*

On a Space-optimal Distributed Traversal Algorithm

Sébastien Tixeuil

Laboratoire de Recherche en Informatique, UMR CNRS 8623,
Université de Paris Sud, 91405 Orsay cedex, France.
email: tixeuil@lri.fr

Abstract

A traversal algorithm is a systematic procedure for exploring a graph by examining all of
its vertices and edges. A traversal is FEulerian if every edge is examined exactly once. We
present a simple deterministic distributed algorithm for the Eulerian traversal problem that is
space-optimal: each node has exactly d states, where d is the outgoing degree of the node, yet
may require O(m?) message exchanges before it performs an Eulerian traversal, where m is the
total number of edges in the network. In addition, our solution has failure tolerance properties:
(i) messages that are exchanged may have their contents corrupted during the execution of the
algorithm, and (%) the initial state of the nodes may be arbitrary.

Then we discuss applications of this algorithm in the context of self-stabilizing virtual cir-
cuit construction and cut-through routing. Self-stabilization ([6, 7]) guarantees that a system
eventually satisfies its specification, regardless of the initial configuration of the system. In the
cut-through routing scheme, a message must be forwarded by intermediate nodes before it has
been received in its entirety. We propose a transformation of our algorithm by means of ran-
domization so that the resulting protocol is self-stabilizing for the virtual circuit construction
specification. Unlike several previous self-stabilizing virtual circuit construction algorithms, our
approach has a small memory footprint, does not require central preprocessing or identifiers,
and is compatible with cut-through routing.

1 Introduction

Traversal A traversal algorithm is a systematic procedure for exploring a graph by examining
all of its vertices and edges. Traversal algorithms are typically used to explore unknown graphs
(see [5]) and build a map as the graph is visited. The case of Eulerian directed graphs (where
every node has as many incoming edges as outgoing edges) offers best performance since a traversal
may be performed by visiting each link exactly once (it is then an Fulerian traversal). In [5], a
centralized algorithm is proposed that traverses an Eulerian graph by visiting at most 2m edges,
where m is the overall number of directed edges; once the graph map has been built, one can easily
use well-known centralized algorithms to compute an Eulerian cycle (a cycle that includes all edges

*This a joint submission to DISC’01 and WSS’01

exactly once), which in turn can be used to perform an Eulerian traversal. In [10], a distributed
solution to the Eulerian cycle construction is given, that requires 2m message exchanges and Q(d?)
memory states at each node, where d is the outgoing degree of the node.

Self-stabilization Robustness is one of the most important requirements of modern dis-
tributed systems. Various types of faults are likely to occur at various parts of the system. These
systems go through the transient faults because they are exposed to constant change of their
environment. One of the most inclusive approaches to fault tolerance in distributed systems is self-
stabilization [6, 7]. Introduced by Dijkstra in [6], this technique guarantees that, regardless of the
initial state, the system will eventually converge to the intended behavior or the set of legitimate
states. Since most self-stabilizing fault-tolerant protocols are non-terminating, if the distributed
system is subject to transient faults corrupting the internal node state but not its behavior, once
faults cease, the protocols themselves guarantee to recover in a finite time to a safe state without the
need of human intervention. This also means that the complicated task of initializing distributed
systems is no longer needed, since self-stabilizing protocols regain correct behavior regardless of the
initial state. Furthermore, note that in practice, the context in which we may apply self-stabilizing
algorithms is fairly broad since the program code can be stored in a stable storage at each node so
that it is always possible to reload the program after faults cease or after every fault detection.

Cut-through routing The cut-through routing is used in many ring networks (including
IBM Token Ring and FDDI). In this routing scheme, a node can start forwarding any portion of
a message to the next node on the message’s path before receiving the message in its entirety. If
this message is the only traffic on the path, the total delay incurred by the message is bounded by
the transmission time (calculated on the slowest link on the path) plus the propagation delay. So,
the total message delay is proportional to the length of the message and to the number of links on
the path. Some pieces of the same message may simultaneously be traveling on different links and
some other pieces are stored at different nodes. As the first bit of the message is transmitted on
the links on the message’s routing path, the corresponding links are reserved, and the reservation
of a link is released when the last bit of the message is transmitted on the link.

This approach removes the need of having a local memory of any node greater than the one
required to store a bounded number of bits, and also reduces the message delay to a small (bounded
by the buffer size of the node) value. As with the current processors, the time needed for send-
ing/receiving bits to/from a communication medium is far greater than the time needed to perform
the basic computational steps (such as integer calculations, tests, read/write from/to registers,
etc.), we can assume that a given process can perform a limited number of steps between the
receipt of two pieces of a message.

Our contribution First, we present a distributed algorithm that is state optimal relatively to
the Eulerian traversal problem. At every node, exactly d memory states are needed, where d is the
actual outgoing degree of the node. In addition, our algorithm makes very little hypothesis about
the system on which it is run. For example, nodes need not have unique identifiers or a special
distinguished leader. Node variables need not be properly initialized when the protocol is started.

Moreover, our protocol remains behaving accordingly to the Eulerian traversal specification even
when messages that are exchanged between nodes have their content arbitrarily corrupted from time
to time, even during the execution of the algorithm. Still, when it is first started, our algorithm
may exhibit a transient O(m?) time period (where m is the overall number of edges) during which
it performs the first traversal of the network. That first traversal may not be Eulerian, but every
subsequent traversal is and remains Eulerian.

Second, and hinted by the failure tolerance properties of our algorithm (message contents cor-
ruption, node memory initial corruption), we transform it into a self-stabilizing virtual circuit con-
struction algorithm by means of randomization. Informally, there exist two kinds of self-stabilizing
virtual circuit constructions in the literature. Some (as reported in [7]) assume bidirectional net-
works (which are a proper subset of Eulerian networks), and construct in a self-stabilizing way
a spanning tree, then performs an Eulerian tour of this tree (which is trivially done). Others
(e.g. [1, 12]) assume only strongly connected networks (which are a proper superset of Eulerian
networks), but either require some central preprocessing or unique node identifiers, have high mem-
ory footprint, and are not compatible with cut-through routing. In comparison, our virtual circuit
construction only performs in directed Eulerian networks, yet does not require central preprocessing
or identifiers, has small memory footprint, and is compatible with cut-through routing. Moreover,
when used as a lower layer by some other algorithm using the composition scheme of e.g. [8], the
so-constructed virtual ring permits a bijective mapping between nodes in the original Eulerian
network and nodes in the virtual ring network. This bijection permits not to change the upper
layer algorithm. Then, previously known self-stabilizing cut-through algorithms that perform on
unidirectional rings (e.g. [2, 4, 14]) can now be run on Eulerian networks without any change in
their code.

Overview In section 2, we present the system model and definitions that will be used through-
out the paper. In section 3, a distributed Eulerian traversal algorithm is presented, along with as-
sociated correctness and complexity results. Applications to self-stabilization and the cut-through
routing are given in Section 4. Concluding remarks are provided in Section 5.

2 Model

A processor is a sequential deterministic machine that uses a local memory, a local algorithm
and input/output capabilities. Such a processor executes its local algorithm, that modifies the
state of the processor memory, and send/receive messages using the communication ports. An
unidirectional communication link transmits messages from a processor o (for origin) to a processor
d (for destination). The link is interacting with one input port of d and one output port of 0. We
assume that links do not loose, reorder or duplicate messages.

A distributed system is a 2-tuple S = (P, L) where P is the set of processors and L is the set of
communication links. A distributed system is represented by a directed graph whose nodes denote
processors and whose directed edges denote communication links. The state of a processor can
be reduced to the state of its local memory, the state of a communication link can be reduced to
its contents, then the global system state, called a configuration, is the product of the states of

memories of processors of P and of contents of communication links in L. The set of configurations
is denoted by C.

Our system is not fixed once for all: it passes from a configuration to another when a processor
executes an instruction of its local algorithm or when a communication link delivers a message to
its destination. This sequence of reached configurations is called a computation, and is a maximal
sequence of configurations of S denoted by Cy,Cs, ... and such that for any positive integer i, the
transition from C; to Cjy; is done through execution of an atomic action of every element of a non
empty subset of P and/or L. Configuration C is called the initial configuration of the computation.
In the most general case, the specification of a problem is by enumerating computations that satisfy
this problem. Formally, a specification is a set of computations. A computation E satisfies a
specification A if it belongs to A.

A self-stabilizing algorithm does not always verify its specification. However, it seeks to reach a
configuration from which any computation will verify its specification. A set of configurations B C C
is closed if for any b € B, any possible computation of system S whose b is initial configuration only
contains configurations in B. A set of configurations By C C is an attractor for a set of configurations
By C Cif for any b € B; and any possible computation of & whose initial configuration is b, the
computation contains a configuration of By. Then a system § is self-stabilizing for a specification
A if there exists a non-empty set of configurations £ C C such that (closure) any computation of
S whose initial configuration is in £ satisfies A and, (convergence) L is an attractor for C.

In this paper, we also use a weaker requirement than self-stabilization that we call node-
stabilization. Informally, a system is node-stabilizing if it reaches a correct behavior independently
of the initial state of the nodes, yet one may assume that the state of the communications links
satisfies some global predicate. Then a system S is node-stabilizing for a specification A if there
exists two non-empty sets of configurations £ C C and N C C such that (closure) any computa-
tion of & whose initial configuration is in £ satisfies A, (convergence) L is an attractor for N,
and (node independence) all possible node states are in N.

3 State-optimal distributed Eulerian traversal

In this section, we present a distributed algorithm that stabilizes to an Eulerian traversal provided
that it is executed starting from a configuration where a single message is present (either at a
node of within a communication link). In the following, we call such a configuration a singular
configuration.

While the time complexity of this algorithm is not optimal (O(m?) starting from the worst
possible initial configuration, while [10] provides a O(m) distributed algorithm, where m is the
overall number of edges of the network), it does have nice static (it is state optimal at every node)
and dynamic (it is node-stabilizing) properties.

3.1 The Algorithm

We assume ¢~ (i) and 6T (i) denote respectively the incoming and outgoing degree of node i. As the
communication graph is Eulerian, let d; = 6~ (i) = 7 (7). Moreover, each processor P; has a Path;

(a)The system at the beginning of first round (b)The system at the beginning of second round

(c)The system at the beginning of third round (d)The system at the beginning of fourth round

Figure 1: Example of computation of Algorithm 1

variable, that takes values between 0 and d; — 1. All operations on this variable are done modulo
d;. Algorithm 1, that is executed upon receipt of a message m, is the same for all processors in the
system.

Algorithm 1 Distributed Fulerian traversal algorithm at node i
Send m using the outgoing link whose index is Path;
Path; «— Path; +1

Example of computation Figure 1.4 presents a distributed system whose communication
graph is Eulerian: processors A, C', and F' each have one incoming link and one outgoing link;
processors B, D and E each have two incoming links and two outgoing links. The Path; variable
of each processor P; is denoted by an arrow that points to the outgoing link on which the next
message will be sent to. For example, processor A has just sent message m and processor B (which
is about to receive m) will retransmit it through its outgoing link bs. We now follow the path
of message m from ”initiator” A (actually the latest processor that transmitted m). Given the
initial Path; variables configuration, m will go through links aq, b2, d; and ¢; before it returns to
processor A. The followed path is obviously not Eulerian, since links b1, ds, e1, es and f; have not
been visited by m. Nevertheless, variables Pathpg and Pathp have changed their values during this
round of message m: Pathp now points to by and Pathp to ds.

Figure 1.0 presents the same distributed system as Figure 1.a, but at the second round of
message m. Given the configuration of the Path; variables, message m follows links a1, b1, e1, do,
ba, dy then c¢; before returning to processor A. Again, the followed path is not Eulerian, since links
eo and f1 have not been followed by m. Yet, the Pathg variable has changed value during this
second round of m: it now point to es. At the contrary, variables Pathp and Pathp are back to
the values they had at the beginning of second round (i.e. by and da, respectively).

Figure 1.c presents the same system at the beginning of third round. Given the Path; variables
configuration, the message will follow links a1, b1, e2, f1, €1, do, b, di then ¢; before returning
to processor A. The followed path is Eulerian, since every link is traversed exactly once, and that
message m is back to the ”initiator” A. Moreover, Path; variables hold the same values as at the
beginning of third round (see Figure 1.d), which means that the fourth round will be identical to
the third. Consequently, message m will follow the very same Eulerian path infinitely often.

3.2 Proof of correctness

We wish to prove that Algorithm 1 is node-stabilizing for the Eulerian traversal problem. Each of
the following lemmas assume that the algorithm is started from a singular configuration as defined
below:

Definition 2 A configuration C is singular if it contains exactly one message (either traversing a
node or a communication link).

The liveness lemma (Lemma 3) shows that Send actions through a particular link appear in-
finitely often in any computation, and so for any particular link. The following lemmas make use of
it and consider computation factors that begin and end with the same Send action. The uniqueness
lemma (Lemma 5) shows that between any two successive Send actions on the same link, no other
link may be related to more than one Send action. The completeness lemma (Lemma 6) shows
that after every link is related to at least one Send action, between any two successive Send action
on a particular link, every other link is related to exactly one Send action. Finally, the legitimacy
lemma (Lemma 7) shows that these Send actions appear always in the same order, and thus that
the message performs an Eulerian traversal forever.

Lemma 3 Starting from a singular configuration, every link is visited by the message infinitely

often.

Proof. Suppose there exists a link ¢;—.; (allowing P; to send messages to P;) that is not visited
infinitely often starting from a singular configuration. From Algorithm 1, if processor P; executes
Send actions infinitely often, it does so on every outgoing link. Then, if P; did not execute a Send
action infinitely often on link ¢;_;, then P; has executed Send action only a finite number of times
in the whole computation, and thus P; received the message only a finite number of times. Every
incoming link P; are then in the same case as c;—;, and have not been visited infinitely often.
Applying the same reasoning again and since the network is finite and strongly connected, no link
has been visited infinitely often. This contradicts the fact that Algorithm 1 may not deadlock
starting from a singular configuration (since every receipt of a message implies an immediate Send
action). m

Notation 4 For the sake of simplicity in the proof of the following lemmas, we arbitrarily number
links from 1 to L (the number of links in the system) and denote by l; a Send action through link
number j. Thus l; and l, denote Send action on different links if j # p and on the same link if

J =0

Lemma 5 Starting from a singular configuration, between any two Send actions on the same link,
no other link is associated with a Send action twice.

Proof. Let us consider a particular computation e of Algorithm 1 and its projection p on Send
actions. From Lemma 3, action l; appears infinitely often in p. Let us study a factor f of p that
starts and ends with /; and such that f does not contain any other [;.

We do not discuss the trivial case f = l1l; where no other Send action that on the unique link
is possible (in this case, the Eulerian traversal is trivially satisfied). Now assume that between the
two [actions, f contains some action [twice: f = lils...lp ...l ...l1. In more details, while
the n first actions of f are pairwise distinct, the second [is the first action that appears twice in
f. We will show that the existence of [; leads to a contradiction.

Action [}, is a Send action on link ¢;_,;. If P; performed twice a Send action involving ¢;_.; (the
two occurrences of I;), then P; received 67 (i) + 1 times the message. In turn, if P; received 6 (i) +1
times the message, and since the graph is Eulerian, P; received it 6 (i) + 1 times and thus twice
from the same incoming link. Then it follows that two Send actions occurred on this incoming link.
In the writing of f = l1lo...lg ...yl .. .11, this means that some two actions between [; and [,, are
identical, while our hypothesis claims that they are pairwise distinct. Therefore every factor f of
p of length n + 1 that starts and ends with /; can be written as f ={1...l,/;. =

Lemma 6 Starting from a singular configuration, and after every link has been wvisited by the
message, between any two Send actions on the same link, every other link is associated with a Send
action exactly once.

Proof. Let us consider a computation of the algorithm. From Lemma 3, this computation
contains each Send action infinitely often. It is then possible to write its projection p on Send
actions as: tolitilits...l1tyl1 ... where tg contains at least once each of the lke{l’._’L} and where
none of the ¢;>; contains /1. From Lemma 5, it is impossible that any of the ¢;> contains the same
Send action ;1 twice. Therefore, all factors ¢;>1 are of length at most L — 1.

Suppose now that the factor t; (j > 1) is of length strictly lower than L —1 and let us denote by
l, (p # 1) the Send action that does not appear in t;. Lemma 3 ensures that [, appears infinitely
often in the computation. Thus there exists a smallest k > j such that [, is a send action of factor
tix. Moreover, since [, appears by definition in ?y, there also exists a greatest m < j such that [, is
a Send action of factor t¢,,.

Consequently, the projection p has a factor t,,lity41...¢; ... ty—1l1ty where [, (p # 1) does not
appear in any of the ;c(,,41,...x—1) but appears in ¢, and in #;:

no I,

..lp...lltm+1...tj...tkflll...lp...
tm tr

The Send action /1 then appears twice between two successive Send actions [,,, which contradicts
Lemma 5.

In conclusion, in the projection factor tolitil1te ... lityly ..., every t;>1 contains only different
Send actions and is of size L — 1. In other terms, after every link has been visited by the message
(i.e. after tp), between any two Send actions on the same link /1, every other link is associated with
a Send action exactly once (every t;>1 contains each lkeqo,..,1y exactly once). ®m

Lemma 7 Starting from a singular configuration, and after every link has been wvisited by the
message, between any two Send actions on the same link, every other link is associated with a Send
action exactly once and in the same order.

Proof. Let us consider a computation of the algorithm. From Lemma 3, this computation
contains each Send action infinitely often. It is then possible to write its projection p on Send
actions as: tolitilits...l1tyl1 ... where tg contains at least once each of the lke{ler} and where
(from Lemma 6) every t;>; contains exactly once each of the lpc(o . 7}. In more details, for
tj =lals...lp we can write t;j11 as ly(2)ly(3) - - - lo(1), Where o is a permutation. Assume that there
exists a smallest integer ¢iin {2,..., L} and such that o(q1) # ¢1. Then there exists an integer g9
(¢1 < g2 < L) and such that o(q1) = ¢a.

We are now able to rewrite a factor of the projection p as:

lalg .. g —1lg lg1 - lgo—1lgy - lplilols . g —1lgylo(gi41) - - lo(ge—1)lar - - - Loy 1

tj ti+1

Then, between two l,,, Lemma 5 is contradicted. Indeed, between two successive occurrences of Iy, ,
we find two occurrences of ly,. This contradiction permits to prove that every possible permutation
o is reduced to the identity and that the projection p can be written as to(l1t1)“. After every link
has been visited by the message head (after ty), between any two Send actions on the same link [y,
every other link is associated with a Send action exactly once and in the same order as in ;. m

Theorem 8 Starting from an singular configuration, Algorithm 1 stabilizes to an Eulerian traver-
sal.

Proof. In Lemma 7, we proved that any computation has a factor of the projection p on Send
actions of the form to(l1ly...11)*¥, where tj is finite. Consequently, an Eulerian traversal through
links 1 to L is performed infinitely often after a finite number of message exchanges. m

3.3 Complexity

In order to know the outgoing link to which a message is to be sent, a processor P; requires d;
states. Similarly, to know the incoming link by which a message was receipt, P; requires d; states.
We show that a d; states memory per processor is necessary for distributed Eulerian traversal.

Lemma 9 Fvery distributed Eulerian traversal algorithm requires d; states at processor P;.

Proof. Suppose that there exists an Eulerian traversal algorithm (deterministic or probabilistic,
stabilizing or non-stabilizing) such that there exists at least one processor P; that uses at most d; —1
states. In an Eulerian network, every processor P; has at least one incoming and one outgoing edges.
Thus for any P;, d; > 1. If d; = 1, then if P; has less than one state, it may execute no code. Now,
if d; > 2, assume that P; has at most d; — 1 states.

In this last case, there exists at least two incoming links ¢; and co of P; by which P; received
the message and such that P; had to perform a Send action using the same outgoing link c3 twice
(in case P;’s algorithm is deterministic) or twice with probability € > 0 (in case P;’s algorithm
is probabilistic). Then the message forwarding scheme is not Eulerian, since at any point in the
computation, it is either certain or possible that two incoming links are not forwarded to two
different outgoing links. m

A direct corollary of this lemma is the following theorem.

Theorem 10 Algorithm 1 is state optimal.
For the time complexity part, a direct consequence of Lemma 5 is the following theorem.

Theorem 11 Algorithm 1 performs its first traversal whithin O(m?) message exchanges.

4 Applications

In this section, we investigate applications of Algorithm 1 in the context of self-stabilization. Strictly
speaking, Algorithm 1 is not self-stabilizing, since its correct behavior requires that it is started
from a singular configuration (a configuration where a single message is present). However, it
does stabilizes to an Eulerian traversal independently of nodes initial state and messages actual
contents. Randomization enables to make Algorithm 1 self-stabilizing without the overkill of using
a self-stabilizing mutual exclusion algorithm to guarantee uniqueness of the message; then the
resulting self-stabilizing virtual circuit construction algorithm shows some interest particularly in
the context of cut-through routing, where nodes must retransmit messages before they are done
receiving them. Due to space constraints, all proofs in this section are only informally sketched,
yet the interested reader may refer to [13].

4.1 Reaching a singular configuration

Since [9] showed that message-passing self-stabilizing algorithms require timeouts to handle the case
where no message is initially present in the network, we concentrate here on eliminating superfluous
messages in the case where the number of initially present messages is greater or equal to 2. Our
solution is by giving different randomized speeds to messages so that in an infinite computation,
it is possible that two messages are present at the same node at the same time. The result of that
event is the node discarding every message but one.

Multiple speeds If the system is asynchronous (the communication time between the origin
and the destination of a link may be arbitrary), we assume a random distribution on communication
time, so that the speeds of the messages are actually different.

If the system is synchronous (the communication time between the origin and the destination
of a link is bounded by 1), we can split every computation in global steps during which every
message is sent and received, and assume that nodes dispose of a random Boolean variable. At
each global step, every node that receives a message consults its random variable: if the random
variable returns true, then the node holds the message one more global step; otherwise it sends the
message immediately. Note that a node may hold a message for at most one global step, and that
the induced relative speeds on messages are now different and randomized. This technique has a
low memory footprint since a node needs only to know if it should wait one more global step (one
bit is sufficient).

Message decreasing Now assuming that messages do have different speeds, we show that
Algorithm 1 stabilizes to a single message configuration. Indeed, starting from an arbitrary config-
uration with at least two messages, two cases may appear:

1. At least two messages follow the same circuit that goes through all links in the Eulerian graph.
By the probabilistic setting, these two messages have different speeds and thus starting from
any configuration, there is a positive probability that they are at the same node, which will
discard all messages but one, so that the overall number of messages decreases.

2. At least two messages follow two different circuits, but from the rotating exploration nature
of Algorithm 1, these two circuits do share a common node i. Then, from the probabilistic
speeds of these two messages, starting from any configuration, there is a positive probability
that at some point in the computation, they are at the same node, which will discard all
messages but one. Then the overall number of messages decreases.

Since at any time there is a positive probability that, in a finite number of steps, the number of
messages decreases if it is strictly greater that 1, then by the main theorem of [3], after finite time
a single message remains in the system with probability 1.

4.2 Towards a virtual ring construction

Since self-stabilization was first presented by Dijkstra in 1974 (see [6]), which provided three mutual
exclusion algorithm on unidirectional ring networks, numerous works in self-stabilization were pro-
posed on unidirectional rings (see [11] or [7]). Therefore, it is interesting to provide a scheme that
permits to run such algorithms on more general networks, by constructing a virtual ring topology
on top of which the original algorithm is run.

Many self-stabilizing solutions to the virtual ring construction problem exists for bidirectional
networks (which are a proper subset of Eulerian networks); many of these works first construct a
spanning tree of the graph, then perform an Eulerian tour of the spanning tree (see [7]). In general
strongly connected networks (which are a proper superset of Eulerian networks), approaches by
Tchuente ([12]) and Alstein et al. ([1]) make use of a central preprocessing of the communication
graph, or assume that nodes are given unique identifiers. Two drawbacks of [1, 12] is the high
memory consumption and the fact that nodes simulate several processes in the virtual ring, which
may be incorrect for some applications (such as [2]). In addition, and to the best of our knowledge,
none of the aforementioned approaches can be used in non-ring networks when the cut-though
routing scheme is used.

Our solution circumvents many of the previously mentioned drawbacks: the class of Eulerian
graphs that we consider is intermediate between bidirectional and strongly connected graphs classes,
we do not require central preprocessing nor unique node identifiers, memory consumption is low
(O(d) at each node, where d is the outgoing degree of the node), and efficient cut-through routing
is supported.

Cut-through routing compliance The two main reasons for the cut-through routing compli-
ance are the following: (i) since the underlying graph is Eulerian, each node has as many incoming

10

links as outgoing links, so when a message arrives, it may be forwarded immediately to a free out-
going link, and (7i) since the message contents is unused in the forwarding scheme, no additional
processing is needed before giving control to the composed cut-through algorithm (that could be
any of [2, 4, 14]).

Virtual circuit bijection In addition, the Eulerian property of the traversal guarantees that
each link is visited exactly once at each traversal. Thus, if a node has d outgoing links, then the link
that is locally labeled 0 at this node is visited exactly once at each Eulerian traversal, no matter
how the local labeling on outgoing links is performed. Assume now that our Eulerian traversal
algorithm is run to build a virtual circuit that is used by an upper layer application (such as [2]). If
the upper layer application is activated only when a message arrives and the Path; variable equals
0, then we are guaranteed that this upper application is activated exactly once at each Eulerian
traversal. This means that at the upper application level, there is a bijection between the nodes in
the actual system and the nodes in the virtual ring system. This bijection is usually required for
sake of correctness or service time guarantee.

5 Concluding remarks

We presented a state-optimal distributed solution to the Eulerian traversal problem. Each node
only needs d memory states, where d is the node outgoing degree. Our algorithm also presents some
failure resilience properties: it is independent of the message contents and after O(m?) message
exchanges, it stabilizes to an infinite Eulerian traversal whatever the initial configuration of the
nodes may be (it is node-stabilizing).

The message content independence was shown useful in the context of cut-through routing,
since a node need not know the contents of a message to properly route it. The insensitivity to
node initialization was extended by means of randomization so that the resulting system is self-
stabilizing. This solution permits to avoid high memory consumption and preprocessing that were
required by previous approaches.

References

[1] D. Alstein, J. H. Hoepman, B. E. Olivier , and P.I.A. van der Put. Self-stabilizing mutual
exclusion on directed graphs. Technical Report CS-R9513, CWI, 1994. Published in Computer
Science in the Netherlands (CSN 94), pp. 45-53.

[2] J. Beauquier, A. K. Datta, and S. Tixeuil. Self-stabilizing Census with Cut-through Con-
straints. In Proceedings of the Fourth Workshop on Self-stabilizing Systems (WSS’99), Austin,
Texas. pp. 70-77, May 1999.

[3] J. Beauquier, M. Gradinariu, and C. Johnen. In Proceedings of the International Conference
on Principles of Distributed Computing (PODC’99), Atlanta, pp. 199-208, 1999.

11

[4]

[5]

[12]

[13]

[14]

A. M. Costello and G. Varghese. The FDDI MAC meets self-stabilization. In Proceedings of
the Fourth Workshop on Self-stabilizing Systems (WSS5’99), Austin, Texas. pp. 1-9, May 1999.

X. Deng and C. H. Papadimitriou. Exploring an unkown graph. In Proceedings of the 31"

Annual IEEE Symposium on Foundations of Computer Science, Vol. I, pp. 355-361, 1990.

E. W. Dijkstra. Self-stabilization in spite of distributed control. Communications of the Asso-
ciation of the Computing Machinery, 17:643-644, 1974.

S. Dolev. Self-stabilization. The MIT Press. 2000.

M. G. Gouda and T. Herman. Adaptive programming. IEEFE Transactions on Software Engi-
neering, 17:911-921, 1991.

M. G. Gouda and N. Multari. Stabilizing communication protocols. IEEE Transactions on
Computers, 40:448-458, 1991.

M. Hadim M. and A. Bouabdallah. A distributed algorithm for constructing an Eulerian cycle
in networks. In Proceedings of International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’99), Las Vegas, USA, June 28"-July 1¢, 1999.

T. Herman. A Comprehensive Bibliography on Self-Stabilization. A Working
Paper in the Chicago Journal of Theoretical Computer Science. Available at
http://wuw.cs.uiowa.edu/ftp/selfstab/bibliography/.

M. Tchuente. Sur I'auto-stabilisation dans un réseau d’ordinateurs. RAIRO Informatique
Théorique, 15:47-66, 1981.

S. Tixeuil. Auto-stabilisation efficace. Ph.D. Thesis, Université de Paris Sud, France. Jan.
2000. Available at http://www.lri.fr/ tixeuil.

S. Tixeuil and J. Beauquier. Self-stabilizing Token Ring. In Proceedings of International Con-
ference on System Engineering (ICSE’96), Las Vegas, Nevada. Jul. 1996.

12

