Easy Fault Injection and Stress Testing with
FAIL-FCI

William Hoarau, Sébastien Tixeuil, and Fabien Vauchelles

LRI-CNRS 8623 et INRIA Grand Large
{hoarau,tixeuil}@lri.fr

Abstract. In a network consisting of several thousands computers, the
occurrence of faults is unavoidable. Being able to test the behavior of a
distributed program in an environment where we can control the faults
(such as the crash of a process) is an important feature that matters in
the deployment of reliable programs.

In this paper, we extend FAIL-FCI (for Fault Injection Language, and
FAIL Cluster Implementation, respectively), a software tool that permits
to elaborate complex fault scenarios in a simple way, while relieving the
user from writing low level code. In particular, we show that not only we
are able to fault-load existing distributed applications (as used in most
current papers that address fault-tolerance issues), we are also able to
inject qualitative faults, i.e. inject specific faults at very specific moments
in the program code of the application under test. Finally, and although
this was not the primary purpose of the tool, we are also able to inject
specific patterns of workload, in order to stress test the application under
test. Interestingly enough, the whole process is driven by a simple unified
description language, that is totally independent from the language of
the application, so that no code changes or recompilation are needed on
the application side.

1 Introduction

One of the topics of paramount importance in the development of Grid mid-
dleware is the impact of faults since their probability of occurrence in a Grid
infrastructure and in large-scale distributed system is actually very high. So it
is expected that Grid middleware is itself reliable and provides a comprehen-
sive support for fault-tolerance mechanisms, such as failure-detection, check-
pointing-recovery, replication, software rejuvenation, component-based reconfig-
uration, among others. One of the techniques to evaluate the effectiveness of
those fault-tolerance mechanisms and the reliability level of the Grid middle-
ware is to make use of some fault-injection tool and robustness tester to conduct
some experimental assessment of the dependability metrics of the target system.
In this paper, we present a software that can be used both for software fault-
injection and for stress testing of distributed applications, which are the basis
for dependability benchmarking in Grid Computing.

In a network including several thousands machines, the appearance of faults
is unavoidable. Some applications (for example peer to peer applications) involve

a considerable number of users, e.g. to exchange files or to execute long calcula-
tions (SeTi@Home, Decrypthon, Xtremweb, Boinc, etc.). For those applications,
the appearance and disappearance of participating machines are unpredictable,
very frequent and occur eventually while the application is run. It is particularly
difficult to study the functioning of large-scale distributed programs: it would be
necessary to have a considerable number of computers and engineering power to
execute the software in an actual situation, to measure the performances or to
detect the defects. With the difficulty to set up such experiments and the fact
that fault occurrences in such systems is not neither controllable nor predictable
(it is also difficult to compare various solutions), two other approaches are possi-
ble: simulation and emulation. Simulation allows complete control of the runtime
environment, but fails in imitating the actual behavior of all components in the
system. Emulation consists in using a small network to reproduce the behavior
of a large-scale network. However, it is not enough to emulate the machines used
by the participants: it is also necessary to reproduce their behavior.

Testing the validity of fault-tolerant software and measuring the impact on
performance of occurring faults requires being able to control those faults. In-
deed, a fundamental result [5] shows that in an asynchronous distributed system
(where the relative speeds of the processors are not known and unbounded), it
is impossible to solve the consensus problem (all processors terminate agreeing
on some initial value) when there is as little as one faulty process, even when
the considered fault is as simple as a crash fault. The reason for this is that
the decided value can depend on just one process and that in an asynchronous
system, it is impossible to distinguish between a crashed process and a very slow
one. When an application is run on a cluster, it is likely that machines will run
roughly at the same speed (for example a one to ten ratio on the relative speeds
of the processors makes it easy to solve the consensus problem), so the consid-
ered system is actually synchronous. Afterwards, when the application is then
run at a larger scale (e.g. in an Internet-like setting) where the strong synchrony
hypothesis does not hold any more, crucial issues related to fault-tolerance and
asynchronous settings have been overlooked.

2 Related works

When considering solutions for software fault injection in distributed systems,
there are several important parameters to consider. The main criterion is the us-
ability of the fault injection platform. If it is more difficult to write fault scenarios
than to actually write the tested applications, those fault scenarios are likely to
be dropped from the set of performed tests. The issues in testing component-
based distributed systems have already been described and methodology for
testing components and systems has already been proposed [6,?]. However, test-
ing for fault tolerance remains a challenging issue. Indeed, in available systems,
the fault-recovery code is rarely executed in the test-bed as faults rarely get
triggered. As the ability of a system to perform well in the presence of faults
depends on the correctness of the fault-recovery code, it is mandatory to ac-

tually test this code. Testing based on fault-injection can be used to test for
fault-tolerance by injecting faults into a system under test and observing its be-
havior. The most obvious point is that simple tests (e.g. every few minutes or
so, a randomly chosen machine crashes) should be simple to write and deploy.
On the other hand, it should be possible to inject faults for very specific cases
(e.g. in a particular global state of the application), even if it requires a bet-
ter understanding of the tested application. Also, decoupling the fault injection
platform from the tested application is a desirable property, as different groups
can concentrate on different aspects of fault-tolerance. Decoupling requires that
no source code modification of the tested application should be necessary to
inject faults. Also, having experts in fault-tolerance test particular scenarios for
application they have no knowledge of favors describing fault scenarios using a
high-level language, that abstract practical issues such that communications and
scheduling. Finally, to properly evaluate a distributed application in the context
of faults, the impact of the fault injection platform should be kept low, even if
the number of machines is high. Of course, the impact is doomed to increase with
the complexity of the fault scenario, e.g. when every action of every processor
is likely to trigger a fault action, injecting those faults will induce an overhead
that is certainly not negligible.

Several fault injectors for distributed systems already exist. Some of them
are dedicated to distributed real-time systems such as DOCTOR [8]. ORCHES-
TRA [3] is a fault injection tool that allows the user to test the reliability and
the liveliness of distributed protocols. ORCHESTRA is a ”Message-level fault
injector” because a fault injection layer is inserted between two layers in the
protocol stack. This kind of fault injector allows injecting faults without requir-
ing the modification of the protocol source code. However, the expressiveness
of the faults scenario is limited because there is no communication between the
various state machines executed on every node. Then, as the faults injection is
based on exchanged messages, the knowledge of the type and the size of these
messages is required. Nevertheless, those approaches do not fit the cluster and
Grid category of applications.

The NFTAPE project [13] arose from the double observation that no tool is
sufficient to inject all fault models and that it is difficult to port a particular tool
to different systems. Although NFTAPE is modular and very portable, the choice
of a completely centralized decision process makes it very intrusive (its execution
strongly perturbs the system being tested). Finally, writing a scenario quickly
becomes complex because of the centralized nature of the decisions during the
tests when they imply numerous nodes.

LOKI [2] is a fault injector dedicated to distributed systems. It is based
on a partial view of the global state of the distributed system. An analysis a
posteriori is executed at the end of the test to infer a global schedule from
the various partial views and then verify if faults were correctly injected (i.e.
according to the planned scenario). However, LOKI requires the modification of
the source code of the tested application. Furthermore, faults scenario are only
based on the global state of the system and it is difficult (if not impossible) to

specify more complex faults scenario (for example injecting ”cascading” faults).
Also, LOKI there is no support for randomized fault injection.

In [10] is presented Mendosus, a fault-injection tool for system-area networks
that is based on the emulation of clusters of computers and different network
configurations.

Finally in [12] is presented a fault-injection tool that was specially developed
to assess the dependability of Grid (OGSA) middleware. However, the tool de-
scribed in that paper is very limited since it only allows the injection of faults in
the XML messages in the OGSA middleware, which seems to be a bit far from
the real faults experienced in real systems.

Recently, the FAIL-FCI architecture [9] was proposed. This solution ad-
dresses most of the drawbacks of previous approaches, and is overviewed in
the next section.

3 Overview of FAIL-FCI

In this section, we describe the FAIL-FCI framework that is presented in [9].
For further explanations, please refer to the original paper. First, FAIL (for
Fault Injection Language) is a language that permits to easily described fault
scenarios. Second, FCI (for FAIL Cluster Implementation) is a distributed fault
injection platform whose input language for describing fault scenarios is FAIL.
The FAIL language allows defining fault scenarios. A scenario describes, using a
high-level abstract language, state machines which model fault occurrences. The
FAIL language also describes the association between these state machines and
a computer (or a group of computers) in the network.
The FCI platform is composed of several building blocks:

The FCI compiler: The fault scenarios written in FAIL are pre-compiled by the
FCI compiler which generates C+-+ source files and default configuration
files.

The FCI library: The files generated by the FCI compiler are bundled with the
FCI library into several archives, and then distributed across the network to
the target machines according to the user-defined configuration files. Both
the FCI compiler generated files and the FCI library files are provided as
source code archives, to enable support for heterogeneous clusters.

The FCI daemon: The source files that have been distributed to the target ma-
chines are then extracted and compiled to generate specific executable files
for every computer in the system. Those executables are referred to as the
FCI daemons. When the experiment begins, the distributed application to
be tested is executed through the FCI daemon installed on every computer,
to allow its instrumentation and its handling according to the fault scenario.

The FAIL-FCI approach is based on the use of a software debugger. Like the
Mantis parallel debugger [11], FCI communicates to and from gdb (the Free Soft-
ware Foundation’s portable sequential debugging environment) through Unix
pipes. But contrary to Mantis approach, communications with the debugger are

kept to a minimum to guarantee low overhead of the fault injection platform (in
our approach, the debugger is only used to trigger and inject software faults).
The tested application can be interrupted when it calls a particular function or
upon executing a particular line of its source code. Its execution can be resumed
depending on the considered fault scenario. With FCI, every physical machine is
associated to a fault injection daemon. The fault scenario is described in a high-
level language and compiled to obtain a C++ code which will be distributed on
the machines participating to the experiment. This C++ code is compiled on
every machine to generate the fault injection daemon. Once this preliminary task
has been performed, the experience is then ready to be launched. The daemon
associated to a particular computer consists in:

1. a state machine implementing the fault scenario,

2. a module for communicating with the other daemons (e.g. to inject faults
based on a global state of the system),

. a module for time-management (e.g. to allow time-based fault injection),

4. a module to instrument the tested application (by driving the debugger),
and

. a module for managing events (to trigger faults).

w

ot

FCI is thus a Debugger-based Fault Injector because the injection of faults
and the instrumentation of the tested application is made using a debugger. This
makes it possible not to have to modify the source code of the tested application,
while enabling the possibility of injecting arbitrary faults (modification of the
program counter or the local variables to simulate a buffer overflow attack, etc.).
From the user point of view, it is sufficient to specify a fault scenario written in
FAIL to define an experiment (See subsequent section). The source code of the
fault injection daemons is automatically generated. These daemons communi-
cate between them explicitly according to the user-defined scenario. This allows
the injection of faults based either on a global state of the system or on more
complex mechanisms involving several machines (e.g. a cascading fault injec-
tion). In addition, the fully distributed architecture of the FCI daemons makes
it scalable, which is necessary in the context of emulating large-scale distributed
systems. FCI daemons have two operating modes: a random mode and a deter-
ministic mode. These two modes allow fault injection based on a probabilistic
fault scenario (for the first case) or based on a deterministic and reproducible
fault scenario (for the second case).

4 Demonstrating Fault Injection and Stress Testing with
FAIL-FCI

In [9], the vast majority of experiments were made on a custom made distributed
program, for which both source code and expertise were available. Moreover,
tests only dealt with the overhead of the FAIL platform, and simply showed
that this overhead was, for practical purposes, negligible.

In this section, we use FAIL-FCI to inject fault and stress test a readily
available distributed application: XtremWeb [4]. The remaining of the section
is organized as follows: Section 4.1 reviews the XtremWeb platform that we use
for our tests. Section 4.2 describes the particular settings that we use for our
experiments. Sections 4.3, 4.4, and 4.5 describe respectively how to use FAIL-FCI
for quantitative fault injection, qualitative fault injection, and stress testing.

4.1 Overview of XtremWeb

XtremWeb is a general purpose platform that can be used for high performance
distributed calculus. A list of tasks (or jobs) is described by the user and then
distributed over the different available nodes of the system. The basic operating
mode of XtremWeb is based on a participants community, e.g. it allows a High
School, a University or a Company to setup and run a Global Computing or Peer
to Peer distributed system for either a dedicated application or a whole range
of applications. The original XtremWeb application is written in Java, but we
used here the C++ version of the software, that is expected to achieve the most
efficient results. The XtremWeb tool is divided into three modules:

the dispatcher centralizes, organizes and distributes the tasks,
the client proposes a set of tasks to the manager,
a set of workers regularly requests a work from the manager.

Like other distributed system platforms, the XtremWeb platform uses (i) remote
resources (PCs, workstations, servers) connected to the Internet, or (%) a pool
of resources (PCs, workstations, servers) inside a LAN.

4.2 Technical Settings

Hardware Settings The experiments were performed on 30 machines running
Linux 2.6.7 (except for the XtremWeb dispatcher and the XtremWeb client which
were run on a different machine). Thirteen machines were equipped each with a
2083 MHz processor and 885 Mb RAM. Six machines were equipped each with
two 1533 MHz processors and 885 Mb RAM. Eleven machines were equipped
each with a 1533 MHz processor and 885 Mb RAM. The dispatcher and the
client were run on a machine equipped with a 2995 MHz processor and 527 MB
RAM. This last machine was running Linux 2.6.8. All machines were connected
using a 100 Mbps Ethernet network.

XtremWeb Settings For all performed experiments, the XtremWeb dispatcher
and client were placed on a single machine (1ri7-209). The workload of the client
does not really influence the dispatcher: indeed, the client and dispatcher almost
run in a sequential way; the client first gives a list of jobs to the dispatcher at
the beginning of the run, and the dispatcher notices the client when the jobs
have been completed and results are available. The workers are each placed on
a dedicated machine in the cluster (30 such machines).

Before a particular test starts, the dispatcher is started, as well as all workers.
Then, the client is started (the staring time of the client is referred to as the test
begin time). When the client exits (after receipt of an acknowledgement from
the dispatcher), this time is referred to as the test end time.

The particular application that is run with XtremWeb is POV-Ray, which
creates three-dimensional, photo-realistic images using a rendering technique
called ray-tracing. For our purpose, a task consists in calculating a particular
picture using POV-Ray. This operation is requested 40 times. When the dis-
patcher receives a task request from a worker, it sends all necessary information
to perform the calculus of one picture.

4.3 Quantitative Fault Injection

We first design a probabilistic fault scenario, to quickly get a quantitative view
of the fault tolerance capabilities of XtremWeb. We assume that both the dis-
patcher and the client are not subject to faults (i.e. some tasks can be submitted,
and some results can be returned). XtremWeb workers are run on the remaining
30 machines that are subject to faults. The running time is the time between the
client is started and the results are collected. The fault model is as follows: ev-
ery x seconds, each of the XtremWeb workers may crash (and cease functioning)
with probability y. Yet, we wish to ensure that there exists a particular worker
that can not crash, in order to guarantee that the running time is always finite.
The above scenario can be expressed in a surprisingly terse way using the FAIL
language (with z = 5 and y = 10% here):

spyfunc main;

Daemon ADV1 {
node 1:

before(main) -> continue, !ok(G1[1]), !'go(Gl), goto 2;
node 2:

}
Daemon ADV2 {
node 1:

before(main) -> stop, goto 2;
node 2:

7ok -> continue, goto 4;

7go —-> continue, goto 3;
node 3:

always int x = FAIL_RANDOM(1,100);

always time_g timer = 5;

timer && x <= 10 -> halt, goto 4;

timer && x > 10 -> continue, goto 3;
node 4:

}

Computer P1 {

program = "dummy";
daemon = ADV1;
}

Group G1 {

size = 30;

program = "WorkerStatic -i 1ri7-209";
daemon = ADV2;

}

We now informally describe the aforementioned source code. First, two au-
tomata are defined: ADV1 and ADV2, then automata ADV1 is associated to one
computer P1 (that will execute dummy code), while ADV2 is associated to 30 ma-
chines (that form the G1 group), each executing the executable file WorkerStatic
with the same parameters.

ADV2 runs as follows: the daemon first wait that the program has loaded,
but before the main function is executed, the program is halted. The execution
continues when the ADV1 automata sends either the ok’ or the 'go’ message.
Now, the ADV1 simply send the 'ok’ message to a particular automata in the
G1 group, and then a ’go’ messages to all automata in the G1 group. So, one
automata in the G1 group first receive a ’ok’ message, moves to a new state
(node 4), from which it simply runs the program, ignoring subsequent messages
and events. So the corresponding worker process runs smoothly afterwards. In
contrast, the other processes in the G1 group receive the 'go’ message. As a result,
the state is changed (node 3) so that they now receive timer events (every five
seconds). When the time expires, with 10% probability, the process under test
crashes, while with 90% probability, the process continues its computation for
another 5 seconds. Further details about the FAIL language can be found in [1].

We carried out this test using two values for z (5 and 10 seconds) and y
varying from 10% to 90% with increments of 10%. The obtained results regarding
the execution time of the total set of jobs are summarized in Figure 1. As can
be seen in Figure 1, for some settings, the calculus did not terminate, due to
a malfunction of the XtremWeb dispatcher (recall that this process was not
purposely given crash order by the FAIL-FCI framework). So, we also collected
information about the dispatcher failure during the tests, and these results are
presented in Figure 2.

Before running the tests, one would expect that the two curves would in-
crease, with an extra increasing gap between them. When there are no crashes,
the time used to complete the execution of the tasks is approximately 25 seconds.
Starting with a probability of failure of 40%, the results are as expected, but
for lower probabilities, the rate of fault appearance does not significantly change
the execution time. Also, when failures occur only every ten seconds, there is
some kind of equilibrium (between 40% probability and 60% probability) where
the execution time does not vary much. This equilibrium reflects the fact that
if more failures occurred so far, it means that fewer failures are likely to appear
(because there are fewer healthy machines yet) in the future.

execution time (in seconds)

percentage of dispatcher failure

300

250

200

150

100

50

100

80

60

40

20

0 0.2 0.4 0.6 0.8

T T
crash every 5 seconds
crash every 10 seconds

-

probability for a worker to crash

Fig. 1. Impact of workers crash on execution time

T T T
Workers crash every 5 seconds ===
Workers crash every 10 seconds ——

‘ ‘ l

0 0.2 0.4 0.6 0.8

probability for a worker to crash

Fig. 2. Impact of workers crashes on dispatcher failure

When some tests did not finished, we detected in these cases that the dis-
patcher was still running but was not available anymore (i.e. workers could not
communicate with the dispatcher to notify they completed their task). Figure 2
shows that starting from a 70% probability for a worker to crash every five sec-
onds, the dispatcher ends up failing in 50% of the runs. Also, from a probability
of 80% for a worker to crash every five second, the dispatcher always fail. This
failure of the dispatcher probably reveals a bug that would extremely rarely oc-
cur in a real cluster, these fault rates being pretty extreme: every 5 seconds, 80%
of the nodes crash!

4.4 Qualitative Fault Injection

The quantitative evaluation that was presented in Section 4.3 could also be han-
dled, although if a more tedious and cumbersome way, through proper scripting
of the distributed application. In this section, we go one step further and provide
qualitative evaluation of the faults that could potentially hit the system. In more
details, we are interested here in which part of the XtremWeb clients the fault
occur. In particular, we consider the following four possible logical states for a
particular XtremWeb worker:

1. job received: the XtremWeb worker has received a job to perform from the
XtremWeb dispatcher,

2. after calculus: the XtremWeb worker has finished to perform its task,

3. job finished: the XtremWeb worker has notified the XtremWeb dispatcher
that it completed its job,

4. job completed: the XtremWeb worker has sent the XtremWeb dispatcher the
results of the completed task.

Our goal in this series of tests is to fix the number of workers (30) and the crash
probability (40%), but a worker may only fail at precise points in its program
code: the points that correspond to entering the four states mentioned above.
The corresponding FAIL program (i.e. fault scenario) is as follows (considering
that faults would only occur when the worker is in the state job completed):

spyfunc main;
spyfunc Protocol::DataSaved;
spyfunc Protocol::release;

Daemon ADV1 {
node 1:

before(main) -> continue, !ok(G1[1]), !'go(Gl), goto 2;
node 2:

}

Daemon ADV2 {
node 1:

before(main) -> stop, goto 2;
node 2:

70k -> continue, goto 5;
?go -> continue, goto 3;
node 3:
always int x = FAIL_RANDOM(1,100);
before(Protocol: :DataSaved) && x <= 40 -> continue, goto 4;
before(Protocol: :DataSaved) && x > 40 -> continue, goto 3;
node 4:
before(Protocol::release) -> stop, goto 5;
node 5:

}

Computer P1 {
program = "dummy";
daemon = ADV1;

}

Group G1 {

size = 30;

program = "WorkerStatic -i 1ri7-209";
daemon = ADV2;

}

As in Section 4.3, there are two automata ADV1 and ADV2 that are dispatched
in the same way as before. The same trick to get at least one working worker
is also used (using the ’ok’ and ’go’ messages). the key difference is the use of
breakpoints to get back control over the processes when a particular function
is reached. In this scenario, the methods DataSaved and release of the class
Protocol are watched. The state job completed is reach after the call to the
method DataSaved has completed and just before the call of the method release.
Note that the release method is called often and in various contexts in the
XtremWeb worker code, but only corresponds to the job completed state after
the DataSaved method has been executed.

The obtained results are summarized in Figure 3. In this Figure, the category
without fault refers to the test without injecting faults (for comparison purpose).
For every of the four aforementioned possible states of the workers, two kinds of
faults are considered:

1. suspending the process (using stop in the FAIL language) to simulate an
overloaded machine,
2. crashing the process (using halt in the FAIL language).

We did not collect information about possible dispatcher failures, since no
crashes were observed (this was expected, because the probability of crashes was
40%).

It was expected that injecting stop faults would induce worse performance
than injecting halt faults (because in the first case, the other end of the TCP
connexion, i.e. the dispatcher, is not notified by the network layer that something
bad happened, while in the second case, it usually is). This was confirmed by the

160

using stop =3
140 | — using halt /|
0)
c 120 |
o
)
» 100] 1
S
() - i
g 80
§ 60f :
3
@ 40 8
x
(4]
20
0 -
-
% %

—
5 %
e G -
% Q)
3 % <
% % A

Fig. 3. Impact of the state of a worker when crashing

results we obtained. We also expected that the later the injection (but yet before
the results are sent to the dispatcher), the more time it would take to complete
the calculus. However, and surprisingly, if the workers crash before even starting
a calculus, the performance is worse than if it crashes after the computation.
This behavior is probably due to an misconception in the XtremWeb dispatcher,
that does not expect failures just after the job was sent (at that time, it is
probably not watching the TCP connexion with the client, while it is when the
job is near to completion). We also remark that if a worker crashes after a job is
completed the worker notified the controller that the results are available), then
the performance is almost the same as if no faults were injected.

4.5 Stress Testing

Sections 4.3 and 4.4 showed how FAIL-FCI can be used to obtain failure re-
silience capabilities of distributed applications using a unified approach for both
quantitative and qualitative analysis. We now show that the same tool can be set
up to handle stress testing as well. For this purpose, we use a slightly different
scenario. The set of tasks is the same as before, and the XtremWeb client and
dispatcher are still on the same machine. The test begin time is the time when
both the XtremWeb client and dispatcher are up and running, waiting for work-
ers to perform the tasks. Then, a particular XtremWeb worker is launched into
action with probability y every x seconds. When the client exits (after having

received the acknowledgement from the dispatcher), the current time is taken as
the test end time.

The corresponding scenario written using the FAIL language is as follows
(considering that z =1 and y = 10%):

spyfunc main;

Daemon ADV1 {

node 1:
before(main) -> continue, 'go(Gl), goto 2;
node 2:
}
Daemon ADV2 {
node 1:
before(main) -> stop, goto 2;
node 2:
?go —-> stop, goto 3;
node 3:

always int x = FAIL_RANDOM(1,100);
always time_g timer = 1;

timer && x <= 10 -> continue, goto 4;
timer && x > 10 -> stop, goto 3;

node 4:

}

Computer P1 {
program = "dummy";
daemon = ADV1;

}

Group G1 {
size = 30;

program = "WorkerStatic -i 1ri7-209";
daemon = ADV2;
}

We performed tests varying = from 1 to 9 seconds (with increments of 2
seconds), and varying y from 10% to 100%. The obtained results regarding the
global execution time are summarized in Figure 4. We did not collect information
about dispatcher failure, since none appeared.

It was expected that the shape of the curves would have a “U” form for at
least the test with = 1 (getting workers to the job every second): if few workers
arrive at the same time, the performance is low, if several workers arrive at the
same time, this is manageable by the dispatcher and the performance is good, if
many workers arrive at the same time, the dispatcher would be more overloaded
and the overall performance would be worse that with fewer workers. In fact, all
curves are decreasing, which means that the more workers you get, the faster is
the completion of the calculus. It also means that the C++ version of XtremWeb

60

T T T T
starts evrery 1 seconds ——+—
starts evrery 3 seconds
starts evrery 5 seconds - oo
50 starts evrery 7 seconds a]
starts evrery 9 seconds
° 40 . |
e =)
c * =)
-% 30 * . - 1
(% Tk 8
e N Koo o o 5 5
> ~_ [SERRTTREEE R
20 r TSHN—— T
— ——
10 b
O Il Il Il Il

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability for a worker to start

Fig. 4. Stress testing

can handle 30 new workers arriving at the same time with no problems (this is
the case where y = 100%).

5 Concluding Remarks

We proposed a unified approach for fault injection and stress testing distributed
applications. Fault injection can be made using a quantitative approach (as in
most related studies) as well as the more original qualitative approach, where
precise faults are inserted at precise logical states of the application under test.
Although the set of possible fault injection is extremely large, the language that
describes the faults scenario is high level and independent from the language used
in the application. This enables decoupling between the application programmers
and the test specifiers, so that expertise is used in the proper domain.

As a proof of concept, we also showed that the same specification language
and fault injection tool could also be used as a stress test platform. While the
preliminary tests we performed caused no problem, they actually raised a num-
ber of interesting open questions. The main one relates to the use of FAIL-FCI
at a larger scale (for purpose of stress testing). We are currently investigating
using our fault injector in larger systems, typically by using emulation schemes,
within the Grid eXplorer [7] project platform. Further studies are needed to see
the effect of correlated faults injection (such as those occurring when a virus is
spread throughout the network). Finally, extra development is needed to inte-
grate FCI with self-distributing applications (such as those based on MPI), since

our current implementation assumes that distributed applications are launched
through a ssh-like mechanism.

References

10.

11.

12.

13.

http://www.lri.fr/ “hoarau/fail .html.

R. Chandra, R. M. Lefever, M. Cukier, and W. H. Sanders. Loki: A state-driven
fault injector for distributed systems. In In Proc. of the Int. Conf. on Dependable
Systems and Networks, June 2000.

S. Dawson, F. Jahanian, and T. Mitton. Orchestra: A fault injection environment
for distributed systems. In In 26th International Symposium on Fault-Tolerant
Computing (FTCS), pages 404-414, Sendai, Japan, June 1996.

G. Fedak, C. Germain, V. Néri, and F. Cappello. Xtremweb: A generic global
computing system. In Proceedings of IEEE Int. Symp. on Cluster Computing and
the Grid, 2001.

M. Fisher, N.A. Lynch, and M.J. Paterson. Impossibility of consensus with one
faulty process. Journal of the ACM, 1985.

S. Ghosh and A. Mathur. Issues in testing distributed component-based systems,
1999.

http://wuw.lri.fr/"fci/GdX.

S. Han, K. Shin, and H. Rosenberg. Doctor: An integrated software fault injection
environment for distributed real-time systems, 1995.

W. Hoarau and Sbastien Tixeuil. A language-driven tool for fault injection in
distributed applications. In In Proceedings of the IEEE/ACM Workshop GRID
2005, November 2005. also available as LRI Research Report 1399, february 2005,
at http://www.lri.fr/ hoarau/fail.html.

X. Li, R. Martin, K. Nagaraja, T. Nguyen, and B. Zhang. Mendosus: A san-based
fault-injection test-bed for the construction of highly available network services,
2002.

S. Lumetta and D. Culler. The mantis parallel debugger. In Proceedings of
SPDT’96: SIGMETRICS Symposium on Parallel and Distributed Tools, pages 118—
126, Philadelphia, Pennsylvania, May 1996.

J.Xu. N. Looker. Assessing the dependability of ogsa middleware by fault-injection.
In Proc. 22nd Int. Symposium on Reliable Distributed Systems. SRDS, 2003.

D.T. Stott and al. Nftape: a framework for assessing dependability in distributed
systems with lightweight fault injectors. In In Proceedings of the IEEE Interna-
tional Computer Performance and Dependability Symposium, pages 91-100, March
2000.

