Cut-through Routing in Self-stabilization*

Joffroy Beauquier? Ajoy K. Datta* Sébastien Tixeuil*

I LRI - CNRS UMR 8623, Université Paris Sud, France
* School of Computer Science, University of Nevada Las Vegas

Abstract

In this paper, we propose three self-stabilizing algorithms, all in the cut-through model,
where the messages must be forwarded to a neighbor before they are completely re-
ceived. A self-stabilizing algorithm [4, 6], regardless of the initial system configuration,
converges in finite time to a set of legitimate configurations.

First, we provide a self-stabilizing communication scheme that is based on the IBM
token ring protocol. This protocol is obtained as an output of a transformer that takes
as input a self-stabilizing token passing protocol. Our solution is cut-through compliant
and exploits the cut-through routing scheme to preserve a low round trip delay.

Then, we present a self-stabilizing census algorithm for unidirectional rings in the
cut-through routing scheme. The distributed census problem can be informally described
as follows: The processors cooperate to reach a global configuration where every pro-
cessor can determine, within finite time, which processors are and which processors are
not present in the network. This protocol takes advantage of cut-through routing by
distributing the global census information among all processors in the network. It also
preserves the low round trip delay.

Keywords: census, cut-through routing, self-stabilization, token ring, token passing.

1 Introduction

Self-stabilization. In 1974, Dijkstra pioneered the concept of self-stabilization in a dis-
tributed network [4]. A distributed system is self-stabilizing if it returns to a legitimate state
in a finite number of steps regardless of the initial state, and the system remains in a le-
gitimate state until another fault occurs. Thus, a self-stabilizing algorithm tolerates tran-
sient processor faults. These transient faults include variable corruption, program counter
corruption (which temporarily cause a processor to execute its code from any point), and
communication channel corruption.

In the context of computer networks, resuming correct behavior after a fault occurs can
be very costly [11]: the whole network may have to be shut down and globally reset in a

*Contact author: Sébastien Tixeuil, LRI - CNRS UMR 8623, Batiment 490, Université Paris Sud, FR91405
Orsay cedex, France. Email: tixeuil@Iri.fr. Fax: 33 1 69 15 65 86.

good initial state. While this approach is feasible for small networks, it is far from practical
in large networks such as the Internet. Self-stabilization provides a way to recover from
faults without the cost and inconvenience of a generalized human intervention: after a fault
is diagnosed, one simply has to remove, repair, or reinitialize the faulty components, and
the system, by itself, will return to a good global state within a relatively short amount of
time.

Routing. In the store and forward routing technique, no allocation of bandwidth is reserved
in advance. Only one message (or packet) is transmitted at one time on any communication
link. This message uses the full capacity of the link. The links are shared among different
sessions only on a demand basis, not on a static allocation basis. When a message arrives
at an intermediate processor on its path to the destination processor, the message must be
fully received and stored at the intermediate processor. The message then waits in a delay
queue if the required output communication link is busy, and finally, when its turn comes,
the message in its entirety is forwarded to another link. There are several drawbacks of the
store-and-forward technique. Each processor in the path from the source to the destination
processor needs a local memory of at least the size of the message to store the message.
The copying to and from the memory introduces an overhead. The queuing delays in the
processors can be significant.

The cut-through routing is used in many ring networks (including Token Ring and FDDI).
In this routing scheme, a processor can start forwarding any portion of a message to the
next processor on the message’s path before receiving the message in its entirety. If this
message is the only traffic on the path, the total delay incurred by the message is bounded
by the transmission time (calculated on the slowest link on the path) plus the propagation
delay. So, the total message delay is proportional to the length of the message and to the
number of links on the path. Some pieces of the same message may simultaneously be
traveling on different links and some other pieces are stored at different processors. As
the first bit of the message is transmitted on the links on the message’s routing path, the
corresponding links are reserved, and the reservation of a link is released when the last
bit of the message is transmitted on the link. This approach removes the need of having a
local memory of any processor greater than the one required to store a bounded number
of bits, and also reduces the message delay to a small (bounded by the buffer size of the
processor) value. As with the current processors, the time needed for sending/receiving
bits to/from a communication medium is far greater than the time needed to perform the
basic computational steps (such as integer calculations, tests, read /write from/to registers,
etc.), we can assume that a given process can perform a limited number of steps between
the receipt of two pieces of a message.

Related Work. In the context of the communication networks, the paper [9] showed that
crash and restart failures may lead the distributed systems into an arbitrary configura-
tions, highlighting the need for algorithms that are resilient to those failures (such as self-
stabilizing algorithms). Dijkstra [4] used shared registers to model the communication
among neighboring processors. In the recent years, some more realistic models (like message-

passing) have been addressed (see [6] for further references).

Varghese [15] introduced a new scheme, called counter flushing, and used this tech-
nique to model Dijkstra’s k-state token passing algorithm [4]. In [1], Costello and Vargh-
ese used [15] to construct a FDDI token ring communication protocol. This token passing
technique leads to short stabilization time (compared to the non-stabilizing version of the
protocol) but introduces a penalty in terms of time efficiency when the protocol is stabilized.

The topology update problem in the self-stabilizing setting has been well-studied in the
literature [2, 5,7, 10, 12]. But, all these protocols are written for the store-and-forward model.
A self-stabilizing census algorithm was presented in [2, 3], but the space required at each
processor in this algorithm is quite high—proportional to the size of the network.

Our Contributions. In this paper, we investigate the possibility of cut-through routing in
the context of self-stabilization. This work shows the advantages of cut-through routing in
several ways: the reduction of the round trip delay between the receipt of two messages
by the same processor, and distribution of collective global information across the whole
network.

We design a transformer that takes as input a self-stabilizing token passing algorithm
and provides as output a self-stabilizing token ring communication protocol. This trans-
former preserves the cut-through routing property of the original algorithm, and does not
add any extra delay at any node. Then, we provide a self-stabilizing token passing scheme.
The stabilization time of our scheme may be worse than that of [15], but once stabilized,
the overhead due to self-stabilization is reduced by a factor up to 32. So, our approach is
suitable in networks where faults exist but are rare.

Finally, we take a high memory consuming task (the census) and provide a self-stabilizing
solution using the Cut-through routing scheme. Our algorithm, in addition to being failure
resilient, optimizes the transmission of messages (a fraction of the time required in the store-
and-forward model is needed). Moreover, the memory used at each processor is O(log,N)
bits of memory while the census task typically requires O(Nlog, V) bits.

Outline of the Paper. The rest of the paper is organized as follows. Section 2 includes
some background concepts, including the cut-through routing scheme. The cut-through
transformer and our token passing scheme are presented in Section 3. The census algorithm
and its correctness proof are given in Section 4. In Section 4.2, we discuss the complexity
issues before concluding in Section 5.

2 Preliminaries

System. A processor is a sequential deterministic machine that uses a local memory, a local
algorithm, and input/output capabilities. Intuitively, a processor executes its local algo-
rithm. This algorithm can modify the state of its local memory and send/receive messages
using its communication ports. An unidirectional communication link transmits messages from
a processor o (origin) to a processor d (destination. A link connects an output port of o with
an input port of d.

Let S = (P, M) be a distributed system, where P is a set of processes and M is a set of
communication links. A distributed system is represented by a directed graph with nodes
representing processors and directed edges (or arcs) representing communication channels
(or links). We consider directed unidirectional ring in this work. We also assume that proces-
sors communicate in a clockwise manner (i.e., processor i can send information to processor
i + 1 mod n, where n is the size of the ring. The state of a processor can be reduced to the
state of its local memory and the state of a communication link can be reduced to its con-
tents. Then the global system state (or configuration) can be defined as the product of the
states of all its processes and the contents of all its links.

The set of all configurations of S is denoted by C. A computation e of an algorithm A is a
maximal sequence of configurations ¢y, ¢, . .. such thatfori = 1, 2, .. ., the configuration ¢; 1
is reached from c¢; by a single step of at least one process. This sequence is maximal in the
sense that it is either infinite, or it reaches a configuration where no further action is possible
for any of the processors. In the previous example, ¢; is called the initial configuration of e.

Self-Stabilization. In the most general case, the specification of a problem is defined by
enumerating computations that solve the problem. A particular configuration c satisfies a
specification A if every computation starting from c is in A. A set of configurations B C C is
closed if for any b € B, any computation of System S starting from b contains configurations
only in B. A set of configurations By C C is an attractor for a set of configurations B; C C if
for any b € B;, any computation of S starting from b reaches a configuration in Bs.

Definition 2.1 (Self-stabilization) A system S is self-stabilizing for a specification A if there
exists a non-empty set of configurations L C C such that the following two conditions are true:

Closure Any computation of S starting from a configuration in L satisfies A.

Convergence L is an attractor for C.

The set £ is known as the set of legitimate configurations. In order to prove that a system is
stabilizing, we carefully choose L to show the following two properties: (i) Any computation
starting from a legitimate configuration satisfies the considered problem (closure property).
(ii) Any computation starting from any configuration (possibly not in £) leads to a legitimate
configuration (convergence property).

Messages. A message on a communication link is represented as a signal composed of the
signal elements. A signal element is one of the following types:

Signal element | Denoted by

start-of-message S
binary element Oor1l
end-of-message E

We define an abstract enumerated data type, (SignalElement: S, E, 0, 1) for sig-
nal elements. In the algorithm in Section 4, the messages are abstracted as sequences of

4

SignalElements containing Os and 1s delimited by an S and E, and can be expressed
using the following regular expression:

S(1[0)*E

Buffer. The Buffer isa FIFO structure with the random access capabilities and may con-
tain SignalElements or N, an additional symbol used to indicate any kind of error. It may
be accessed using the following functions:

Add (b, s) appends the SignalElement s to the end of Buffer b. If b is full, the last
element is simply replaced by s.

Remove (b) removes and returns the SignalElement from the head of Buffer b.Ifbis
empty, Remove has no effect on b and returns N.

Read (b, index) returns the SignalElement at the position index in Buffer b. The
parameter index ranges from 0 (head) to Size (b)-1 (tail). If index is out of range,
Read returns N.

Write (b, index,s) overwrites the SignalElement s atthe position index inBuffer
b. The index ranges from 0 (head) to Size (b) -1 (tail). If index is out of range,
Write does nothing.

InputElement (b) reads a SignalElement s from the incoming communication link.
If s is either 0 or 1, it calls the function Add (b, s) and returns true. If the signal
element read is neither 0 nor 1, the function returns false.

OutputElement (b) writes a SignalElement to an outgoing communication link. If
Buffer b is empty, an N is written to the outgoing channel and false is returned.
Otherwise, Read (b, 0) is written to the outgoing channel, Remove (b) is called, and
OutputElement returns true.

Size (b) returnsthe currentsize of the Buffer b,i.e., itreturnsthe numberof SignalElements
currently in the buffer. Note that invocation of the functions Add, Remove, InputElement,
and OutputElement on a buffer may change the size of the buffer, but the functions
Read and Write have no effect on the buffer size.

Clear (b) clearstheBuffer b by repeatedly calling Remove (b) while Size (b) is greater
than 0.

Forward(s) writes the SignalElement s to the outgoing communication link. Note that
this is the only function that does not use the buffer.

Communication Layer. Each processor maintains a communication layer (CL) whose role
is to inform the processor when a message arrives. The CL continuously scans the input
communication link. When an S is received, the CL calls the MessageHandler function
(described below). After the MessageHandler returns, the CL sends an E to the outgoing
communication link.

We assume that the MessageHandler function outputs an S SignalElement before
executing the first call to OutputElement or Forward, and outputs an E SignalElement
after executing the last call of OutputElement. This hides the S and E SignalElements
in the MessageHandler functions. We also assume that the communication buffer main-
tained by the processor is cleared before the MessageHandler function is called so that the
code within the MessageHandler function can assume that the Buffer is initially empty.
In some algorithms presented in this paper, we reduce the effective size of some messages.
This is done by inserting an early E SignalElement at the end of the MessageHandler
function. The remaining of the incoming message is then ignored by the communication
layer.

Cut-Through Constraints. A cut-through MessageHandler function (i.e., a cut-through
algorithm) must satisfy certain characteristics (well-formedness) as defined below. This can
be viewed as an extended version of the producer-consumer problem.

Producer-Consumer Constraint: A processor may notsend anN SignalElement,ie., OutputElemer
will be executed only when Size (b) is greater than 0.

Rate Constraint: When a processor forwards a message, if there are still some SignalElements
to be read, then input and output actions must be executed alternately. The alterna-
tive execution of the input and output actions is to maintain a certain rate of informa-
tion flow rate at each processor in the asynchronous model. This can be described by
the following regular expression:

input ™ (output, input)*output™

In our model, the input actions are the calls to InputElement, and the output actions
are the calls to OutputElement and Forward.

Message Re-initialization with Cut-Through Constraints. In some situations, a message
must be deleted and replaced by a new one. This is easy to implement in the store-and-
forward model, but is rather difficult to implement in the cut-through model because when
the new message is created and ready to be forwarded, some initial parts of the message to
be deleted may already have been forwarded. In order to cope with this kind of problems,
we introduce a technique using a special logical entity, called a ZeroMarker (denoted by z).
When a processor finds out that a message needs to be destroyed, but is being forwarded,
it inserts a z in its buffer. Thus, contrary to the store-and-forward algorithm, the actual
message initialization does not occur immediately, but will instead be delayed depending on
the buffer size of the processors. Although the local memory at any processor is bounded, it

is possible for the processor to advance z to the beginning of a message. After visiting every
processor, Z advances towards the beginning of the message by one buffer size. This is
illustrated using the following example, where we consider processors having 3-bit buffers.

Incoming | Processor Buffer | Outgoing | Comments
020101 [

0Z0 [101] 3 InputElements

0Z0 [10] T OutputElement
0Z [010] T InputElement
0z [01] 01 OutputElement
[[z01] 01 InputElement
0 [z07] 01 Marker advances
[[z0] Z01 OutputElement

2.1 Complexity

This section introduces some time complexity metrics used in the cut-through model.

Definition 2.2 (Transmission Time) The transmission time is the time needed by a processor i to
receive (resp., send) a message from (resp., to) a communication link. The transmission time is given
by the following relation :

where 1 is the length of the message in bits and C'is the capacity (the number of bits that can be held)
of the communication link.

Definition 2.3 (Propagation Time) The propagation time is the time needed by a bit to traverse a
communication link between two processors i and j. The propagation time is given by the following
relation : 4

T, .=—
pZ—’j T

where d is the physical length of the link and T is the celerity (speed) of the information unit.

Definition 2.4 (Buffer Delay) The delay time is the time needed to completely fill a buffer of a
processor i. The delay time is given by the following relation :

where b is the length of the buffer in bits, and C is the rate of the communication link.

Definition 2.5 (Communication Time) The communication time is the time needed for a message
to go from a processor i to a processor j is given by the following relation:

T.=1T; + Tpiﬂil + Tdil +ot sz‘k_lﬂik + Tdik + Tpikﬂj

where i1, iy,..., i}, are the intermediate processors between i and j.

7

Definition 2.6 (Round Trip Time) When a message is circulating in a ring network, the time
needed for one complete traversal around the ring is given by the following relation:

N—

Ir = ZO (Tdi + Tpi<—i+1 mOdN)
1=

—_

2.2 Specifications

Specification of the Communication problem. We consider a distributed system S =
(P, M) where every processor p has a unique non-corruptible processor identifier, Id,. An
external user of the system can perform SendMessage and ReceiveMessage functions at
any processor in the network. A protocol SSTR (for Self-stabilizing Token Ring) satisfies
the Communication problem if a processor i executes SendMessage(ld;, m), and a processor
j executes ReceiveMessage, then j will eventually receive m sent by i. We also require that
messages are transmitted in the order they were sent, with no loss nor duplication. Finally,
the protocol should be compatible with cut-through routing. We refer to this specification

as Speceopm-

Specification of the Census problem. We consider a distributed system S = (P, M) where
every processor p has a unique non-corruptible processor identifier, Id,. An external user of
the system can perform EXxists function at any processor in the network. A protocol CCT (for
Census Cut-through) satisfies the Census problem if at a processor i, Exists(ld;) returns true
if j € P, and false otherwise. Finally, the protocol should be compatible with cut-through
routing. We refer to this specification as Speccg prs.

3 Self-stabilizing Communications in Cut-through

In this section, we provide a self-stabilizing communication protocol that performs in the
cut-through model. This protocol is based on the IBM Token Ring protocol for the commu-
nication part, and on the counter flushing mechanism for the self-stabilizing part.

We first present an automatic transformer (denoted by SS7TR) that takes as input a self-
stabilizing token passing algorithm that is cut-through compliant, and provides as output a
self-stabilizing token ring communication protocol that is also cut-through compliant. This
solution is presented in Section 3.1 and satisfies Specification Specop (-

Then, we discuss the input of the transformer. The counter-flushing mechanism [15] can
be used as a possible input to SS7R. Nevertheless, we provide a new self-stabilizing token
passing algorithm (denoted by ACF) that is also cut-through compliant. Compared with the
counter-flushing technique [15], Algorithm ACF has a longer stabilization time. However,
once stabilized, its overhead (in terms of network load) is reduced by a factor 32 with respect
to the scheme of [15]. The two schemes will be compared in more details in Section 3.2.

3.1 Token Ring Transformer (SS7TR)

Our objective in this section is to implement a communication scheme (i.e. the SendMessage
and ReceiveMessage functions) between any two processors in the ring. We now informally
describe the implementation of these two functions using a token passing protocol.

In our scheme, in order to send data (that comes from the application layer), a processor
must have a special privilege. Also, for the system to operate properly, there must be exactly
one such privilege, and the privilege must pass from one processor to the other infinitely
often. An self-stabilizing algorithm that solves the token passing problem guarantees that
these two properties (unique privilege and fair access to the privilige) are eventually sat-
isfied. So, the input to our transformer is a self-stabilizing token passing algorithm. The
correctness of the self-stabilizing token passing algorithm eventually guarantees a single
privilege input to the transformer. The “Privilege” in the token passing algorithm corre-
sponds to the “frame” in the transformer. Therefore, the “single privilege” in the token
passing algorithm ensures the “single frame” in the transformer.

A frame may be a token frame or a data frame. The token frame represents the ability of a
processor to transmit data issued by its application layer, while the data frame encapsulates
the data transmitted by the application layer. The isToken bit in the frame (refer to Table 1)
signifies the type (token vs. data) of the frame. A processor is allowed to send a data frame
only if it holds the token. In other words, a processor is able to execute SendMessage only
if it has the token. A processor can execute ReceiveMessage only if it receives a data frame
destined for itself. The hasToken bit at a processor i is true if i currently holds the token,
and false otherwise. If a processor ¢ wants to send data, but does not have the token, then
want Token; will be true.

The processor (say, 7) holding the token starts sending the data frame. The other pro-
cessors check if they are the destination of the message. If yes, they deliver the message to
the upper application layer and forward the frame to the following processor on the ring;
otherwise, they simply forward the frame to the following processor on the ring. When the
frame comes back to i, i becomes sure that the message has been delivered to the destination
processor. So, i now passes the token to the next processor to allow other processors to send
their messages.

In some wrong initial configurations, a message with a wrong destination (i.e., a non
existing identifier) may be transmitted in the network. To remove this message, we use
a distinguished processor, called the leader. The leader is simply a processor in the unidi-
rectionnal ring that does not execute the same code as the other processors (that are called
middle processors). It is well known [6] that no deterministic uniform self-stabilizing token
passing algorithm is possible if the ring is of arbitrary size (as we assumed in this paper).
This implies that the self-stabilizing token passing algorithm used as an input to our trans-
former must be using a processor as the leader. So, the same leader can be used to remove
the wrong message from the ring.

The leader processor uses the seenByLeader field of the message. First time a data
frame passes through the leader, it sets the seenByLeader field of the message to true.
Then, if the message makes one more complete round in the ring, when it gets back to the
leader processor (meaning that the message has been neither delivered to its destination nor

removed by its source), the leader processor removes the messages and replaces this wrong
data frame by a token frame.

The fields inside the frames and the variables used by the processors are described in
Tables 1 and 2, respectively. The SSTR algorithm is given in Algorithms 3.1 (for the leader
processor) and 3.2 (for the middle processors). Algorithm SS7R is executed at each proces-
sor whenever the processor receives the token from the token passing algorithm.

The code for a middle processor (presented as Algorithm 3.2) is almost the same as the
code for the leader, except for the part where the leader checks if it has already seen the
message (in case it has, it deletes the message).

The sendMessage and ReceiveMessage functions are implemented using a thread
that is distinct from the one of Algorithms 3.1 and 3.2. We assume that each processor has
two dedicated buffers for handling user data (those buffers are different from the buffer that
is used to communicate with the communication layer). When SendMessage is called, the
data to be transmitted is stored in the outgoing data buffer. When the processor is able to
transmit data (this occurs in Lines 20-22 for both the leader and middle processors), data
from the outgoing buffer is sent to the successor processor and the SendMessage function
returns. When ReceiveMessage is called, the first thing checked is if some data is available
in the incoming buffer. If yes, the data is returned immediately by the ReceiveMessage
function. If no, then the processor waits until the data is available (see Lines 36-39 for the
leader processor and Lines 32-35 for the middle processors), then copies incoming data into
the incoming buffer, and finally, returns from ReceiveMessage.

isToken boolean field; true for a token frame, false for a data frame.

seenByLeader | boolean; true if the message has already been seen by the leader.

to integer field (6-byte long in Token Ring); the destination of the data
frame.

from integer field (6-byte long in Token Ring); the initiator of the data frame.

data raw data bits of the upper application layer message.

Table 1: Frame structure for Algorithm SSTR

hasToken boolean; true if the processor owns the token.
wantToken | boolean; true if the processor wants to transmit data.

Table 2: Processor variables for Algorithm SS7R

3.1.1 Correctness Proof of Algorithm SS7TR

Definition 3.1 (Legitimate State) The system is in a legitimate state (in a set denoted by LssTR)
if and only if there is exactly one frame circulating around the ring and exactly one of the following
assertions is verified:

10

Algorithm 3.1 Algorithm SS7R (leader processor)

01: { This code 1s executed when the processor receives the privilege. }
02: Local i «—0 { i is the index in the destination field }
03: Local to «+ 0 { to is the value of the destination read so far }

04: InputElement (b) { Receive Message.isToken }
05: If Read(b, 0) = 1 Then { Received a token frame }
06: If hasToken = true Then { This case may occur only in case of a transient

failure }

07: hasToken « false

08: OutputElement (b)

09: Else

10: If wantToken = true Then

11: { SendMessage invocation 1s pending }

12: hasToken <« true

13: Forward (0) { Message.isToken denotes a data frame }
14: Else

15: hasToken <« false

16: Forward (1) { Message.isToken denotes a token frame }
17: EndlIf

18: Forward (0) { Message.seenByLeader is false since this is a new

message }

19: Endlf

20: If hasToken = true and wantToken = true Then

21: Transmit Message Data { SendMessage returns }

22: EndIf

23: Else { Received a data frame }

24 If hasToken = true Then { My data frame comes back to me }

25: hasToken <« false

26: Forward (1) { Message.isToken denotes a token frame }

27 Forward (0) { Message.seenByLeader is false since this is a new

message }

28: Else

29: InputElement (b) { Receive Message.seenByLeader }

30: If Read(b, Size(b) — 1) = 0 Then { First time this message is seen
}

31: While InputElement(b) and i < DestinationSize 32: { 6 bytes }
33: i «— i+ 1

34: to «— (to X 2) + Read(b, Size(b) - 1)

35: EndWhile

36: If to = Id Then

37: Deliver Message data 38: { ReceiveMessage returns }

39: Endlf

40: Forward (0) { Message.isToken denotes a data frame }

41: Forward (1) { Message.seenByLeader indicates that the leader saw
the message }

42 Else { Convert the incorrect d;ga frame into a new token frame }

43: Forward (1) { Message.isToken a token frame }

44 Forward (0) { Message.seenByLeader is false since this is a new

message }

45: EndlIf
46: EndIf
47: EndlIf

Algorithm 3.2 Algorithm SS7R (middle processor)

01: { This code 1s executed when the processor receives the privilege. }
02: Local i «—0 { i is the index in the destination field }

03: Local to «+ 0 { to is the value of the destination read so far }

04: InputElement (b) { Receive Message.isToken }

05: If Read(b, 0) = 1 Then { Received a token frame }

06: If hasToken = true Then { This case may occur only in case of a transient
failure }

07: hasToken « false

08: OutputElement (b)

09: Else { Normal case }

10: If wantToken = true Then { Processor wants to send data }

11: { SendMessage invocation 1s pending }

12: hasToken <« true

13: Forward (0) { Message.isToken denotes a data frame }

14: Else

15: hasToken <« false

16: Forward (1) { Message.isToken denotes a token frame }

17: EndlIf

18: Forward (0) { Message.seenByLeader is false since this is a new
message }

19: Endlf

20: If hasToken = true and wantToken = true Then

21: Transmit Message Data { SendMessage returns }

22: EndIf

23: Else { Received a data frame }

24 InputElement (b) { Receive Message.seenByLeader }

25: If hasToken = true and Read(b, Size(b) - 1) = true Then { My data
frame comes back to me }

26: hasToken « false { Release the token frame }

27: Forward (1) { Message.isToken denotes a token frame }

28: Forward (0) { Message.seenByLeader is false since this is a new
message }

29: Else { Check if the data frame is for me }

30: While InputElement(b) and i < DestinationSize

31: { read 6 bytes }

32: i «— i+ 1

33: to «— (to X 2) + Read(b, Size(b) - 1)

34: EndWhile

35: If to = id Then { I am the destination }

36: Deliver Message data 37: { ReceiveMessage returns }

38: EndIf

39: Forward (0) { Message.isToken denotes a data frame }

40: Forward (Read(b, 1)) { Message.seenByLeader is forwarded as 1is }
41: EndlIf

42: Endlf 12

The isToken bit of the frame is true and the hasToken bit is false at every processor. (The
set of these configurations will referred as L1).

The isToken bit of the frame is false and the hasToken bit is true at exactly one processor
i, and one of the two following conditions is verified:

2.a. The seenByLeader bit of the frame is false and the frame is at a processor somewhere
between i and the leader (in clockwise order). (The set of these configurations will be
denoted as Log).

2.b. The seenByLeader bit of the frame is true and the frame is at a processor somewhere
between the leader and i (in clockwise order). (The set of these configurations will be
denoted as Loy).

Lemma 3.1 (Closure) Lss7r is closed.

PROOF : We need to consider all three possible types of legitimate configurations (L1, Lo,
and Ly;) as defined in Definition 3.1. Assume that the system is in one of the following three
sets of legitimate configurations:

L.

Log.

Lop.

Either no processor has any data to transmit (so, the system stays in Configuration
L4), or the frame arrives at a processor ¢ which has some data to send (want Token; is
true). In the latter case, Processor i sets i sToken and seenByLeader to false, so the
system is now in Configuration Lo,.

When the frame arrives at the leader, the message was initiated either by the leader
(in this case, the leader first delivers the message, then passes the token by setting
isToken to true, and the system goes back to Configuration £1) or by another proces-
sor (in this case, the leader sets the seenByLeader bit of the frame, and the system
goes to Configuration Ly;).

The frame is received by its initiator which sets hasToken bit to false before passing
the token to the next processor. The system then goes back to Configuration £;.

|

Lemma 3.2 (Convergence) Starting from any initial configuration, Algorithm SSTR eventually
reaches a legitimate state.

PROOF : A single frame eventually circulates around the ring due to the self-stabilizing
property of the token passing algorithm provided as input to the SSTR algorithm. Let ¢
be the time at which the frame leaves the leader processor.

1.

Assume that it is a data frame.

13

l.a. Assume that seenByLeader is true. Let j be the first processor in clockwise
direction from the frame that has hasToken bit set to true. Then, j assumes that
it is the source of the data frame, and eventually initiates a token frame that has
seenByLeader bit set to false. Let ¢ the first processor in clockwise order from j
with hasToken false and want Token true. 7 takes the token, sets its hasToken
to true and initiates a data frame with seenByLeader false. As the data frame is
being forwarded around the ring, all processors between i and the leader set their
hasToken bit to false. We now consider two cases corresponding to the leader’s
hasToken bit value.

l.a.a. Assume that the leader’s hasToken bit is true. Upon receiving the data
frame, the leader removes the data frame and sends a new token frame clear-
ing its hasToken bit. The system now is in L.

l.a.3. Assume that the leader’s hasToken bit is false. The system is already in Lop.
1.b. Assume that seenByLeader is false. Then no middle processor will be able to

convert the data frame into a token frame, and they all will set their hasToken
bit to false.

1.b.ce. Assume that the leader’s hasToken bit is true. Upon receiving the data
frame, the leader removes the data frame and sends a new token frame clear-
ing its hasToken bit. The system now is in L.

1.b.5. Assume thatleader’s hasToken bitis false. The leader now sets seenBylLeader
to true and forwards the frame. Then when the frame comes back to the
leader after one traversal around the ring, we arrive at Case 1.a.3.

2. Assume that it is a token frame. Let ¢ be the first processor which has hasToken false
and wantToken true. Every processor between the leader and i sets its hasToken to
false. i then initiates a data frame with seenByLeader set to false. As the data frame
is being forwarded around the ring, all processors between i and the leader set their
hasToken bit to false.

2.a. Assume that the leader’s hasToken bit is true. We reach Case 1.a.a.

2.b. Assume that leader’s hasToken bit is false. We reach Case 1.a.53.

Theorem 3.1 The SST'R protocol is self-stabilizing.
PROOF : Follows from Lemmas 3.1 and 3.2. O
Theorem 3.2 Algorithm SST R satisfies cut-through constraints.

PROOF : First, note that OutputElement is called only when InputElement returns a
SignalElement different from N. So, the producer consumer constraint is satisfied.

14

Then we prove the rate constraint of the algorithm is also satisfied. The leader’s input
and output actions match the following pattern:

DestinationSize+1

input (output\output2\input ,outpth)

Any middle processor’s input and output actions match the following pattern:

Destlnatlon51ze+1, outpth)

input (output|input, output?|input
Both patterns are subsets of
input™ (output, input)*output™

So, Algorithm SSTR satisfies the cut-through constraints. O

3.1.2 Complexity of Algorithm SSTR

Space Complexity. Every processor uses two boolean variables. So, the space requirement
is two bits per processor. Each message has two address variables (six bytes each in Token
Ring) and two boolean variables. Assuming the number of processors in the ring to be n,
the address size is O(log, n) bits. Therefore, the message size is O(log, n) bits (excluding the
data size of the application layer).

Time Complexity.

Definition 3.2 (Maximum Waiting Time) The maximum waiting time, T, is defined as the max-
imum time a processor may need to wait between sending two consecutive data frames.

Proposition 3.1 (Token Ring Waiting Time) After stabilization, the maximum waiting time of
Algorithm SSTR is given by the following relation:

Ty=nx(Tiy,+T,)+T,
where Ty, is the time needed to transmit a data frame.

PROOF : Let t(be the time when Processor i starts transmitting a data frame. The transmis-
sion takes T;,, and the last bit of the data frame returns to ¢ in 7. A new token frame is
then initiated by 7 to Processor i + 1 mod n, and converted to a new data frame by Processor
1+ 1 mod n. This takes

T, T
Piiyimod n + di+1 mod ~
time before a new processor can send its data frame. There are n processors in the network,
and by definition of 7}, the result of the proposition follows. O

Proposition 3.2 (Self-stabilization Overhead) The overhead in time incurred due to the addi-
tion of the self-stabilizing property in the algorithm is

Ty, = N X Ty,

where Ty, is the transmission time needed to transmit one bit.

15

PROOF : Only one extra bit (seenByLeader bit) is added to every message. This bit does

not cause any extra delay while forwarding messages, because the buffer needs to be only

one bit size. However, it causes extra time to transmit the bit. The result follows from

Proposition 3.1. O
The following result follows from Proposition 3.1:

Proposition 3.3 (Token Passing Overhead) The extra time spent due to the underlying self-stabilizing
token passing protocol is
T = N X (Tt'me + T”"'me) + Tdme

Ome

where Ty, is the time to transmit the token passing bits, and Ty, _ is the time delay (corresponding
to the buffer delay) needed to forward the token passing bits.

3.2 Alternate Counter Flushing (ACF) Algorithm

Let us briefly recall the counter flushing scheme used to model Dijkstra’s algorithm (as pre-
sented in [15]). In this scheme, every processor maintains a counter. The leader (or dis-
tinguished) processor of the ring sends a message with a new counter value. The leader
saves this counter value in a local counter variable. In a good system state, the value of the
counter would be something different than any value existing in the ring currently i.e., dif-
ferent than the value of the counter field of any message in transit or the counter value of any
other processor. A non-leader (that we call middle) processor 7 upon receiving the message
simply forwards it to the next processor (in clockwise direction). In addition, if the counter
in the message is new, the middle processor enters the critical section before forwarding the
message. After a complete traversal of the message with the new counter value, the leader
receives the message with a counter value equal to its own counter value. Then the leader
changes the counter value to a new value and repeats the above process. In summary, the
single privilege is passed around the ring. The leader is privileged if it receives a message
with a counter value same as its own counter variable, whereas the middle processors are
privileged if the counter value in the message is different than their own counter value.

In [15], the counter is not only used to circulate the privilege, but also to stabilize the
token passing algorithm. If the counter size is bigger than the maximum number of mes-
sages that can be in all the links of the network (this number depends on the link capacity)
plus the number of different counter values at the processors (every processor holds exactly
one counter value), eventually all the initial corrupted messages will be flushed out of the
network.

From the above description, we observe that the counter is used in [15] to achieve two
goals — to stabilize the network and to circulate the privilege in the network. Our main idea
is to suggest an alternate scheme, called Alternate Counter Flushing (ACF) scheme where
messages with the counter are used only to stabilize the network. However, to pass the
privilege around the ring, we send a message with no counter. We call the messages with
(resp., without) counter counter_message(resp., light_message).

The motivation behind this revised counter flushing scheme is the following: We ex-
pect the frequency of transient faults in a network to be moderate or low. This implies that
the light_messages will be used much more often than the counter_messages. So, effectively,

16

we save the overall message size, thereby saving the number of bits transmitted. This is
specially important in the cut-through model. After stabilization, our algorithm has less
round-trip delay as compared to the counter-flushing scheme based algorithm [15]. How-
ever, the stabilization time of ACF can be higher than that of [15]. As mentioned earlier, the
system is expected not be stabilized too often.

In Algorithm ACF, the value of the first field distinguishes the two types of messages
(light_message and counter_message). It is a single bit boolean field (hasCounter) — true rep-
resents a counter_message message. The leader sends a counter_message followed by MaxLight
light_messages. (Later, we will discuss the bound for MaxLight to achieve stabilization.) A
down counter (nbLight)is used to send MaxLight light_messages. If the system is in a good
configuration, it is obvious that if the leader sends a counter_message (resp., light_message), it
should receive a counter_message (resp., light_message) next time because the message would
come back to the leader after traversing the whole ring. If the system is not stabilized yet,
the leader may receive some unexpected type of messages. In that case, the leader simply
drops those messages. A boolean variable (1ightExpected) is used by the leader to im-
plement this. We assume that the leader has a buffer that is sufficient to hold a counter plus
one additional bit.

The data structure of the leader is shown in Tables 3 and 4. The message format is
described in Table 5. Algorithm ACF is shown in Algorithms 3.4 (for the leader processor)
and 3.3 (for the middle processors).

MaxC integer constant; the number of different counter values.

CounterSize | integer constant; the size (in bits) of MaxC

MaxLight integer constant; the number of light messages sent by the leader be-
tween two successive messages with counter.

Table 3: Leader processor constants for ACF protocol

nbLight integer variable; the number of light messages to be sent by the leader
before sending the next counter message.

lightExpected | boolean variable; true if the leader is expecting a light message.

counter integer variable; the value ranges between 0 and MaxC — 1.

Table 4: Leader processor variables for ACF protocol

hasCounter || boolean field; true if the message is a counter message.
counter integer field; contains the counter of the leader. Note that
this field exists only if hasCounter is true.

Table 5: Message structure for ACF protocol

We now give an informal explanation of the execution of our algorithm. Periodically, the
leader node sends a counter message. The counter in the message and at the leader increases

17

Algorithm 3.3 The MessageHandler ACF function at middle processor

01: Local i « 0 { i is the index in the counter }

02: Local mcount «< 0 { mcount is the value of the counter read so far }
03: { Buffer b has been cleared at the begining of MessageHandler }
04: If InputElement(b) { Receive Message.hasCounter } Then

05: If Read(b, 0) = 1 Then { counter_message received }
06: OutputElement (b) { Forward a counter_message }
07: While InputElement(b) and i < CounterSize

08: { Receive and forward next bit of Message.counter }
09: i «— i+ 1

10: Read(b, 0)

11: OutputElement (b)

12: EndWhile

13: Else { Privileged, enter critical section }

14: OutputElement (b) { Forward a light_message }
15: EndIf

16: Endlf

every time a fresh counter message is sent. Middle processors simply formard the counter
messages to their successors (in clockwise direction). When the counter message comes back
to the leader and has the same value as its own, the leader sends a light message. When a
middle processor receives a light message, it enter its critical section, exits the critical section,
and then forwards the light message to its successor. When the light message comes back
to the leader, the same process (for light messages) is repeated MaxLight times before the
leader starts sending a new counter message. The stabilization comes from the fact that
eventually, a counter message will be issued that has a new counter value in the whole
network such that all remaining messages (that were present due to some transient failures)
are flushed from the system. Note that during the stabilization process, most of the time is
spent sending light messages that have less overhead than the counter messages.

3.2.1 Correctness Proof of Algorithm ACF

Definition 3.3 (Privilege) A processor has a privilege if and only if one of the following conditions
is satisfied:

1. the processor is a middle processor and has just received a light_message(i.e. its program
counter corresponds to line number 13 in the presented code),

2. the processor is the leader and has just received an expected light_message(i.e. its program
counter corresponds to line number 21 in the presented code).

Definition 3.4 (Potential privilege) A processor owns a potential privilege if receiving the next
frame makes the processor privileged.

18

Algorithm 3.4 The MessageHandler function at the leader processor

0l1: Local i «0 { i is the index in the counter }

02: Local mcount « 0 { mcount is the value of the counter read so far }
03: { Buffer b has been cleared at the begining of MessageHandler }
04: If InputElement(b) { Receive Message.hasCounter } Then

05: If Read(b, 0) = 1 Then { counter_message received }
06: If lightExpected = false Then { A counter_message was expected }
07: While InputElement(b) and i < CounterSize

08: { Receive next bit of Message.counter }

09: i «— i+ 1

10: mcount <« (mcount X 2) + Read(b, 0)

11: EndWhile

12: If count = mcount Then { Switch to light_message }
13: count « count + 1 mod MaxC

14: nbLight « nbLight - 1 mod MaxC

15: OutputElement (b)

16: lightExpected <« true

17: Endlf

18: EndIf

19: EndlIf

20: Else { light_message received }

21: If lightExpected = true Then { Privileged, enter critical section }
22: If nbLight = 0 { Switch to counter_message }

23: nbLight <« MaxLight

24 Forward(1) { As Message.hasCounter }

25: Forward(count) { As Message.counter }

26: lightExpected « false

27: Else { Continue to send light_message }

28: nbLight « nbLight - 1 mod MaxC

29: Forward(0) { As Message.hasCounter }

30: lightExpected « true

31: Endlf

32: EndlIf

33: EndIf

19

Definition 3.5 (Legitimate state) The system is in a legitimate state (denoted by the set L scr) if
and only if the following conditions are satisfied:

1. There is a single frame in the network.

2. There is a single processor with a privilege or a potential privilege.

Assumption 3.1 Following the result of Gouda and Multari [8], we assume that the leader may
initiate a timer to send a new frame when the network is frame-free.

This implies the following property:

Property 3.1 (Liveness) Starting from any configuration, in every computation, every processor
sends a frame infinitely often.

We define a particular sequence of configurations (called cycle) to characterize legitimate
configurations.

Definition 3.6 (Cycle) A cycle is a minimal sequence of configurations such that the first and last
configurations are equal.

Property 3.2 Starting from a configuration where the leader has just sent one frame, the network
cannot become frame-free.

PROOF : Let ¢y be the time when the leader sends a new frame. Then the leader expects to
receive this frame back within to +7,. However, before this frame arrives at the leader, some
unexpected messages may be received by the leader. By the algorithm, the leader drops all
those unexpected frames. Finally, upon receiving the expected message, the leader send a
new frame, and the system is back to the starting configuration. O

Property 3.3 All possible changes to the number of frames in the network are defined by the following
properties:

1. The number of frames in the network decreases if and only if one of the following is true:

(a) the leader receives a counter_message when expecting a light_message.
(b) the leader receives a light_message when expecting a counter_message.

(c) the leader receives a counter_message when expecting a counter_message but the
counter message does not match its local counter.

2. The number of frames remains unchanged if and only if the next frame to be received by the
leader is expected by the leader.

3. The number of frames in the network will increase if and only if the network becomes frame-free.

PROOF : We prove successively each of these properties:

20

1. In this case, the leader drops the frame.

2. In this case, the leader forwards the frame or sends a new frame; otherwise, the frame
is dropped.

3. The proof follows from Assumption 3.1.

Property 3.4 Any execution has exactly one cycle.

PROOEF :

Existence: The number of configurations is finite (bounded variables, bounded FIFO chan-
nels, and bounded size messages). Therefore, there exists a configuration which ap-
pears more than once in every computation. Moreover, since the algorithm is deter-
ministic, any infinite computation has a cycle.

Uniqueness: This follows from the fact that the algorithm is deterministic.

O
Property 3.5 A cycle can never become frame-free.
PROOF : Follows from Assumption 3.1 and Property 3.2. O
Property 3.6 Any cycle satisfies the following two properties:
1. The number of frames in the cycle remains unchanged.
2. The leader receives only the expected frames.
PROOF : Follows from Property 3.3. O

We have so far established that there is exactly one cycle in the network. Moreover, we
also know that this unique cycle maintains a fixed number of frames. So, in order to prove
that the leader receives only expected frames, all we have to show now is that the cycle
eventually will contain a single frame.

Lemma 3.3 The only possible cycle in any execution contains a single frame if and only if (MaxC x
(MaxLight + 1) + 1) is greater than the number of messages initially present in the network.

PROOF : In order to prove this proposition, we proceed in two steps:

1. We need to prove that if (MaxC x (MaxLight+1)+1) is less than or equal to the number
of frames initially present in the network, there exists a cycle which contains (MaxC x
(MaxLight + 1) 4+ 1) frames. To prove that, it is sufficient to consider the following
example, where the leader variables are shown in Table 6, and (MaxC x (MaxLight +
1) 4 1) frames to be received by the leader given in Table 7.

With such an initial configuration, after (MaxC x (MaxLight + 1) + 1) frames are
received and sent by the leader, the system goes back to the initial configuration.

21

nbLight MaxLight
lightExpected false
counter 0

Table 6: Leader variables

| Number of frames [Type [Counter (if counter_message) |

1 Counter | 0

MaxLight Light

1 Counter | 1

MaxLight Light

MaxLight Light

1 Counter | MaxC — 1

MaxLight Light

1 Counter | 0

Table 7: Frames forming a cycle

2. We want to prove that if (MaxC x (MaxLight + 1) 4 1) is greater than the number of
frames initially present in the network, only cycles with exactly one frame can exist.

Assume that there is more than one frame in the cycle. By Property 3.6, the leader only
receives expected frames. The leader eventually sends a counter_message with a unique
counter in the network since there are less than (MaxC x (MaxLight 4 1) + 1) frames.
If this unique counter_message is not the only frame in the network, other frames are
dropped by the leader, which is impossible by Property 3.6.

|

Lemma 3.4 The set of the configurations in a cycle with a single frame (denoted by O1) is the set of
legitimate configurations.

PROOF : We want to prove that each legitimate configuration belongs to a cycle with a
single frame. By Definition 3.5, in any legitimate configuration, there is a single frame in the
network. Since the number of frames remains the same and the algorithm is deterministic,
a cycle is performed.

We need to prove that each configuration in a cycle with a single frame is a legitimate
configuration. By Property 3.6, this single frame must be the frame expected by the leader.
When the leader receives this frame, the leader is privileged, and it passes the privilege on
to the next processor. In turn, this processor is privileged, and passes its privilege to the next
processor. Since the network is finite and the algorithm is deterministic, a cycle is eventually
formed and all configurations in the cycle are legitimate. O

Closure and convergence follow from Lemmas 3.3 and 3.4.

Lemma 3.5 (Closure) The set of legitimate states of Algorithm ACF is closed.

Lemma 3.6 (Convergence) If (MaxC x (MaxLight + 1)+ 1) is greater than the number of mes-
sages initially present in the network, true > L scr.

22

Theorem 3.3 Algorithm ACF is self-stabilizing.
PROOF : Follows from Lemmas 3.5 and 3.6. 0
Theorem 3.4 Algorithm ACF satisfies cut-through constraints.

PROOF : First, note that OutputElement is called only when InputElement returns a
SignalElement different from N. So, the producer consumer constraint is satisfied.

Then we prove the rate constraint of the algorithm is also satisfied. The leader’s input
and output actions match the following pattern:

CounterSize

, output|outputcourlterSl ze+l \output)

input (input
Any middle processor’s input and output actions match the following pattern:

CounterSize

input (output (input, output) |output)

Both patterns are subsets of
input ™ (output, input)*output™

So, Algorithm ACF satisfies the cut-through constraints. O

3.2.2 Complexity of Algorithm ACF

Space Complexity. The leader node has a counter of size MaxC, a counter of size MaxLight,
and a boolean variable. So, the middle processors have 0 bits and the leader processor has
O(log,(MaxC x MaxLight)) bits.

Time Complexity. The self-stabilizing token passing overhead is given by:

Tome = N X (Ttme —+ Tdme) + Tdme

In [15], 1},,. = Tt,, since a 32 bit counter is chosen, and T}, = Tg,, since the extra delay
occurs only at the leader processor.

Proposition 3.4 In the ACF algorithm, the average time needed to transmit the token passing bits

is:
_ Ty, + MaxLight X T,

1y, = .
MaxLight + 1

PROOF : A counter_message is sent only every MaxLight light_messages. O

Proposition 3.5 In the ACF algorithm, the average time needed to forward the token passing bits

1S
~ Tyy, + MaxLight X Ty,

dme = MaxLight +1

23

PROOF : The extra delay due to the counter_message occurs at the leader once every MaxLight
light_messages. O

Proposition 3.6 In Algorithm ACF, the average token passing overhead is:

T; MaxLigh T,
TOme:(2><N+1)><< gy + MaxLight x tl)

MaxLight + 1

PROOF :

T

Ome

_ Nx T}, +MaxLight x Ty, Tgy,, +MaxLight x Ty, T4, +MaxLight x Ty,
N MaxLight + 1 MaxLight + 1 MaxLight + 1

We assume that T},, = Ty,, and T}, = Ty, . So the result can be simplified as:

T, MaxLight X T;
Tope =(2x N+1) x faz ax-ght X 1y
" MaxLight 4+ 1
g
Proposition 3.7 In algorithm [15], the average token passing overhead is:
Tome = (2 X N + 1) X (Tt32)
PROOF :
Tope = N X (Tigy + Tagy) + Tag,
We assume that T}, = Ty,,. So, the result can be simplified as:
Tome = (2 x N + 1) X (Tt32)
g

By proposition 3.6, with our approach, the average overhead due to self-stabilization can
be as low as
(2% N +1) x (T},)

whereas the overhead of Algorithm CF is at least
(2x N +1) x (Tiy,)

Thus, we improve the overhead due to self-stabilization by a factor of 32. However, not
sending a counter with every frame slows down the stabilization time by a factor of MaxLight.
Therefore, the ACF solution is well suited for networks where corruptions do exist but are
rare.

24

4 A Self-stabilizing Census Algorithm in the Cut-through Model

In this section, we propose a self-stabilizing census algorithm (called Algorithm CCT) in
a ring network using the cut-through routing scheme. This algorithm satisfies Specifica-
tion Spec,.; assuming that the Exists function is implemented on top of our algorithm.

We now describe the basic idea of the algorithm. Every processor forwards every mes-
sage it receives forever. These messages ideally should contain the identifiers of all the
processors in the network. When a processor receives a message that does not contain its
own identifier, the processor adds its identifier at the end of the message. In this process,
every message eventually contains at least the identifiers existing in the network. However,
the identifiers which do not exist in the network need to be removed. This task is imple-
mented using one Nb field for every identifier in the message. Nb field corresponding to an
existing identifier ¢ in a message m holds the number of processors visited by m since it was
reset to 0 by . So, the maximum value of any Nb should be NV — 1. However, due to wrong
initialization, a message m may contain an invalid identifier j. After one complete round of
m in the ring, Nb of j will become at least /V. At that point, the next processor visited by m
will detect the fault and will start the re-initialization of m using the ZeroMarker technique
discussed in Section 2, thereby removing the invalid identifier j from m. When a processor
receives a message that starts with a ZeroMarker, it issues a new message containing only
its identifier. So, this new message contains only valid identifier, and eventually gets filled
up with all valid identifiers in the network.

We now give further details about the implementation of Algorithm CC7 followed by its
proof of correctness.

Message Forwarding. In this section, we describe the message forwarding scheme under
the cut-through constraints. A complete record contains Id and Nb fields. We will indicate
the size of a complete record by RecSize. Message forwarding is implemented using two
functions: Receive and Send.

The main purpose of Receive is to read the records from the communication link and
write them in the buffer. This function uses a boolean variable first whose value in-
dicates whether or not this is the first call to the Receive function. If it is the first call,
SignalElements are read from the incoming link and written in b provided b is not full
and the the incoming bit is not a ZeroMarker. If a record can be read from b, true is
returned. Otherwise, false is returned. If this is not the first invocation of Receive, this
function checks if there is a record in b to be read. If there is any such record, it implies that
Send function must have been called earlier, which wrote the record in the buffer. In this
case, Receive returns true. The Receive function can be coded as described in Algo-
rithm 4.1.

Send forwards a record and also reads the following record in the buffer if any record is
in the incoming channel. The Send function implements the cut-through constraints. The
Send function can be coded as described in Algorithm 4.2.

25

Algorithm 4.1 Receive Function of Algorithm CCT

01:
02:
03:
04:
05:
06:
07:
08:
09:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:

If first = true Then { first call to Receive }
Llocal i <0 { i is the index in the current record }
first « false ; Clear(b)
While i < RecSize { The record is not completely read yet. }
If InputElement (b) Then
If Read(b,Size(b)-1) = Z Then { Last read element is a ZeroMarker }
Clear (b) { void buffer }
Return false { no record is available }
Else { Input a SignalElement into buffer }
i «— 1 41 { Skip to next element }
Endlf
Else { SignalElement is not 0, not 1, not Z }
Clear(b)
Return false
Endlf
EndWhile { Loop only if received 0 or 1 }
Return true { Buffer contains a new record }
Else { called before }
Return Size(b) > RecSize { Record was received by Send function }
EndlIf

Algorithm. The census algorithm has three main tasks. We describe these tasks below for
processor i.

Checking the Completeness If the message is not a complete message, i.e., some fields in

some records seem to be missing, processor i uses a ZeroMarker to destroy this mes-
sage and initiate a new one. Also, if a processor notices that its identifier is not in-
cluded in the message (using the local variable amIHere), it appends a record to the
message after forwarding the rest of the message.

Nb Correction We want to ensure that no record for a non-existent processor lasts forever

in the network. Once all processors have added their records in the message, each
processor i checks how many processors have been visited by this message since i
last zeroed i.Nb. The value of i.Nb should satisfy the following two conditions: (i)
It is equal to the maximum Nb in the message and (ii) It is equal to the number of
processors recorded in the message minus one. (This number is calculated using a
local variable NbProcessorV.) If any of the above conditions is false, it implies that
the message contains the records of some non-existent processors. In that case, i uses a
ZeroMarker to destroy this message and initiate a new one. When the new message
is initiated by a processor, in one round, the message will contain all identifiers.

Implementing EXists function This aspect is not given in detail here, but the implementa-

tion is straightforward. One can either store one complete message at each processor

26

Algorithm 4.2 Ssend Function of Algorithm CCT

01: Local i «—0f{ i is the index in the current record }
02: Local shouldOutput « false { true if SignalElements are waiting to be

received }

03: |If first = false Then { Receive has been called at least once }
04: If InputElement(b) Then { Some elements are waiting }

05: shouldOutput <« true

06: If Read (b, Size(b)-1) = Z Then { Last read element is a ZeroMarker }
07: Write(b,0,2Z) { Advance ZeroMarker by RecSize }

08: Endlf

09: Endlf

10: Endif

11: While i < RecSize { Process the current record }

12: OutputElement (b)

13: If InputElement (b) Then

14: If Read (b, Size(b)-1) = Z Then 15: { Last read element is a ZeroMarker
}

16: Write(b,0,2Z) { Advance ZeroMarker by RecSize }

17: EndIf

18: Endlf

19: i« i 41 { Skip to the next element }

20: EndWhile

21: If shouldOutput = true Then

22 OutputElement (b)

23: Endlf

27

(losing many of the benefits of the Cut-though scheme) and have Exists function calcu-
late from this stored message, or wait for a message to be passed through the processor
and check if the Id passed to Exists function is present. We use the latter approach for
the complexity results.

Algorithm 4.3 MessageHandler of Algorithm CCT

01: Local amIHere <« false; currentSize « 0
02: Local NbProcessorsV « 0; first <« true
03: While Receive(p) { Update local variables }

04: { If Receive returns true, then there is at least one complete record }
05: NbProcessorsV « NbProcessorsV +1

06: If p.1d = i.1d Then

07: If amIHere = true Then

08: { Send a ZeroMarker if already present }

09: Forward (ZeroMarker)

10: Else

11: amIHere <« true; currentSize « p.Nb

12: Forward([p.Id,0]) { Reset Nb field }

13: EndIf

14: Else { Forward the same record with updated Nb field }
15: Forward([p.Id,p.Nb+1l])

16: Endlf

17: EndWhile

18: If amIHere = false Then { Forward the original record }
19: Forward ([1i.Id,07)

20: Else

21: If currentSize # NbProcessorsV —1 { Nb correction }
22 Forward (ZeroMarker)

23: Endlf

24: EndIf

4.1 Proof of Census Algorithm CCT

We first prove the liveness of the algorithm. Messages may be discarded in the cut-through
routing scheme. We must ensure that eventually, there is at least one message circulating in
the ring. To prove this, we first show that the system can always hold at least one legitimate
message and then, show that even after the initial bad messages are detected and destroyed,
the system still will have at least one message. Then, we show that when badly initialized
messages are discovered, new empty messages are issued. However, this task may not be
completed atomically in the Cut-Through model. We prove that eventually, every message
carrying the ZeroMarker is destroyed and a new good message is initiated. Also, we show

28

that our algorithm satisfies the producer-consumer and rate constraints, as stated in Sec-
tion 2. Next, we prove that in finite time, any message on the ring will contain a correct
record for every processor in the ring.

In the following, m(i) denotes the record corresponding to processor i in message m.

Definition 4.1 (Legitimate Message) A record in a message m is legitimate if its fields satisfy the
following conditions: (i) The I1d field is equal to the Id of a processor i € P in the network. (ii) The
Nb field is equal to the number of processors visited by m after visiting processor i, i.e., the distance
from i. A message m is legitimate if m has exactly N different legitimate records.

Note that a legitimate message contains a legitimate record for every processor in the
network. Thus, it contains N values of Id.

Definition 4.2 (Legitimate Configuration) The set of legitimate configurations Lcc of Algo-
rithm CCT is such that in each configuration ¢ € Lg, the following conditions hold: (i) There is at
least one message in the ring. (ii) All messages in the ring are legitimate messages.

Lemma 4.1 The network can hold at least one legitimate message.

PROOF : A legitimate message is N records long, plus S and E SignalElements. So,
the size of a legitimate message is ms = N xRecSize+2. Each processor has a Buffer
whose size is greater than a record size. Each communication link can hold at least 1
SignalElement. Thus, the network can hold ns = N x (RecSize+2) SignalElements.
For N > 2, ns > ms. g

Definition 4.3 (Message Destruction) A message is destroyed in execution e if and only if e con-
tains a sequence of configurations from the set C: ci,ca,...,ck_1,Cy, such that c; contains n S
SignalElements and ¢ containsn — 1 S SignalElements.

Remark 4.1 A message can be destroyed only in a Receive or Send function. If a processor
receives a new message, mo when it is executing the Send function, i.e., forwarding a record of the
previous message my, the new message mo is destroyed. If a processor receives a message ma when it
is executing the Receive function on another message my, the new message meo is destroyed.

Remark 4.2 If a processor receives an incomplete message, the last record of this message is not
stored in the Buffer. If a processor receives a message containing a ZeroMarker in the first
RecSize bits, then the message is considered empty, i.e., the message is destroyed. If a proces-
sor receives a message containing a ZeroMarker, but not in the first RecSize bits, then the
ZeroMarker is forwarded and advanced by RecS1ize positions.

Lemma 4.2 Eventually, a message containing a ZeroMarker is destroyed or initialized.

PROOF : From Remark 4.1, a message containing a Zeromarker may be destroyed. From
Remark 4.2, if the message is not destroyed, the ZeroMarker advances by RecSize posi-
tions every time it visits processor. Eventually, the ZeroMarker will advance enough to be
in the first RecSize bits of the message. Then a new message is initialized. 0

29

Theorem 4.1 (Cut-through) The CCT algorithm satisfies the cut-through constraints.

PROOF : We first prove that the Producer-Consumer constraint is satisfied. Before the func-
tion Send is called, Buffer b is filled with RecSize bits. In the function Send, the fol-
lowing two situations may occur: (i) If the first call to InputElement succeeds (i.e., re-
turns 0 or 1), Send calls OutputElement total RecSize+1 times. (ii) Otherwise, Send
calls OutputElement total RecSize times. In both situations, Buffer holds enough
SignalElementsthat OutputElement neverreturns false. Thus,noN SignalElement
is sent to the channel.

Then we prove that Rate constraint is satisfied. The calls to the functions Receive and
Send follow the following rational expression: (Receive,Send)*Send*. The first Receive
call can be reduced to input™. Subsequent Receive calls can be reduced to an empty
expression. Calls to Send can be reduced to:

)RecSize(

(input, output input, output)?

Thus the overall expression becomes:

RecSize(

input ™ ((input, output) input, output)?)™"

which is a subset of the rate constraint. O
Theorem 4.2 (Closure) The set of legitimate configurations Lccr is closed.

PROOF : First, we prove that every legitimate message remains legitimate. Let m be a legit-
imate message arriving at processor k. Since m is legitimate, every Nb field in m is equal to
the distance to the corresponding processor. So, Nb of processor k is equal to NV — 1 and is
the maximum among all Nb fields in m. Processor k sets k.Nb to 0 and increments other Nb
fields by one. Thus, the message remains legitimate.

Then, we prove that starting from a legitimate configuration, no message can be lost. In a
legitimate configuration, all messages are legitimate and contain IV different records (one for
each processor). Thus, there are no ZeroMarkers in the messages, and no processor may
add its Id to any of these messages. Then, by Remark 4.1, no messages can be destroyed. O

Definition 4.4 (Attractor) A set of configurations B’ is an attractor for a set of configurations B of
Algorithm CCT, if for any configuration in B and any computation of CCT, a configuration of B'is
reached. This relation is denoted is B' < B.

We now define C; as the set of configurations such that there is at least one message in
the network, and every message contains only those Ids which correspond to the Ids of
some existing processors in the network. Moreover, any Id appears in a message only once.
It is obvious that Lcer C €1 C C. So, to prove the convergence property of Algorithm CCT,
our obligation is show that L¢er <Cy <C.

Lemma4.3 C;«C

30

PROOF : First we ensure that the content of each message that is not destroyed eventually
matches the specification of C;. There are two cases to consider:

1. Assume that there exists no message in the network. Then one timer exists to send
a new message. As this new message visits the processors, the message will grow up to
N x RecSize + 2, and thus, can stay in the network. By hypothesis, this message will not be
destroyed and we reach a configuration c € C;.

2. Assume that there exists at least one message m in the network. We need to consider
two situations:

2.a. m contains Ids that do not correspond to any processor identifiers. Then by Lemma 4.2,
this message is either destroyed or initialized. If the message is destroyed, the same reason-
ing as in Case 1 applies. Otherwise, Case 2.b is true.

2.b. m contains all valid Ids. The duplicate identifiers are removed by forwarding a
zeroMarker. This will cause a processor to initialize a new message. Then eventually no
message contains duplicate or bad Ids. If at least one message is not destroyed, then we
reach a configuration ¢ € C;.

Then we prove that starting from a configuration ¢ € C;, the system will never reach
a configuration where there is no message in the network. Assume the contrary, i.e. there
exists such a computation, e. Then a configuration with a single message m exists in e. This
message can be eliminated only if a processor i receives the S SignalElement of m in one
of the following two situations:

A. iis Sending m. From Lemma 4.1, there is enough space to hold a legitimate message.
This situation cannot occur since no message in C; can be larger than a legitimate message.

B. i is appending a record to m. This situation may only occur if another record (the
record of i) cannot be appended to m. From Lemma 4.1, there is enough space to insert a
new record for i.]

Lemma 4.4 Leer <Cy.

PROOF : First, we prove that a message with non-legitimate records may not remain forever.
Assume that a message m has no identifiers for non-existing processors. But, m(n).Nb #
NbProcessors(m) — 1. This message will eventually be received by processor n. Processor
n then will set m(i).Nb to 0. Thus, the record of processor n in the message m becomes
legitimate. All other records in m will eventually become legitimate in a similar manner.
Then we prove that a non-legitimate message may not remain forever. Let m be a mes-
sage with n < IV different legitimate records and with no record for processor a. This mes-
sage m will eventually reach processor a. Then a adds its own legitimate record increasing n
by 1. If n was N — 1 before the record of a was added, then m becomes a legitimate message.
Otherwise, m reaches another processor and the same process continues until the records of
all processors in the network are added to m. O

Theorem 4.3 The CCT algorithm is self-stabilizing and satisfies the Cut-through constraint.

PROOF : Follows from Theorems 4.1 and 4.2, and Lemmas 4.3 and 4.4. O

31

4.2 Complexity

Space Complexity. The processor space complexity improves by a factor of NV in the cut-
through routing over the store-and-forward model. This result is particularly interesting for
large networks, where a classical (i.e. store and forward) approach would lead to tremen-
dous consumption of memory. More importantly, the cut-through approach leads to a solu-
tion that requires less memory than the task itself.

Lemma 4.5 (Message Space Complexity) A legitimate message is M S = O(NlogyN) bits long.

PROOF : Every legitimate messages has IV records. Each record is composed of Id, which
varies from 0 to N — 1 (logy N bits), and Nb, which varies from 0 to N — 1 (log, N bits). Thus,

MS = N(logyN + logyN)
~ 2Nlogy N
= O(NlogyN)

Lemma 4.6 (Processor Space Complexity) Every processor needs NScr = O(logyN) bits.

PROOF : Every processor needs to store the record being processed, which contains two
fields: Id (= log,V bits) and Nb (= log, NV bits). Each processor also holds the following
variables: (i) Two log, N-bit variables to hold the cut-through related variables (these are
local variables). (ii) One 1-bit variable to hold the local variable (this is also a local variable).

Thus, we have:
NSor

Q

2logy, N
= O(logyN)
|

Time Complexity. As we are dealing with the unidirectional ring networks, we can com-
pute the time needed to complete one round in the ring. The Round Time, T, is the time
needed for the head of the message to complete one round.

N-1

Tr - Z (le + szw—i+1 mod N)
=0

In the following, we assume that the propagation time is the same for all communication
links and is equal to T7.
Lemma 4.7 (CCT Round Time) The round time in the CCT algorithm is O(NlogyN).

PROOF :
Lrer = Zial (Tdi + Tpie—i-H mod N)
~ T ()
~ N (% + T1>
Nlog, N
= O(JCVlongrJ\]f\)[

%

32

Lemma 4.8 (Stabilization Time) The stabilization time for the CCT algorithm is O(N?log, N).

PROOF : If there is no message initially in the network, we can assume that a timer will
generate a message after time 7;..,.. Assume that initially, there is an incorrect message in
the network. At least one processor will initialize a correct message within 7., time. But,
in our algorithm using the markers, it still takes another 7, time to forward the marker
around the ring. After this message is destroyed and a new message is initiated, it will take
one more round, 7}, time, before the message becomes legitimate. In the worst case, the
time is:

cT

TStabilizingcT = 3TTCT = O(N 10g2 N)

5 Conclusions

We presented a general approach to designing a self-stabilizing token ring algorithm in the
cut-through model by designing a special transformer. This transformer takes as input a
cut-through self-stabilizing token passing protocol and produces as output a token ring al-
gorithm in the same model. Our transformation uses only one extra bit per frame and does
not add any extra delay at any processor.

The suitability of the input token passing algorithm in the cut-through setting is ex-
tremely important to the performance of the token ring algorithm. With this goal in mind,
we exploited the key advantages of the cut-through setting in designing an alternating
counter flushing [15] technique. After stabilization, the proposed algorithm lowers the over-
head due to self-stabilization by a factor of 32 compared to that of [15].

We presented a self-stabilizing algorithm to achieve a distributed census over a uni-
directional ring. As in the token passing algorithm, we again took advantage of the cut-
through model in designing an efficient solution to a memory-consuming task (census,
where processors typically require O(N X log, V) bits of memory). Our solution uses only
a fraction of this memory (O(log, IV) bits at each processor). The census problem solution
can be used to design a number of important tasks, e.g., size (number of processors), leader
election (highest identifier).

Although there exist several self-stabilizing algorithms that provide a virtual ring in a
general directed network ([13]), the proposed algorithms may not be easily adaptable to
different routing problems. When processors that do not have as many output channels
as input channels receive more than one messages simultaneously, deadlock may occur. In
Eulerian directed graphs, any processor has as many input channels as output channels, so
the deadlock situation cannot occur. Thus, by composing any of our algorithms with the
self-stabilizing virtual circuit construction of [14] (that preserves the cut-through routing
property and runs in Eulerian networks), we obtain solutions to the same tasks in Eulerian
networks.

Acknowledgements We are grateful to the anonymous reviewers whose valuable com-
ments helped improve the presentation. The first and third authors were supported in part

33

by the FRAGILE project of the ACI “Sécurité et Informatique”.

References

[1] A.Costello and G. Varghese, The FDDI MAC meets Self-stabilization. Proceedings of
Fourth Workshop on Self-stabilizing Systems. pp. 1-9, Austin Texas, 1999.

[2] S. Delaét and S. Tixeuil. Un algorithme auto-stabilisant en dépit de communications
non fiables. Technique et Science Informatiques, 17(5):613-634, 1998.

[3] S. Delaét and S. Tixeuil. Tolerating Transient and Intermittent Failures. Journal of
Parallel and Distributed Computing, Vol.62, No.5, May 2002.

[4] E. Dijkstra. Self stabilizing systems in spite of distributed control. Communications
of the Association of the Computing Machinery, 17:643-644, 1974.

[5] S. Dolev. Self-stabilizing routing and related protocols. Journal of Parallel and Dis-
tributed Computing, 42:122-127, 1997.

[6] S. Dolev. Self-stabilization. The MIT Press, 2000.

[7] S. Dolev and T. Herman. Superstabilizing protocols for dynamic distributed sys-
tems. In Proceedings of the Second Workshop on Self-Stabilizing Systems, pages 3.1-3.15,
1995.

[8] M. Gouda and N. Multari. Stabilizing communication protocols. IEEE Transactions
on Computers, 40:448-458, 1991.

[9] M. Jayaram and G. Varghese. Crash failures and drive protocols to arbitrary states.
In PODC96 Proceedings of the Fifteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 247-256, 1996.

[10] T. Masuzawa. A fault-tolerant and self-stabilizing protocol for the topology prob-
lem. In Proceedings of the Second Workshop on Self-Stabilizing Systems, pages 1.1-1.15,
1995.

[11] R. Perlman. Interconnections: Bridges, Routers, Switches, and Internetworking Protocols.
Addison-Wesley Longman, 2000.

[12] J. Spinelli and R. Gallager. Event driven topology broadcast without sequence num-
bers. IEEE Transactions on Communications, 37:468-474, 1989.

[13] M. Tchuente. Sur l’auto-stabilisation dans un réseau d’ordinateurs. RAIRO Informa-
tique Theoretique, 15:47-66, 1981.

[14] S. Tixeuil. On a space-optimal distributed traversal algorithm. In Proceedings of the
Fifth Workshop on Self-stabilizing Systems, Liboa, Portugal, pp. 216-228, 2001.

[15] G. Varghese, Self-stabilisation by counter flushing. In Proc. 14th ACM PODC Symp.,
November 1994.

34

