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Abstract

In a network consisting of several thousands com-
puters, the occurrence of faults is unavoidable. Being
able to test the behaviour of a distributed program in
an environment where we can control the faults (such
as the crash of a process) is an important feature that
matters in the deployment of reliable programs.

In this paper, we investigate the possibility of in-
jecting software faults in distributed java applications.
Our scheme is by extending the FAIL-FCI software. It
does not require any modification of the source code of
the application under test, while retaining the possibil-
ity to write high level fault scenarios. As a proof of
concept, we use our tool to test FreePastry, an exist-
ing java implementation of a Distributed Hash Table
(DHT), against node failures.

1. Introduction

In a network including several thousands machines,
the appearance of faults is unavoidable. Some applica-
tions (for example peer to peer applications) involve a
considerable number of users, e.g. to exchange files or
to execute long calculations (SeTi@Home, Decrypthon,
Xtremweb, Boing, etc.). For those applications, the ap-
pearance and disappearance of participating machines
are unpredictable, very frequent and occur eventually
while the application is run. It is particularly diffi-
cult to study the functioning of large-scale distributed
programs: it would be necessary to have a considerable
number of computers and engineering power to execute
the software in an actual situation, to measure the per-
formances or to detect the defects. With the difficulty
to set up such experiments and the fact that fault oc-
currences in such systems is neither controllable nor

predictable (it is also difficult to compare various solu-
tions), two other approaches are possible: simulation
and emulation. Simulation allows complete control of
the runtime environment, but fails in imitating the ac-
tual behavior of all components in the system. Emula-
tion consists in using a small network to reproduce the
behavior of a large-scale network. However, it is not
enough to emulate the machines used by the partici-
pants: it is also necessary to reproduce their behavior.
Testing the validity of fault-tolerant software and mea-
suring the impact on performance of occurring faults
requires being able to control those faults. Indeed, a
fundamental result [7] shows that in an asynchronous
distributed system (where the relative speeds of the
processors are not known and unbounded), it is im-
possible to solve the consensus problem (all processors
terminate agreeing on some initial value) when there
is as little as one faulty process, even when the consid-
ered fault is as simple as a crash fault. The reason for
this is that the decided value can depend on just one
process and that in an asynchronous system, it is im-
possible to distinguish between a crashed process and a
very slow one. When an application is run on a cluster,
it is likely that machines will run roughly at the same
speed (for example a one to ten ratio on the relative
speeds of the processors makes it easy to solve the con-
sensus problem), so the considered system is actually
synchronous. Afterwards, when the application is then
run at a larger scale (e.g. in an Internet-like setting)
where the strong synchrony hypothesis does not hold
any more, crucial issues related to fault-tolerance and
asynchronous settings have been overlooked.

2. Related Works

When considering solutions for software fault injec-
tion in distributed systems, there are several important
parameters to consider. The main criterion is the us-



ability of the fault injection platform. If it is more
difficult to write fault scenarios than to actually write
the tested applications, those fault scenarios are likely
to be dropped from the set of performed tests. The
issues in testing component-based distributed systems
have already been described and methodology for test-
ing components and systems has already been proposed
[8, 13].

However, testing for fault tolerance remains a chal-
lenging issue. Indeed, in available systems, the fault-
recovery code is rarely executed in the test-bed as faults
rarely get triggered. As the ability of a system to per-
form well in the presence of faults depends on the cor-
rectness of the fault-recovery code, it is mandatory to
actually test this code. Testing based on fault-injection
can be used to test for fault-tolerance by injecting
faults into a system under test and observing its be-
havior. The most obvious point is that simple tests
(e.g. every few minutes or so, a randomly chosen ma-
chine crashes) should be simple to write and deploy.
On the other hand, it should be possible to inject faults
for very specific cases (e.g. in a particular global state
of the application), even if it requires a better under-
standing of the tested application. Also, decoupling the
fault injection platform from the tested application is a
desirable property, as different groups can concentrate
on different aspects of fault-tolerance.

Decoupling requires that no source code modifica-
tion of the tested application should be necessary to
inject faults. Also, having experts in fault-tolerance
test particular scenarios for application they have no
knowledge of favors describing fault scenarios using a
high-level language, that abstract practical issues such
that communications and scheduling. Finally, to prop-
erly evaluate a distributed application in the context of
faults, the impact of the fault injection platform should
be kept low, even if the number of machines is high. Of
course, the impact is doomed to increase with the com-
plexity of the fault scenario, e.g. when every action of
every processor is likely to trigger a fault action, inject-
ing those faults will induce an overhead that is certainly
not negligible.

Several fault injectors for distributed systems al-
ready exist. Some of them are dedicated to distributed
real-time systems such as DOCTOR [9]. ORCHES-
TRA [6] is a fault injection tool that allows the user
to test the reliability and the liveliness of distributed
protocols. ORCHESTRA is a ”Message-level fault in-
jector” because a fault injection layer is inserted be-
tween two layers in the protocol stack. This kind of
fault injector allows injecting faults without requiring
the modification of the protocol source code. However,
the expressiveness of the faults scenario is limited be-

cause there is no communication between the various
state machines executed on every node. Then, as the
faults injection is based on exchanged messages, the
knowledge of the type and the size of these messages is
required. Nevertheless, those approaches do not fit the
cluster and Grid category of applications.

The NFTAPE project [15] arose from the double
observation that no tool is sufficient to inject all fault
models and that it is difficult to port a particular tool
to different systems. Although NFTAPE is modular
and very portable, the choice of a completely central-
ized decision process makes it very intrusive (its exe-
cution strongly perturbs the system being tested). Fi-
nally, writing a scenario quickly becomes complex be-
cause of the centralized nature of the decisions during
the tests when they imply numerous nodes.

LOKI [5] is a fault injector dedicated to distributed
systems. It is based on a partial view of the global state
of the distributed system. An analysis a posteriori is
executed at the end of the test to infer a global schedule
from the various partial views and then verify if faults
were correctly injected (i.e. according to the planned
scenario). However, LOKI requires the modification
of the source code of the tested application. Further-
more, faults scenario are only based on the global state
of the system and it is difficult (if not impossible) to
specify more complex faults scenario (for example in-
jecting ”cascading” faults). Also, in LOKI there is no
support for randomized fault injection.

In [11] is presented Mendosus, a fault-injection tool
for system-area networks that is based on the emu-
lation of clusters of computers and different network
configurations.

Finally in [14] is presented a fault-injection tool that
was specially developed to assess the dependability of
Grid (OGSA) middleware. However, the tool described
in that paper is very limited since it only allows the
injection of faults in the XML messages in the OGSA
middleware, which seems to be a bit far from the real
faults experienced in real systems.

Recently, the FAIL-FCI architecture [10] was pro-
posed. This solution addresses most of the drawbacks
of previous approaches, and is overviewed in the next
section.

3. FAIL-FCI Overview

In this section, we describe the FAIL-FCI frame-
work that is presented in [10]. For further explana-
tions, please refer to the original paper. First, FAIL
(for FAult Injection Language) is a language that per-
mits to easily describe fault scenarios. Second, FCI (for
FAIL Cluster Implementation) is a distributed fault in-
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Figure 1. The FCI Platform

jection platform whose input language for describing
fault scenarios is FAIL.

The FAIL language allows defining fault scenarios.
A scenario describes, using a high-level abstract lan-
guage, state machines which model fault occurrences.
The FAIL language also describes the association be-
tween these state machines and a computer (or a group
of computers) in the network.

The FCI platform (see Figure 1) is composed of sev-
eral building blocks:

The FCI compiler : The fault scenarios written in
FAIL are pre-compiled by the FCI compiler which
generates C++ source files and default configura-
tion files.

The FCI library : The files generated by the FCI
compiler are bundled with the FCI library into sev-
eral archives, and then distributed across the net-
work to the target machines according to the user-
defined configuration files. Both the FCI compiler
generated files and the FCI library files are pro-
vided as source code archives, to enable support
for heterogeneous clusters.

The FCI daemon : The source files that have been
distributed to the target machines are then ex-
tracted and compiled to generate specific exe-
cutable files for every computer in the system.
Those executables are referred to as the FCI
daemons.  When the experiment begins, the

distributed application to be tested is executed
through the FCI daemon installed on every com-
puter, to allow its instrumentation and its han-
dling according to the fault scenario.

The FAIL-FCI approach is based on the use of a soft-
ware debugger. Like the Mantis parallel debugger [12],
FCI communicates to and from gdb (the Free Software
Foundation’s portable sequential debugging environ-
ment) through Unix pipes. But contrary to Mantis
approach, communications with the debugger are kept
to a minimum to guarantee low overhead of the fault
injection platform (in our approach, the debugger is
only used to trigger and inject software faults).

The tested application can be interrupted when it
calls a particular function or upon executing a particu-
lar line of its source code. Its execution can be resumed
depending on the considered fault scenario.

With FCI, every physical machine is associated to a
fault injection daemon. The fault scenario is described
in a high-level language and compiled to obtain a C++
code which will be distributed on the machines partic-
ipating to the experiment. This C4++ code is compiled
on every machine to generate the fault injection dae-
mon. Once this preliminary task has been performed,
the experience is then ready to be launched. The dae-
mon associated to a particular computer consists in:

1. a state machine implementing the fault scenario,

2. a module for communicating with the other dae-
mons (e.g. to inject faults based on a global state
of the system),

3. a module for time-management (e.g. to allow

time-based fault injection),

4. a module to instrument the tested application (by
driving the debugger), and

5. a module for managing events (to trigger faults).

FCI is thus a Debugger-based Fault Injector because
the injection of faults and the instrumentation of the
tested application is made using a debugger. This
makes it possible not to have to modify the source code
of the tested application, while enabling the possibility
of injecting arbitrary faults (modification of the pro-
gram counter or the local variables to simulate a buffer
overflow attack, etc.). From the user point of view, it
is sufficient to specify a fault scenario written in FAIL
to define an experiment (See subsequent section). The
source code of the fault injection daemons is automati-
cally generated. These daemons communicate between
them explicitly according to the user-defined scenario.
This allows the injection of faults based either on a
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Figure 2. Kernel Architecture

global state of the system or on more complex mech-
anisms involving several machines (e.g. a cascading
fault injection). In addition, the fully distributed ar-
chitecture of the FCI daemons makes it scalable, which
is necessary in the context of emulating large-scale dis-
tributed systems. FCI daemons have two operating
modes: a random mode and a deterministic mode.
These two modes allow fault injection based on a prob-
abilistic fault scenario (for the first case) or based on
a deterministic and reproducible fault scenario (for the
second case).

4. The New FAIL-FCI Library Internal
Structure

The previous implementation of the FAIL-FCI li-
brary was monolithic and hardly extensible [10]. Also,
it could only handle native programs. If distributed
Java applications were to be tested, the scenarios would
have to be written to target the Java virtual machine
(on which Java programmers usually have little knowl-
edge of the internals) instead of the Java program (on
which control and knowledge is usually greater).

As a result, we restructured the core of the library
to make it more modular and extensible, and to facil-
itate the handling of programming languages that do
not generate native programs. The new internal struc-
ture of the FAIL-FCI library can be divided in three
main parts: the kernel, the external interface, and the
network structure description.

The kernel architecture is described in Figure 2. The
main class is Environment, that takes inputs from the
Trigger class, and that controls the StateMachine
class. The Trigger class models events that are likely
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Figure 3. The External Interface

to occur during the execution of the distributed ap-
plications (breakpoint reached in one of the program,
message received from another machine, etc.). The
StateMachine class refers to the automata that de-
scribes the actions that are taken by the FAIL-FCI
deamon when some events are triggered. The rela-
tion between events (the Trigger) and actions (the
StateMachine) is carried out by the Environment.

The actual actions that are taken by the
Environment are handled by three different classes
(see Figure 3). The TimerController class per-
mits to setup timeout events, the NetworkController
permits to manage communication between FAIL-
FCI deamons, and the ProgramController han-
dles the program under test through a debugger.
The ProgramControllerGDB permits to manage na-
tive programs through the gdb debugger, while the
ProgramControllerJDB takes care of Java programs
through the Java debugger. Further extensions for
other languages and systems are straightforward with
the new library structure.

The network structure is generated by the FAIL
compiler and resides in a XML file. This XML file per-
mits to address individual machines as well as group
of machines (those are handled through the Node and
GroupNode classes, see Figure 4). The automata that
drive the distributed components of the applications
can have states that include integer or floating point
variables. In order to properly handle the initializa-
tion of those variables, the Value class hierarchy has
been added.

5. Preliminary Results

Pastry [4] is a generic, scalable and efficient sub-
strate for peer-to-peer applications. Pastry nodes form
a decentralized, self-organizing and fault-tolerant over-
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lay network within the Internet. Pastry provides ef-
ficient request routing, deterministic object location,
and load balancing in an application-independent man-
ner. Furthermore, Pastry provides mechanisms that
support and facilitate application-specific object repli-
cation, caching, and fault recovery.

FreePastry [1] is an open-source implementation of
Pastry intended for deployment in the Internet.

Using FAIL-FCI with our Java extension, we aim
at testing the failure resilience capabilities of FreeP-
astry. In particular, we wish to gradually inject more
faults to evaluate the failure point of the FreePastry
implementation, according to various criteria. Unlike
previous approaches [3] that were conducted through
simulations, our approach uses the actual distributed
java application.

For this purpose, we write using FAIL a generic sce-
nario, where each node has probability x to crash every
y seconds. The FAIL source code is as follows:

spyfunc main;

Daemon ADV1 {
node 1:
before(main) -> !start(G1),
continue, goto 2;

node 2:

}

Daemon ADV2 {
node 1:
before(main) -> stop, goto 2;

node 2:
?start -> continue, goto 3;

node 3:
always time_g timer = 5;
always int random =
FAIL_RANDOM(0,100) ;

timer && random <= 10 ->
halt, goto 4;
timer && random > 10 ->
continue, goto 3;
node 4:

}

Computer P1 {
program = "dummy";
daemon = ADV1;

b
Group G1 {
size = 30;
program = "-classpath
FreePastry-1.4.1. jar:
DHT_Simple. jar DistSimple 5000
1ri7-209 5000";
daemon = ADV2;
3

We now informally describe the aforementioned
source code. First, two automata are defined: ADV1
and ADV2, then automata ADV1 is associated to one
computer P1 (that will execute dummy code), while
ADV2 is associated to 30 machines (that form the G1
group), each executing a .jar file with the same pa-
rameters. ADV2 runs as follows: the deamon first wait
that the program has loaded, but before the main func-
tion is executed, the program is halted. The execution
continues when the ADV1 automata sends the ’start’
message. Then, every five seconds, a timer event is set
up. When the timer expires, with 10% probability, the
process under test crashes, while with 90% probability,
the process continues its computation. Further details
about the FAIL language can be found in [2].

5.1. Experimental Setting

For our preliminary experiments, the tests were led
on machines performing under Linux 2.6.7. Six ma-
chines were equipped each with a 2083 MHz proces-
sor and 885 Mb RAM, Six machines were equipped
each with two 1533 MHz processors and 885 Mb RAM.
Seven machines were equipped each with a 1800 MHz
processor and 504 Mb RAM. All machines were con-
nected using a 100 Mbps Ethernet network. All ma-
chines were running the 1.4.1 version of FreePastry. All
tests were conducted 100 times and the obtained results
are averaged over all tests.



5.2. Influence of the Periodicity of Crashes

In this test, we fix for each node the probability to
actually crash to 5%. We vary the time between pos-
sible failures for all nodes from 1 second to 5 seconds.
We ran the test on a network composed of 19 machines.
In each case, the FreePastry network was able to recon-
figure itself, so that killed nodes were properly removed
from the distributed structure.

5.3. Influence of the Probability of Crashes

In this test, we fix for each node the periodicity of
possible crash to 10 seconds. We vary the probability
of crash from 10% to 100% with an increment of 10%.
We ran the test on a network composed of 19 machines.
In each case up to 90% (included), the FreePastry net-
work was able to reconfigure itself, so that killed nodes
were properly removed from the distributed structure.
At 100% probability, all nodes would crash so it not
surprising that the FreePastry network could not han-
dle this case.

5.4. Influence of the Number of Nodes

In this test, we fix for each node the periodicity of
possible crash to 10 seconds, and the crash probabil-
ity to 50%. We vary the number of nodes (and thus
machines) from 19 to 35. It turns out that up to 34
nodes, the Pastry network is able to reconfigure itself.
However, at 35 nodes, in 12% of the computations, the
FreePastry network was not able to reconfigure and
ended up in creating at least two separate networks.

5.5. Overview

Overall, it turns out that FreePastry is generally
able to handle the crash of participating processes, re-
structuring so that the Distributed Hash Table is still
maintained in spite of induced dynamicity. However,
in our setting, there seems to be a failure point when
the number of possibly failing processes increases. We
expect to further analyze this hypothesis using a larger
number of machines.

6. Conclusion

We extended the FAIL-FCI platform to support dis-
tributed Java application in the same way as native
applications were supported. As a result, our new tool
permits to inject faults in the actual applications, ac-
cording to high level scenarios, without having to mod-
ify the source code of the Java programs or the java
virtual machine.

As a proof of feasibility, we used a widely available
distributed Java application (FreePastry) and used
FAIL to specify a generic fault scenario that was then
automatically handled by the FAIL-FCI infrastructure.
Preliminary results that we obtained show that the pe-
riodicity and the probability of the faults are irrelevant
(i.e. The FreePastry network is able to recover in any
case), but that their number does matter (when the
number of possibly failing nodes augments, the net-
work may be partitioned into several networks). Fur-
ther studies are needed, using wider test beds and dif-
ferent kinds of distributed Java applications.
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