without the cost and
inconvenience of a generalized human intervention: after a fault is diagnosed, one simply has
to remove, repair, or reinitialize the faulty components, and the system, by itself, will return
to a good global state within a relatively short amount of time.

Distributed self-stabilizing algorithms may thus be used for organizing and/or managing
multi-hop wireless networks. For example, the self-stabilizing distributed vertex coloring
algorithm can be used for resource allocation [7] or distributed local organization [6 [§] in
such networks. The vertex coloring problem, issued from classical graph theory, consists
in choosing different colors for any two neighboring nodes in a graph. This problem can

easily be generalized to distance k, requiring that any two nodes that are up to k hops away



must have different colors. Intuitively, the vertex coloring algorithm runs as follows: every
node repetitively collects colors chosen by its neighbors, and if it detects a conflict with its
own color, randomly chooses a fresh color (not taken by its distance-k neighborhood). Such
algorithms in multi-hop wireless networks do not try to minimize the number of used colors,
but when the graph degree is bounded by a small constant (as it is the case in sensor networks),
the expected local stabilization time (i.e. the stabilization time in any neighborhood) of the
algorithm is also constant. This makes the algorithm independent on n, the number of the
nodes in the network, and thus scalable to large networks. Moreover, the directed acyclic
graph that is induced by the colors is of constant height, so that self-stabilizing algorithms
that are composed with the coloring can stabilize also in constant time. This property was
used, in the context of multi-hop wireless networks, in [6] to compute a minimal distance-
2 coloring, and in [§] to self-organize the network into clusters, both locally stabilizing in
expected constant time. While this distance-k coloring algorithm has provenly fast local
stabilization time, the influence of system parameters remains unknown.

In this paper, we study the stabilization time of distance-k coloring algorithms in various
settings that are relevant to wireless multi-hop networks. We first provide a theoretical study
in synchronous and anonymous networks: we extend the analysis carried out in [I] to the
context of anonymous networks. Using simulations, we consider various topologies (grids and
random graphs), different kinds of scheduling hypothesis (synchronous and probabilistically
asynchronous), and variants of the algorithm that uses network wide identifiers so that pri-
orities can be derived for neighboring nodes. We study the impact of these parameters on

the stabilization time of distance-k coloring algorithms.



The remaining of the paper is organized as follows: Section [2l formally presents the system
model and the coloring algorithm. In Section [3, we analytically study the stabilizing time
considering a synchronous setting, while in Section |4 we provide extensive simulations and

comments on various parameters. Section |5 gives concluding remarks.

2 Preliminaries

System model. The system is composed of a set V of nodes in a multi-hop wireless net-
work and each node has a unique identifier. Communication between nodes uses a low-power
radio. Each node p € V can communicate with a subset N, C V of nodes determined
by the range of the radio signal R; N, is called the neighborhood of node p. p does not
belong to N, (p ¢ Np). In the wireless model, transmission is omni-directional: each mes-
sage sent by p is effectively broadcast to all nodes in IV,. We also assume that commu-
nication capability is bidirectional: ¢ € N, iff p € N,. Define NI} = N, and for ¢ > 1,
N) = N7V U {r|[(3¢: qe N;7': re Ny} (let’s call N/ the distance-i neighborhood of
p). We assume that the distribution of nodes is sparse: there is some known constant ¢ such
that for any node p, |[N,| < 6. Note that sensor networks can control density by adjusting
their radius R and/or powering off nodes in areas that are too dense, which is one aim of
topology control algorithms.

Notation. We describe algorithms using the notation of guarded assignment statements:
G — S represents a guarded assignment, where G is a predicate of the local variables of
a node, and S is an assignment to local variables of the node. If predicate G (called the

guard) holds, then assignment S is executed, otherwise S is skipped. We assume that all



such guarded assignments execute atomically when a message is received. At any system
state, where a given guard G holds, we say that G is enabled at that state.

Execution and scheduling. The life of computing at every node consists of the infinite
repetition of evaluating its guarded actions. The scheduler is responsible for choosing enabled
processors for executing their guarded rules. In this paper, we consider three possible sched-
ulers: the synchronous scheduler, the probabilistic central scheduler, and the probabilistic
distributed scheduler. With the synchronous scheduler, nodes operate in lock steps, and at
every step, every node is activated by the scheduler. At every step, the probabilistic central
scheduler randomly activates exactly one node. With the probabilistic distributed scheduler,
at each step, each node is activated with probability 1/n. The two last schedulers model the
fact that although nodes execute their actions at the same speed on average, there is a chance
that their clocks or speeds are not uniform, so that the system is slightly asynchronous. The
distributed scheduler is more realistic than the central one, but the latter is often used for
proving self-stabilizing algorithms.

Shared Variable Propagation. Nodes communicate with their neighbors using shared
variables. To keep the analysis simple, we assume that there exists an underlying shared
variable propagation scheme that allows nodes to collect shared variables in their neighbor-
hood at distance k, for a fixed k. A possible implementation can be found in [6]. For our
purpose, we simply assume that a node is able, in one ”macro” step, to read all shared vari-
ables in its neighborhood at distance k. This assumption is justified in Appendix.
Coloring Algorithm and DAG construction. The coloring algorithm that we consider

uses a single shared variable for each node. Let C, be a shared variable that belongs to the



domain A; variable C, is the color of node p. The S¢, predicate refers to the set of colors that
have been used in the neighborhood at distance k of p: S¢, = {Cq | ¢ € NF}. Let random(S)
choose with uniform probability some element of set S. Node p uses the following function

to compute Cp:

C if C, & Sc
newC(Cp) = : : !

random(A \ S¢,) otherwise

The algorithm for vertex coloring is the following: N1:true — C, := newC(C,)

As colors are ordered and unique in a node neighborhood, such a coloring algorithm can lead
to the construction of a Directed Acyclic Graph (DAG) when (virtually) drawing a directed
edge from each node to its only neighbor with the lowest color (if such a node exists).
Local Stabilization. With respect to any given node v, a solution for the coloring problem
at distance k is locally stabilizing for v with convergence time t if, for any initial system
state, after at most t time units, every subsequent system state satisfies the property that
any node w at distance less than k from v is such that C,, # C,. For randomized algorithms,
this definition is modified to specify expected convergence times (all stabilizing randomized
algorithms we consider are probabilistically convergent in the Las Vegas sense). In [6], the
authors show that Algorithm N1 self-stabilizes with probability 1 and has constant expected
local stabilization time.

Uniform vs. Non Uniform Networks. In theory, the coloring algorithm N1 could
work in uniform and anonymous networks (where nodes do not have unique identifiers and
execute the same code). Collecting the neighborhood at distance k generally requires identi-
fiers. Then, it is possible to tweak the algorithm to use these identifiers to break symmetry

and expedite convergence: when at least two neighbors have a conflicting color, the node with



the lowest identifier never changes its color. Thus, we have the guarantee that at any step,
at least one of the conflicting nodes gets a stable color. In the remaining of the paper, we
distinguish two operating modes for the algorithm: the all mode refers to the mode where all
conflicting nodes draw a new color (anonymous networks), while the all but one mode refers
to the version where the previous algorithm applies (uniform networks where one conflicting

node does not change its color).

3 Analysis

In this section, we theoretically compute the expected stabilization time of the coloring
protocol N1, i.e. the expected number of steps before a node has a color that is not already
used in its distance-k neighborhood. From [6], we already know that when the degree is upper
bounded by a constant(d), the expected local stabilization time is also upper bounded by a
constant. However, the actual constant is not given in [6], and the one that can be derived
from the algorithm is high (about 4 for a distance-3 coloring).

The other metric of interest for our purpose is the height of the DAG that is induced by
the colors. Indeed, when the coloring algorithm is used as a building block for subsequent
algorithms, the stabilization time of those algorithms is generally in the order of the color
DAG height, a lower DAG height inducing a smaller stabilization time. In [6], the authors
show that the height of the DAG is bounded by |A| 4 1, where A denotes the color domain.

For the theoretical study, we consider only the synchronous scheduler, and we model the
coloring protocol by a successive set of random draws. The main goal is to assign a color to

each node. A way to model this problem is to consider that the color domain is represented



by a set of M urns in which one must randomly distribute L balls which are going to represent
the nodes. In each neighborhood, the goal is then to have only one ball (one node) associated
to a given urn (one color).

This model has already been used in [1] (for the NAP protocol), in which the authors
analyze the stabilization time of a self-addressing network where two links must receive a
unique prefix in the network. In this model, the urns symbolize the prefix and the balls the
links. Fach link chooses a random prefix in a prefix domain. If two links have chosen the
same prefix, the one with the lowest ID keeps it while the other one(s) choose(s) a new prefix
among the ones not already assigned. The analysis and the calculus carried out in [1] thus
roughly correspond to our all but one mode. In this section, we extend the analysis in the
all mode.

Note that this theoretical study only matches for complete networks, i.e. where each node
can communicate with all the other nodes. In multi-hop networks, it is possible that two
neighboring nodes (A and B) with no conflicting colors simultaneously draw a new identical
color, because they each have another conflicting neighbor (not visible to A or to B). But, it is
important to note that this theoretical study gives a lower bound on the actual stabilization
time (this is further refined in Section 4).

The algorithm can be modeled in terms of urns/balls as follows.

Algorithm 1 COLORING_PROCESS(L, M)

> Input: M wrns and L balls
> Pre-condition: M > L
if (L #0) then
Randomly throw the L balls in the M urns;
if (case = ’all’) then
Keep aside all urns that contain exactly one ball with their ball inside ;



end
if (case = ’all but one’) then
Keep aside all urns containing at least one ball and one of their balls;
end
Let note ¢ < M the number of ”correct” urns that we keep aside;
Call COLOR_PROCESS(L — ¢, M —¢);
end

By repeating the process, eventually every ball will be stored in a correct urn and every
urn will contain at most one ball. Let N denote the number of iterations needed to reach
such a configuration, i.e. the number of calls to the recursive procedure of coloring. We are
interested in computing the distribution and the expectation of the random variable N. We
consider the homogeneous discrete-time Markov chain X = {X,,, n € N}, on the finite state
space Z = {0, 1, ..., L} where the event {X,, = i} represents the fact that, after n transitions
(or calls to the coloring procedure), the procedure COLOR_PROCESS(M —i, L —1) is currently
executed. In other words, {X, = i} represents the fact that, after n transitions, exactly 4
urns and balls have been kept aside, i.e. exactly ¢ urns contain exactly one ball. The Markov
chain starts in state 0 with probability 1, which means that at the beginning, none of the
urns and balls have been kept aside. The random variable N can be defined more formally,
for L >1,as N =3 ZiL:_Ol L{x,=- IV is the number of transient states of X visited
before absorption.

We denote by P(L, M) = (pi;(L,M))qjjcz> the transition probability matrix of the
Markov chain X, where p; j(L, M) represents the probability to have exactly j urns and
balls kept aside at the time n + 1 given that ¢ urns and balls have been kept aside at time

n. p;j(L, M) is thus the probability to obtain exactly j — i urns each with one ball when



throwing L — ¢ balls into M — ¢ urns. For all ¢ < j, we thus have

pij(L, M) = pij = poj—i(L — i, M —i). (1)

The Markov chain X is clearly acyclic and the state L is the absorbing state of X.
This means that for every ¢ € Z — {L} and j € Z, we have p;;(L,M) = 0 for i > j and
pr..(L, M) = 1.

The transition probability matrix P(L, M) has thus the following form:

Po,o Poa1 DPo2 - s Pbo,L
0 pi1 pi2 P13 e P1,L
P(L,M) =
0 0O -+ 0 pr1r-1 PL-1L
0O 0 - ... 0 1

The computation of the matrix P(L, M) depends on the drawing hypothesis (all but
one or all mode). But, once the transition probability matrix is computed, the way of
evaluating the stabilization time of the coloring algorithm is the same whatever the drawing
hypothesis. The all but one mode is a little bit simpler because it implies p; ;(L, M) = 0
for every 0 <1 < L — 1, which means that the stabilization time N of the coloring algorithm
is bounded: N < L. We give in the following subsection the transition probability matrix of
each mode before giving the distribution and the expectation of the stabilization time N of

the coloring algorithm.
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Computation of the transition matrix P(L, M). We now explicit the transition prob-
ability p; j(L, M) of the Markov chain X for all i < j for both modes.

Matrix for the all mode: In the all mode, all nodes in conflict choose a new color among
the free ones. At each step, we keep aside the urns and their balls if they contain exactly one
ball. Unlike the all but one mode, we may keep none urn and ball at a step and thus the
diagonal values of P(L, M) are not null.

From relation (I)), we only have to compute the transition probability po j—;(L —i, M — i)
for i < j. The computation of the transition probabilities p; ;(L, M) yields to the computation
of the transition probabilities pg ;(L, M).

By definition of the transition matrix as stated above, the transition probability po ;(L, M)
is the probability to obtain exactly j urns containing only one ball when throwing randomly
L balls into M urns. The case j = L yields to the generalized birthday problem and thus we

have:

po,L(La M) = WJWL'),W (2)

For j < L, we proceed as follows. We throw L balls into M urns. We denote by Ko(L, M)
the number of empty urns and by K;(L, M) the number of urns with exactly one ball in-
side. Let ar ar(k,j) denote the joint distribution of both random variables Ko(L, M) and

Ki(L,M), that is ar am(k, j) = P[Ko(L, M) = k, K1(L, M) = j]. The transition probability

11



po,;(L, M) can thus be expressed as
M
poj(L, M) =P[K (L, M) =j] =Y aru(k,j).
k=0

In order to compute all the probabilities ar, ys(k, j) we can proceed by recursion on integer
L by conditioning on the result of the throw of the last ball. More precisely, in order to obtain

k empty urns and j urns with only one ball inside when throwing L balls in M urns we need:

1. Either obtaining k£ 4+ 1 empty urns and j — 1 urns with exactly one ball inside at the
end of the L — 1 first throws of L — 1 balls in M urns and throwing the last ball in one

of the k + 1 empty urns.

2. Either obtaining £ empty urns and j + 1 urns with exactly one ball inside at the end
of the L — 1 first throws of L — 1 balls in M urns and throwing the last ball in one of

the j7 + 1 urns containing exactly one ball.

3. Or obtaining k empty urns and j urns with exactly one ball inside at the end of the
L — 1 first throws of L — 1 balls in M urns and throwing the last ball in one of the

M — (j + k) urns that contain at least 2 balls.

Thus, from that decomposition and for L > 2, we have:

k+1

' i+ 1 ) M- (j+k
Vi aLl,M(kﬁ—i—l,j—l)l{jZl}‘f‘]]waLl,M(k7]+1)+(j)

ar,m(k,j) = ar—1,m(k, )

where 170, is the indicator function equal to 1 if condition c is true and 0 otherwise. For

12



L =1 we trivially have as initial value for the recursion:

arm(k,j) = Lg—pr—1, j=1}- (3)

It is also easy to check that ar, ar(k,j) = 0 if either j > L either k = M or j+ k > M. Note
that for j = L, we have ap, p(k,L) = 0 for k # M — L and ap py(M — L,L) = po (L, M)
which is given by relation (2) and that clearly satisfies the recurrence relations.
Matrix for the all but one mode: This case is the one given in [I]. We only give here the
results. In the all but one mode, at each step, we keep aside at least one urn together with
one of the balls contained inside. This means that the transition probability p; (L, M) = 0
for every 0 < ¢ < L — 1. The Markov chain X is thus strictly acyclic and the stabilization
time N of the coloring algorithm is bounded by L.

Based on a well-known result about the number of ways of throwing r different balls in n
different urns such that exactly m urns are non-empty [4], the transition probability matrix

is given according to (1)), for ¢ < j, by

wan = (1) 50 (552"

Distribution and expectation of N. Now, given the transition probability matrix of the
Markov chain X, we are able to determine the distribution (P [N = n] forn =0,...,00) and
the expected value E [N] of the random variable N for both modes. The mean value E [N] is
also actually the mean number of steps needed before stabilization of our coloring algorithm

and so its stabilization time.
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These calculus are detailed in [1]. We directly use them here. They are easily derived from
the classical results on Markov chains. Let @ denote the sub-matrix obtained from P (L, M)
by removing the last line and the last column which correspond to the absorbing state L.
We denote by « the row vector containing the initial probability distribution of the transient
states of X, i.e. o= (P[Xo=1]);_o_ ;- As already seen, the Markov chain starts in state

0 with probability 1 and, thus we have o = (1,0,...,0). With these notations, we have

P[N =n] = aQ" (I - Q)1, forn > 1,

P[N >n] = Z aQ* Y1 - Q)1 = aQ"1, forn >0,
k=n+1

and

EN]=> PIN>nl=a(l-Q) "1,
n=0

where [ is the identity matrix and 1 is the column vector with all entries equal to 1, both of
dimension L. If V' = (V;)o<i<r—1 is the column vector defined by V; = E [N| Xy = i], we have
E[N] = Vy. The vector V of conditional expectations is given by V = (I — Q)_l 1, which
means that it is solution to the linear system (I — Q)V = 1, which can also be written as

V =14 QV or equivalently, since the matrix P(L, M) is acyclic, as

L—1
L+ > piVi| fori=L-2,...,0,
J=i+1

1
1 —pi

i

with Vi1 -1 =1/(1 = pr—1,0-1)-

We are now able to compute E [N] = Vj by recurrence from V;. We use these theoretical
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results in the next sections to compare with the simulation outcomes.

4 Simulations

We performed simulations to evaluate the stabilization time of the coloring algorithms over
different assumptions, to analyze the directed acyclic graph deriving from it in each case, and
to compare those values to the theoretical ones in order to validate our analytical model. As
mentioned in the previous sections, we are mainly interested in the stabilization time under

several scheduling and coloring hypothesis but also on the height of the derived DAG.

Simulation model. We use a simulator we developed and that assumes an ideal MAC
layer. In each case, each statistic is the average over 1000 simulations. All coloring algorithms
studied below are analyzed over a same node distribution.

We say that a node executes an action (or acts, for short) when it checks its neighbors’
color and if needed, chooses another color among the available ones. For a distance-k coloring,
a color ¢ € A is said available for a node u if Vv € N¥,C, # ¢. As mentioned in Section 2,
we studied the coloring algorithm for different kinds of scheduling hypothesis: Synchronous
(every node acts at every step), Probabilistic Central (exactly one random node acts at every
step) and Probabilistic Distributed (at each step, each node acts with probability %) Each
scheduling hypothesis is studied for both modes of coloring: all but one mode (for each
pair of conflicting nodes, every node but one chooses another color) and all mode (every
conflicting node chooses another color).

We have run Algorithm N1 for distance-1 and distance-2 colorings with these scheduling

15



hypothesis and modes over a random geometric topology and a grid with a varying number
of neighbors per node and different sizes of color domain A . The initial stabilizing algorithm
has been designed using |A| = (maxpev\NpDQXk, k being the coloring distance, but as we
are interested in the impact of this domain size over the stabilization time and the DAG
height, we have also run Algorithm N1 for |A| =2 x (maxpev\NgD. Moreover, as in sensor
networks, nodes do not have a general view of the network and thus have no way a priori to
know the maximum degree in the graph, we have also run simulations where each node has
its own color domain size such that Vp € V, |A,| = (|Np|)2Xk. In these settings, we collect the
stabilization time of the coloring algorithm as well as the height of the induced DAG. In the
synchronous mode, every node acts with probability 1 (so the expected time before acting
is 1 step) whereas in both probabilistic modes, every node acts within expected n steps.
As schedulers are meant to model scheduling properties rather than implemented scheduling
mechanisms, in a “real” system a particular node would act within a constant expected time.
So, in order to be able to compare the three schedulers and to be fair when considering
the stabilization time of different schedulings, the number of steps before stabilization in
probabilistic modes is divided by n.

In the geometric approach, nodes are randomly deployed using a Poisson Processina 1x1
square with various levels of intensity A (from 500 to 1000). In such processes, A represents
the mean number of nodes per surface unit. The communication range R is set to 0.1 in all
tests. We thus have a mean number of neighbors per node ranging from 15 to 32. In the

grid, we consider topologies where each central node has 4 and 8 neighbors.
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Theory vs. Simulation. As mentioned in Section 3], we expect that our theoretical results
give an accurate lower bound on the stabilization time of the coloring algorithm. Indeed,
when considering a complete graph, once a node u has chosen an available color, every other
node in the network knows that color (as a neighboring node of u) and thus will not choose
it anymore. However, in a non-complete graph, a situation such as illustrated in Figure [1
(for distance-1 coloring) may occur and thus, the average stabilization time would be higher
than the one in a complete graph, therefore our theoretical analysis only leads to a lower
bound. For example, let’s run the algorithm over the graph plotted on Figure [1, under the
synchronous scheduling and the all mode. Every node has to choose a color from 0 to 4 until
getting a locally unique color. Node B has two neighbors, A and C. The example shows the
colors drawn at each step by each node. As there still exist conflicts at the end of the three
steps, the algorithm would not stop yet. But, from the theoretical analysis, if we consider
that A, B and C are in a complete graph, then at step 2, C' has its color (3) and at step 3,
A and B have their color (1 and 2). So at the end of the three steps, with the theoretical

analysis, every urn has been kept aside and the system should have stabilized.

System execution Available colors to B Kept aside balls by B

-@-0-@-® OO0
-@O-0-0-0 000 ©

Figure 1: A possible execution for distance-1 coloring in a synchronous network.

In order to evaluate the difference between the analytical lower bound and the simulated
stabilization time, we compute by simulation the number of times that two neighboring nodes
not originally in mutual conflict have to both choose another color and both get the same

17



color. Results for a distance-1 synchronous scheduling coloring are given in Figure 2. As we
can see, the greater the color domain size, the more unlikely this case is to appear (almost 0%
of the cases when the color domain size is quadratic in the maximum degree of the nodes).
We also note that, even for a small color domain size (such as twice the maximum degree),
this case does not occur very often (less than 18% in the worst case). Thus, we can expect
that in practice, our analytical result gives a very accurate lower bound on the stabilization

time of the coloring protocol.

*All but One’ Mode, Max = max degree 2
Al

g2
g

All but one mode - Max = max degree X2
All mode - Max = max degree X2

All but one mode - Max = node degree square
All mode - Max = node degree square

All but one mode- Max = max degree square
All one mode - Max = max degree square

O WO *Xx +

g
s
I

0
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Process Intensity (Number of nodes)

(a) . (b) Legend

Figure 2: Proportion of nodes creating a new conflict over the number of nodes choosing
another color.

Tables [ijand 2jcompare analytical and simulation results for the Synchronous scheduling in
both modes, when using two different color domain sizes |A|[, for grids and random topologies.
As expected, theoretical results give tight lower bounds of the simulation outcome. Note that
the size of the grid has no influence on the results, the number of neighbors being the only

key parameter.

Stabilization time. Figure 3-presents the stabilization time for each scheduling hypothesis
and both modes when using different sizes of color domain, for a random spatial distribution
of the nodes. The most striking result compared to those of [6] is that the stabilization
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4 neighbors
all but one all
2x Max Maax? 2x Max Maax?
Theory | Simulation | Theory | Simulation | Theory | Simulation | Theory | Simulation
1.88 1.89 1.51 1.64 2.14 2.14 1.56 1.61
8 neighbors
all but one all
2+ Max Maz? 2% Max Maz?
Theory | Simulation | Theory | Simulation | Theory | Simulation | Theory | Simulation
1.51 1.56 1.14 1.22 1.56 1.67 1.15 1.21

Table 1: Theory and simulations results for the stabilization time for synchronous distance-1
coloring with |A| = (maa:peV]Np])Q) and |A| = 2 x (mazpey|Np|) in grids.

500 nodes | 600 nodes | 700 nodes | 800 nodes | 900 nodes | 1000 nodes
Mean degree 15.7 18.8 22.0 25.1 28.3 31.4
all but one
Theory 2.35 2.40 2.44 2.50 2.53 2.56
Simulation 2.78 2.91 2.87 2.94 2.99 2.97
all
Theory 2.83 2.91 2.94 2.95 3.05 3.08
Simulation 3.25 3.31 3.29 3.28 3.42 3.41

Table 2: Theory and simulations results for the stabilization time for synchronous distance-1
coloring with |A| = 2 x (mazpev|Np|) in random geometry topologies.

time is much lower than expected. From the results of [6], the stabilization time is at least
linear in |A| (being upper bounded by a constant when § also is a constant). In contrast,
our simulation results show a sub-linear (in |A|) stabilization time, since considering |A| =
2 x mazpey|Np| vs. |Al = mazpey|Npy|? merely divides by two the stabilization time. Also,
doubling the degree of the nodes (when the network grows from 500 nodes to 1100 nodes)
does not double the stabilization time. Especially, with the synchronous and distributed
probabilistic schedulers, the stabilization time remains upper bounded by a constant.

In all cases, whatever the coloring distance k and the color domain A, we can note that
the behavior of both probabilistic schedulers is similar. With the probabilistic scheduling
hypothesis, in order to stabilize, the scheduler has to choose a node in conflict. In the all

but one mode, only one node per pair of conflicting nodes actually chooses another color.
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The probabilistic schedulers thus have less chance to elect a conflicting node in the all but
one mode than in the all mode (almost half chances less). Therefore, with the all mode,
these probabilistic schedulings achieve better stabilization time (almost half time) than with
the all but one mode. In the synchronous mode, at each step, every node acts. As in the
all but one mode, in any pair of conflicting nodes, already one of those nodes has a stable
color, so the stabilization time is lower than in the all mode. Note that for sensor networks,
nodes are rarely tightly synchronized, so that the most realistic model is the distributed
probabilistic scheduler, so the all mode is to be preferred in this context. This mode also is
the easiest to implement in sensor networks as it does not require that every node knows the

identity of the nodes in its k-neighborhood.

Influence of the size of the color domain. Since the most realistic model for sensor
networks is the distributed probabilistic one with all mode, Figures 4(a) and 4(b)| plot the
stabilization time with these hypothesis for the distance-1 coloring algorithm as well as the
height of the induced DAG, using different sizes of color domain. Nevertheless, results for
the DAG height are similar whatever the coloring hypothesis.

Results clearly show that a higher domain size |A| induces a lower stabilization time and
a higher DAG. There thus is a trade-off to do between these two characteristics depending
of the application that will use the coloring. However, and although theoretical results show
that the DAG height can be up to |A| — 1, simulation results show that the actual height is

in fact much lower, and most certainly sub-linear in |A].

20



6 35

T T T T T T T T
Synchronous - All but one mode —+—
Synchronous - All mode —x—
Distributed Probabilistic - All but one mode —*—
55 - Distributed Probabilistic - All Mode —&—
Central Probabilistic - All but one Mode —=—
3+ Central Probabilistic -All Mode —e—

2 L L L L 1 L L L L L
500 600 700 800 1000 1100 500 600 700 800 900 1000 1100

(a) |A] =2 X mazpev | Ny (b) |A| = mazpev|Ny|?
35 M
: M + Synchronous - All but one mode
a5l x  Synchronous - All mode
*  Distributed probabilistic - All but one mode
2 0O Distributed probabilistic - All mode
s % B Central probabilistic - All but one mode
o  Central probabilistic - All mode
00 6(‘)0 7(;0 8(‘]0 9(;0 10‘00 1100 (d) Legend
(©) [A] = [N|?

Figure 3: Stabilization time of the distance-1 coloring process for different modes and schedul-
ing hypothesis over a geometric node distribution with different sizes of color domain.

Influence of the coloring distance. Figure 5 plots the stabilization time for distance
k-coloring with all mode, assuming the distributed probabilistic scheduler in 4-neighbor and
8-neighbor grids, respectively. The used color domain size is (mazpey|N,y|)***. In order to
evaluate the time to collect all colors from the neighborhood at distance k in a wireless sensor
network, we reason as follows. Consider the subgraph that is centered in node p and contains
all nodes up to k£ hops away from p. Now assume that the expected time for nodes in a
1-hop neighborhood to communicate with all their neighbors is upper bounded by a constant

C' (See Appendix). In the worst case, this subgraph is a tree where each node has degree
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Figure 4: Influence of the color domain size on the stabilization time and the DAG height.

§ except for the leaves that have degree 1, overall 6*~! nodes. After one time unit, 1/C of

the nodes have transmitted correctly. After one extra time unit, 1/C of the remaining nodes

have transmitted correctly. So, after log-(6%~!) time units, all nodes up to k hops from p

have transmitted correctly.

So, those nodes have correct distance-one information. Repeating

this pattern k times, after k x logn(6¥71) = O(k?), nodes are aware of the colors of their

k-neighborhood. In Figure

5, values have thus been multiplied by k2.

4-nelghbor grid ——

T=kk —%—

Stabilization time T

Coloring distance k

Figure 5: Stabilization time with respect of time for message transmission as a function of

the coloring distance.

It turns out that when k increases, the stabilization time eventually increases as fast as

k?, independently of the topology. This means that the number of colors used is sufficiently
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large so that the coloring itself is almost performed in constant time, but the communication

time becomes the main bottleneck of the algorithm.

5 Concluding remarks

Distance-k coloring is a useful mechanism for multi-hop wireless networks. In [6], distance-3
coloring was used to construct a TDMA schedule and in [§8], distance-2 coloring permitted
to expedite density-based cluster construction. Further applications could be derived, e.g.
distance-k maximal independent set construction, by having nodes that have locally minimal
color in their k-neighborhood be part of the independent set, and remaining nodes that do
not see distance-k neighbors with lower colors in the independent set join the independent
set.

In this paper, we have first extended the theoretical analysis of [1] to anonymous networks
(all but one mode). Then, by simulations, we have evaluated the impact of two considered
modes (all but one and all modes), of different scheduling policies and of the color domain
on the stabilization time and the induced DAG height. We have shown analytically and
by simulation that the stabilization time and the DAG height of such coloring protocols in
multi-hop wireless networks are low.

Further studies are needed to get a more realistic bound that takes into account the
probabilistic nature of the MAC layer used in such networks. Indeed, as k grows, the size of
the messages gets longer (in the order of 6*~!, since a node needs to communicate information
about its neighborhood at distance k& — 1 to each of its neighbors), so the probability that

collisions occur between neighbors grows, and the delay increases.
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A Appendix

In this section, we justify the following assumption ”a node is able, in one step, to read all
shared variables of its neighbors”. In more details, we show that the expected time before
receiving information from every neighbor is upper bounded by a constant.

In [10], the authors provide a performance analysis of IEEE 802.11 MAC protocols in
wireless LANs. By considering a graph with n stations that are all within the transmission
range of one another (i.e. the communication graph is a complete graph), the authors model
the backoff timer nodes trigger in 802.11 before transmitting, which depends on the collisions
that have occurred before. They deduce in particular the probability Ps,. that there is one
successful transmission among the n stations in a considered time slot. A transmission is
considered as successful if there is exactly one station that emits in this slot. If p. is the
probability that there is at least one packet transmission in the medium among n stations

(pe is also given in [10]), we have:

Psuc = (n - 1)((1 - pc)(an)/(nfl) +pc - 1)

We now show that the time before all neighbors of a node successfully communicate is
upper bounded by a constant, on average. Let the random variable X be the number of slots
needed before the n stations be able to transmit information to their neighbors. In the best
case, each station chooses a time slot to transmit different from every other. We thus have:
P[X <n]=0and P[X =n] = PZ,.

Then, P[X = k,k > n| is the probability that at the end of the (k — 1) first time slots,
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(n—1) stations have successfully emitted and that the n'” station succeeds to transmit during

slot k. We thus have: P[X =k,k >n] = (,*.1,)(,")) (1 = Peue) B0 PR

We can deduce the mean number of slots E [X] needed before every n stations are able

to transmit an information to their neighbors.

E[X] = ) KkP[X =k
k=0

= nP[X =n]+ > kP[X =k
k=n+1

= Pl x|n+ ik ol ") (1 = Pyt

suc k —-_n + 1 n — 1 suc
k=n+1
This can be derived into:
1
E[X] = PI.Xx <n +n(n+ 1)(P” —(n+1)+ nPsu0)>

1
= PR x (L4 (04 Dl = (0 1) 4 P

suc

As Py, only depends on n and that we assume that n is upper bounded by a constant,

E [X] also is a constant. Therefore, in average, a node is able to read all shared variables in

its neighborhood within constant time.
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