Vers ’auto-stabilisation des
systemes a grande échelle

Sébastien Tixeuil

Rapport scientifique présenté en vue de l’obtention de
I"'Habilitation a Diriger des Recherches

Table des matiéres

1 Introduction

2 Algorithmique répartie tolérante aux pannes
2.1 Taxonomie des pannes dans les systémes répartis

2.2

Classes d’algorithmes tolérants aux pannes . .

3 Les limites et problémes diis a la grande échelle

3.1
3.2

Hypotheses sur le systéme
Hypotheses sur les applications
3.2.1 Problémes globaux statiques
3.2.2 Problémes globaux dynamiques
3.2.3 Optimalité et passage a I’échelle

4 Solutions pour l’auto-stabilisation a grande échelle

41

4.2

4.3

Restreindre la nature des fautes
4.1.1 Détection et correction d’erreurs
41.2 Préservation de prédicats
Restreindre 1'étendue géographique des fautes

421 k-stabilisation
422 Auto-stabilisation adaptative en temps

423 Uneclassification
Restreindre les classes de problemes a résoudre
4.3.1 Problemeslocalisés
4.3.2 Tolérer les entités malicieuses

5 Conclusion et perspectives

51

52

Perspectives théoriques
5.1.1 Auto-stabilisation en compétition . . .
5.1.2 Complexité et auto-stabilisation
5.1.3 Auto-stabilisation systématique
Perspectives pratiques

Chapitre 1

Introduction

Historiquement, le développement des systemes répartis a été princi-
palement lié a plusieurs besoins, comme la communication entre entités
géographiquement distantes, 1’accélération des calculs suite a 1'augmen-
tation des ressources, la fiabilisation des systemes due a la redondance
des moyens de calcul. Plusieurs facteurs économiques ont également joué,
comme le fait que plusieurs machines simples sont moins cotiteuses qu'une
seule machine complexe, a nombre d’utilisateurs égaux.

L’étude des systemes répartis et des algorithmes spécifiques a ces sys-
temes, les algorithmes répartis, rend compte des spécificités de ces sys-
témes par rapport aux systemes centralisés traditionnels : les informations
sont locales (chaque élément du systeme ne posséde qu'une fraction des
informations, et doit en obtenir d’autres en communiquant avec d’autres
éléments), et le temps est local (les éléments du systeme peuvent exécuter
leurs instructions a des vitesses différentes, sans connaissance de celles des
autres éléments). Ces deux facteurs induisent un non-déterminisme qui fait
que deux exécutions successives du méme systeme réparti seront probable-
ment différentes. Le fait que certains éléments du systeme puissent tomber
en panne accroit ce non-déterminisme et la difficulté que 'on a a prédire le
comportement du systéme global.

Les algorithmes répartis posent les bases algorithmiques des protocoles
qui sont utilisés dans les réseaux réels. Ils interviennent donc largement
en amont de la phase d’implantation, et permettent de déterminer parmi
plusieurs approches celles qui sont impossible a mettre en ceuvre, celles
qui sont cotiteuses, ou celles qui sont potentiellement efficaces.

Lorsqu’on augmente le nombre de composants d'un systeme réparti,
la possibilité qu'un ou plusieurs de ces composants tombe en panne aug-
mente également. Lorsqu’on réduit le cotit de fabrication des composants
pour obtenir des économies d’échelle, on accroit également le taux de dé-
fauts potentiels. Enfin, lorsqu’on déploie les composants du systéme dans
un environnement que 1’on ne contrdle pas nécessairement, les risques de

pannes deviennent impossibles a négliger.

Dans les réseaux de capteurs, ces trois facteurs principaux sont com-
binés. Aussi, il devient certain que des pannes se produiront au cours de
la vie du systeme. Il importe alors de maximiser la vie utile du systéme :
c’est-a-dire le temps pendant lequel le systéme fournira des résultats utiles.
En effet, les pannes peuvent avoir des répercussions importantes pour l'ap-
plication qu’on exécute sur le systeme. Ces répercussions dépendent de la
sévérité de la panne.

Dans ce mémoire, il est question d’algorithmique répartie dans les sys-
témes a grande échelle, c’est-a-dire des systemes répartis pouvant compor-
ter plusieurs dizaines (ou centaines) de milliers de machines élémentaires
(ordinateurs, capteurs, etc.). Plus précisément, on se restreint ici a l’algo-
rithmique répartie tolérante aux pannes. Dans le chapitre 2, on présente la
taxonomie des pannes susceptibles d’apparaitre et les approches classiques
pour résoudre les problémes qui y sont liés dans les systemes répartis (sans
I'aspect grande échelle). Le chapitre 3 montre que le passage a 1’échelle
est compromis par les hypotheses habituellement faites en algorithmique
tolérante aux pannes. Par la suite, le chapitre 4 présente plusieurs pistes
pour l'utilisation de techniques particulieres de tolérance aux pannes (dé-
rivées de 1’auto-stabilisation) dans un contexte de grande échelle. Dans tout
le reste du document, les références bibliographiques qui apparaissent en
gras sont celles signées ou cosignées par 'auteur de ce mémoire.

Chapitre 2

Algorithmique répartie
tolérante aux pannes

De maniere classique, on représente généralement un systéme réparti
par un graphe, dont les nceuds sont les machines (ou les capteurs) du sys-
téme, et les liens représentent la capacité de communication de deux ma-
chines. Ainsi, deux machines sont reliées si elles sont capables de se com-
muniquer des informations (par une connexion réseau par exemple). Dans
certains cas, les liens du graphe sont orientés pour représenter le fait que
la communication ne peut avoir lieu que dans un seul sens (par exemple
une communication sans fils d’un satellite vers une antenne au sol). Dans
la suite, on utilise indistinctement les termes de machine, capteur, nceud ou
processus suivant le contexte.

2.1 Taxonomie des pannes dans les systémes répartis

Un premier critere pour classifier les pannes dans les systemes répartis
est la localisation dans le temps. On distingue généralement trois types de
pannes possibles :

1. les pannes transitoires : des pannes de nature arbitraire peuvent venir
frapper le systeme, mais il existe un point de ’exécution a partir du-
quel ces pannes n’apparaissent plus;

2. les pannes définitives : des pannes de nature arbitraire peuvent venir
frapper le systeme, mais il existe un point de ’exécution a partir du-
quel ces pannes anéantissent pour toujours ceux qui en sont frappés;

3. les pannes intermittentes : des pannes de nature arbitraire peuvent ve-
nir frapper le systeme, a tout moment de I’exécution.

Bien sir, les pannes transitoires et les pannes définitives sont deux cas
particuliers des pannes intermittentes. Cependant, dans un systeme ou les
pannes intermittentes apparaissent rarement, un systéme qui tolere des

4

pannes transitoires peut étre utile, car la vie utile du systeme peut rester
suffisamment élevée.

Un deuxieme critere est la nature des fautes. Un élément d"un systeme
réparti peut étre représenté par un automate dont les états représentent les
valeurs possibles des variables de 1’élément, et dont les transitions repré-
sentent le code exécuté par I'élément. On peut alors distinguer ces fautes
suivant qu’elles surviennent sur I’état ou sur le code de 1’élément :

les pannes d’état : le changement des variables d"un élément peut étre dti
a des perturbations dues a 'environnement (par exemple des ondes
électromagnétiques), des attaques (par exemple un dépassement de
tampon) ou simplement des défaillances du matériel utilisé. Il est par
exemple possible que des variables prennent des valeurs qu’elles ne
sont pas sensées prendre lors d"une exécution normale du systeéme.

les pannes de code : le changement arbitraire du code d'un élément ré-
sulte la plupart du temps d’une attaque (par exemple le remplace-
ment d’un élément par un adversaire malicieux), mais certains types
moins graves peuvent correspondre a des bogues ot1 a une difficulté a
tenir la charge. On distingue donc plusieurs sous-catégories de pannes
de code:

1. les pannes crash : a un point donné de l'exécution, un élément
cesse définitivement son exécution et n’effectue plus aucune ac-
tion ;

2. les omissions : a divers instants de I'exécution, un élément peut
omettre de communiquer avec les autres éléments du systeme,
soit en émission, soit en réception;

3. les duplications : a divers instants de I'exécution, un élément peut
effectuer une action plusieurs fois, quand bien méme son code
stipule que cette action doit étre exécutée une fois;

4. les désequencements : a divers instants de I'exécution, un élément
peut effectuer des actions correctes, mais dans le désordre;;

5. les pannes byzantines : elles correspondent simplement a un type
arbitraire de pannes, et sont donc les pannes les plus malicieuses
possibles.

Les pannes crash sont incluses dans les omissions (un élément qui ne
communique plus est percu par le reste du systeme comme un élément
qui a interrompu son exécution). Les omissions sont trivialement incluses
dans les pannes byzantines. Les duplications et déséquencements sont éga-
lement incluses dans les pannes byzantines, mais sont généralement consi-
dérées pour des comportements purement liés aux capacités de communi-
cation.

La figure 2.1 résume les relations d’inclusions pouvant étre induites
entre les différents types de pannes.

/ Pannes intermittentes Pannes Byzantines

< Pannes transitoires > Ommissions
< Pannes crash
< Pannes définitives >

Duplications

< Déséquencements

k\/\/&/

FIG. 2.1 — Taxonomie des pannes dans les systemes répartis

2.2 Classes d’algorithmes tolérants aux pannes

Quand des pannes se produisent sur un ou plusieurs des éléments cons-
titutifs d’un systeme réparti, il est essentiel de pouvoir les traiter. Si un sys-
téme ne tolere aucune panne, la défaillance d’un seul de ses éléments peut
compromettre la bonne exécution de tout le systeme : c’est le cas dans un
systéme ot une entité a un role central (comme le DNS). Pour préserver la
vie utile du systeme, de nombreuses approches ad hoc ont été développées,
en général spécifiques a un type de panne particulier et susceptible de se
produire dans le systeme considéré. Cependant, ces solutions peuvent étre
classifiées suivant que 'effet des fautes est visible a un observateur (par
exemple un utilisateur) du systéme ou pas. Une solution masquante cache
a l'observateur 1'occurrence des fautes (si celles-ci restent dans la limite
tolérée par le systéme), alors qu’une solution non masquante ne présente
pas cette propriété : I'effet des fautes est visible pendant un temps plus ou
moins long, puis le systeme recommence a se comporter correctement.

Une approche masquante apparait a priori préférable, puisqu’elle s’ap-
plique a un plus grand nombre d’applications (et en particulier les applica-
tions critiques de sécurité). En outre, elle correspond a l'idée intuitive que
I'on se fait de la tolérance aux pannes : tant qu'une portion suffisament
grande du systeme reste opérationnelle, on est en mesure d’obtenir le ré-
sultat escompté. Cependant, en général, une solution masquante est plus
coliteuse (en ressources, en temps) qu'une solution non masquante, et ne
peut tolérer des fautes que dans la mesure ot celles-ci ont été prévues. En
Informatique, pour des problémes tels que le routage, olt ne pas étre ca-
pable d’acheminer des informations pendant quelques instants n’a pas de
conséquences catastrophiques, une approche non-masquante est tout a fait
indiquée (voir également section 3.2.1).

Deux classes principales d’algorithmes tolérants aux pannes peuvent
étre distinguées :

les algorithmes robustes : ils utilisent la redondance a plusieurs niveaux
des informations, des communications, ou des nceuds du systeme,
pour permettre des recoupements suffisant a s’assurer qu’exécuter la
suite du code ne présente pas de danger. Ils font en général 1’hypo-
thése qu'un nombre limité de fautes peut frapper le systeme, de ma-
niére a conserver au moins une majorité de éléments corrects (parfois
plus si les fautes sont plus séveres). De tels algorithmes sont typique-
ment masquants.

les algorithmes auto-stabilisants : ils font I'hypothese que les défaillances
sont transitoires (c’est-a-dire limitées dans le temps), mais ne donnent
pas de contraintes quant a I'étendue des fautes (qui peuvent concer-
ner tous les éléments du systéme). Un algorithme est auto-stabilisant
au sens de [22] s’il parvient en temps fini, a exhiber un comporte-
ment correct indépendamment de I'état initial de ses éléments, c’est-a-dire
que les variables des éléments peuvent se trouver dans un état arbi-
traire (et impossible a atteindre par un cheminement normal de I'ap-
plication). Les algorithmes auto-stabilisants sont typiquement non-
masquants, car entre le moment ou les fautes cessent et le moment ot
le systeme est stabilisé sur un comportement correct, I’exécution peut
s’avérer quelque peu erratique.

Les algorithmes robustes correspondent bien a la notion intuitive que
I’on se fait de la tolérance aux pannes. Si un élément est susceptible de tom-
ber en panne, alors on remplace chaque élément par trois éléments iden-
tiques, et a chaque fois qu'une action est entreprise, on fait effectuer 1’action
trois fois par chacun des éléments, et 1’action effectivement entreprise est
celle qui correspond a la majorité des trois actions individuelles. L'auto-sta-
bilisation est a priori plus liée a la notion de convergence en mathématique
ou en automatique, ott on cherche a atteindre un point fixe indépendam-
ment de la position initiale; le point fixe correspondant ici a une exécution
correcte. Le fait d’étre capable de partir d’un état arbitraire peut sembler
incongru (puisque les éléments sont a priori toujours démarrés dans un état
bien connu), mais des travaux [71] ont montré que si un systeme réparti est
sujet a des défaillances de nceuds de type arrét et redémarrage (ce qui cor-
respond a une panne franche suivie d"une réinitialisation), et que les com-
munication peuvent ne pas étre totalement fiables (des communications
peuvent étre perdues, dupliquées, déséquencées), alors un état arbitraire
du systeme peut effectivement étre atteint. Méme si la probabilité d'une
exécution menant a cet état arbitraire est négligeable dans des conditions
normales, il n’est pas impossible qu'une attaque sur le systéme tente de re-
produire une telle exécution. Dans tous les cas, et quelle que soit la nature
de ce qui a provoqué I'atteinte de cet état arbitraire, un algorithme auto-sta-

7

A

Etendue dans I'espace

Etendue dans le temps

Algorithmes auto-stabilisants
Algorithmes robustes

Non-masquant Masquant

FIG. 2.2 — Classes d’algorithmes répartis tolérants aux pannes

bilisant est capable de fournir un comportement correct au bout d"un temps
fini. D’ailleurs, les algorithmes répartis auto-stabilisants sont présents dans
nombre de protocoles utilisés dans les réseaux d’ordinateurs [53].

La figure 2.2 résume les capacités relatives des algorithmes robustes et
des algorithmes auto-stabilisants. Il faut garder a I'esprit qu’aucune de ces
classes ne peut, en utilisant les hypothéses de base, étre développée davan-
tage : un algorithme auto-stabilisant ne tolére pas des défaillances qui se
produisent continuellement, et un algorithme robuste ne peut a priori pas
tolérer des pannes tres étendues. Par suite, aucune solution générale a des
défaillances continuelles et étendues ne peut exister.

Chapitre 3

Les limites et problemes diis a
la grande échelle

3.1 Hypotheses sur le systeme

Les algorithmes robustes font généralement des hypotheses qui perdent
de leur pertinence dans les systémes a grande échelle, parmi lesquelles :

communications complétes : dans de nombreux algorithmes robustes, un
neceud est en mesure de parler a tout autre nceud, méme en dépit de
fautes des autres nceuds. Ceci revient, lorsqu’on modélise les capa-
cités de communication par un graphe, a considérer que ce graphe
est complet. Dans un réseau local ou1 toutes les machines sont directe-
ment connectées, cette hypothese est valide, mais dans un systeme
comportant plusieurs dizaines (ou méme centaines) de milliers de
machines, elle devient dans le meilleur des cas inefficace (la latence
augmente pour traverser le systéeme), et sinon fantaisiste (la commu-
nication qui s’effectue via des nceuds défaillants ne peut plus avoir
lieu).
Récemment, il a été proposé de résoudres des problemes classiques
(comme celui du consensus) avec des connaissances seulement par-
tielles sur les participants. En particulier, la notion de détecteur de par-
ticipation a été introduite dans [15] pour abstraire la notion de partici-
pant connu (par exemple car un message portant sa signature nous
est parvenu). Par la suite, en considérant le graphe induit par les
connaissances des participants, sil existe un unique sous-ensemble
des participants (se connaissant tous entre eux) qui peut finir par étre
connu de tous les participants, alors le probleme du consensus peut
étre résolu sans connaissances completes initiales.

communications globales : la plupart des solutions existantes nécessitent
pour chaque phase (le nombre de phases total dépendant du nombre

de fautes que l'on souhaite pouvoir tolérer) un nombre quadratique
de communications (en fonction de la taille du systeme), ce qui com-
promet son passage a 1’échelle. En effet, lors d'une phase, un nceud
envoie typiquement un message a chaque autre nceud du systeéme.

communications synchrones : un résultat fondamental de la littérature
des algorithmes répartis robustes [32] stipule que méme en consi-
dérant un probleme a priori simple (le consensus, ot les nceuds du
systéme doivent se mettre d’accord sur une valeur proposée par au
moins 'un d’entre eux), et en considérant un modeéle de fautes treés
simple (une seule faute peut survenir, et elle est de type crash), il
est impossible de résoudre le probleme dans un environnement asyn-
chrone (ou il n’existe pas de borne sur les vitesses relatives des nceuds
du systeme). Ce résultat vient du fait que d’une part, la procédure
de décision peut, dans certaines exécutions, dépendre de la décision
communiquée par un seul noeud du systeme, et d’autre part que dans
un systeme totalement asynchrone, il est impossible de distinguer
un neeud en panne d’un nceud tres lent. Or, un nceud victime d’une
panne crash ne communiquera plus jamais, alors qu'un nceud tres
lent finira par envoyer son message. Si une décision est prise en pen-
sant qu'il est fautif, alors s’il est tres lent sa décision (prise avant I’en-
voi du message) peut étre contraire a celle prise par les autres nceuds
du systeme.

Ce résultat d'impossibilité a conduit les recherches vers des envi-
ronnements synchrones ou partiellement synchrones (ot des bornes,
connues ou non des nceuds eux-mémes, existent sur les vitesses re-
latives des nceuds du systeme). Une maniére de formaliser les hypo-
théses sur le synchronisme dans lequel on se place est d’utiliser la
notion de détecteur de défaillances. Un tel détecteur est un oracle distri-
bué, interrogé par les nceuds du systeme pour obtenir des informa-
tions sur les nceuds fautifs. Plus le systéme est synchrone, et plus le
détecteur est fiable, et plus il est facile de résoudre un probléme en to-
lérant des pannes. Inversement, plus les hypotheses de synchronisme
sont fortes, et plus il est difficile de les justifier lorsqu’on augmente le
nombre de nceuds du systéeme. Une classification des différents dé-
tecteurs de défaillances peut étre trouvée dans [66, 33].

Si les systemes réels sont dans la plupart des cas, au moins partielle-
ment synchrones (ce qui revient a dire qu’il existe une borne, connue ou
non, sur le rapport entre les vitesses relatives des nceuds du systeme). Par
contre, les hypotheses de communications completes et globales sont trop
fortes pour étre mises en pratique dans des systémes a grande échelle.

Dans le cadre de l'auto-stabilitation, les hypotheses faites sur le sys-
temes ne comportent en général pas, comme pour les algorithmes robustes,
de conditions sur la complétude ou la globalité des communications. De

10

nombreux algorithmes s’exécutent sur des systemes dont les nceuds com-
muniquent de maniére locale uniquement. Par contre, plusieurs hypotheéses
peuvent étre cruciales pour le bon fonctionnement de 1’algorithme, et ont
trait aux hypotheses faites sur I’'ordonnancement du systéme :

atomicité des communications : la plupart des algorithmes auto-stabili-
sants dans la littérature utilisent des primitives de communication de
haut niveau d’atomicité. On trouve dans la littérature au moins trois
modeles historiques :

1. le modele a états (ou a mémoire partagée) : en une étape atomique,
un nceud peut lire 1’état de chacun des nceuds voisins, et mettre
a jour son propre état;

2. le modele a registres partagés : en une étape atomique, un noceud
peut lire I’état de 'un des noeuds voisins, ou mettre a jour son
propre état, mais pas les deux simultanément ;

3. le modele a passage de message : il s’agit du modeéle classique en
algorithmique distribuée ot en une étape atomique, un nceud
envoie un message vers l'un des nceuds voisins, ou regoit un
message de I'un des nceuds voisins, mais pas les deux simulta-
nément.

Avec 'étude récente de la propriété d’auto-stabilisation dans les ré-
seaux de capteurs sans fils et ad hoc, plusieurs modeles de diffusion
locale avec collisions potentielles sont apparus. Dans le modéle qui
présente le plus haut degré d’atomicité [56], en une étape atomique
un noeud peut lire son propre état et écrire partiellement ’état de cha-
cun des noeuds voisins. Si deux noeuds écrivent simultanément 1'état
d’un voisin commun, une collision se produit et aucune des écritures
n’a lieu. Un modele plus réaliste [45] consiste a définir deux actions
distinctes et atomiques pour la diffusion locale d"une part et la récep-
tion d’un message localement diffusé d’autre part.

Quand les communications sont bidirectionnelles, il est possible de
simuler un modele par un autre. Par exemple, [23] montre comment
transformer le modele a mémoire partagé en un modele a registres
partagés, puis comment transformer le modele a registres partagés
en un modele a passage de messages. Dans les modeles spécifiques
aux réseaux sans fils, [57] montre comment transformer le modele a
diffusion locale avec collision en un modele & mémoire partagée ; de
maniere similaire, [43] montre que le modéle de [45] peut étre trans-
formé en un modele a mémoire partagée. Le probléme de ces trans-
formations est double :

1. la transformation consomme des ressources (temps, mémoire, énergie
dans le cas des capteurs) : ce qui pourrait étre évité par une solution
directe dans le modele le plus proche du systeme considéré ;

11

>

FIG. 3.1 — Coloration auto-stabilisante des nocuds

2. la transformation n’est possible que dans les systémes oil les communi-
cations sont bidirectionnelles : ceci est dti au fait que des acquitte-
ments doivent étre envoyés réguliérement pour assurer que l'on
simule correctement le modele de plus haut niveau.

ordonnancement spatial : historiquement, les algorithmes auto-stabili-
sants faisaient I'hypotheése que deux nceuds voisins ne pouvaient exé-
cuter leur code de maniere simultanée. Ceci permet par exemple de
briser des problemes de symétrie dans certaines configurations. On
distingue généralement trois possibilités principales pour I’ordonnan-
cement, suivant les contraintes que 1’on souhaite :

1. lordonnancement central : & un instant donné, un seul des nocuds
du systeme peut exécuter son code ;

2. l'ordonnancement global (ou synchrone) : a un instant donné, tous
les nceuds du systeme exécutent leur code;

3. l'ordonnancement distribué : & un instant donné, un sous-ensemble
arbitraire des nceuds du systéme exécute son code. Ce type d’or-
donnancement spatial est le plus réaliste.

D’autres variantes sont également possibles (par exemple un ordon-
nancement localement central : a un instant donné, dans chaque voi-
sinage, un seul des nceuds exécute son code) mais en pratique ils re-
viennent a 1'un des trois modeles ci dessus (voir [70]). Plus le modele
d’ordonnancement spatial est contraint, il plus il est facile de résoudre
des problemes.

12

Par exemple, si on considére le probleme du coloriage des nceuds
d’un graphe (le but est d’attribuer a chaque noeud du graphe une
couleur de telle sorte que deux nceuds voisins aient des couleurs dis-
tinctes), [6] montre qu’il est impossible de colorier un graphe arbi-
traire de maniere répartie et déterministe (voir I’exécution A de la fi-
gure 3.1), principalement pour des raisons d’état initial symmeétrique.
Par contre, [40] montre que si 1'ordonnancement spatial est locale-
ment central, alors une telle solution est possible (voir I'exécution B
de la figure 3.1).

Certains algorithmes, qui font 1’hypothese de 1'un de ces modeéles,
peuvent étre exécutés dans un autre modéle, au prix comme pré-
cédemment d'un consommation accrue de ressources. Le modele le
plus général étant le modele distribué, il peut étre transformé en un
modele plus contraint par l'utilisation d’un algorithme d’exclusion
mutuelle [22] (pour le modele central) ou par un algorithme de syn-
chronisation [4] (pour le modele global).

ordonnancement temporel : Les premiers algorithmes auto-stabilisants
présentés dans [22] sont indépendants de la notion de temps, c’est-
a-dire qu’ils sont écrits dans un modele purement asynchrone, ot
aucune hypothese n’est faite sur les vitesses relatives des nceuds du
systéeme. Par la suite, des modeles d’ordonnancement plus contraints
sont apparus, en particulier pour rendre compte des systémes réels.
On distingue généralement trois ordonnancements principaux :

1. l'ordonnancement arbitraire : aucune hypothese n’est faite quant
aux priorités d’exécution respectives des nceuds du systéme, si-
non la simple progression (a chaque instant, au moins un nceud
exécute des actions) ;

2. 'ordonnancement équitable : chaque nceud exécute des actions lo-
cales infiniment souvent ;

3. lordonnancement borné : entre 1’exécution de deux actions d’un
méme nceud du systeme, chaque autre nceud exécute un nombre
borné d’actions.

L’ordonnancement borné peut étre contraint plus avant pour aboutir
a un ordonnancement synchrone (ou global). Comme pour les va-
riantes des modeles précédents, il existe des algorithmes pour trans-
former I'exécution d’un modele vers un autre. Par exemple, les al-
ternateurs [39] et [52] permettent de construire un modele borné a
partir d’'un modele équitable ou arbitraire. Par contre, du fait de son
caractere non borné, le modéle équitable strict ne peut étre construit
a partir du modele arbitraire.

13

3.2 Hypotheses sur les applications

Dans le cadre de I’auto-stabilisation, suivant le probleme que I'on sou-
haite résoudre, le temps minimal nécessaire pour rejoindre une configura-
tion correcte varie fortement. On considere généralement deux types prin-
cipaux de problemes :

les problemes statiques : on souhaite effectuer une tache qui consiste a
calculer une fonction qui dépend du systeme dans lequel on 1'évalue.
Par exemple, il peut s’agir de colorier les nceuds d’un réseau de telle
sorte que deux nceuds adjacents n’ont pas la méme couleur. Un autre
exemple est celui du calcul d"un arbre des plus courts chemins vers
une destination : un nceud particulier, la destination, est distingué ;
a chaque aréte du graphe est associée un cofit (qui peut représenter
la latence, le cotit financier, etc.) ; et chaque nceud du graphe doit ob-
tenir en fin de compte le nom du voisin (son pere dans l'arbre) qui
lui permet d’arriver a la destination en minimisant le cofit associé au
chemin.

les problemes dynamiques : on souhaite effectuer une tache qui rend un
service a d’autres algorithmes. Les protocoles de transformations de
modeéle comme ceux mentionnés dans [23] ou encore le probleme du
passage de jeton (décrit dans la section 3.2.2) entrent dans cette caté-
gorie.

Du point de vue de 'aspect grande échelle, le point crucial réside dans
la localité de la définition du probleme. Par exemple, le probleme de la co-
loration est un probleme local : si chaque nceud est assuré localement que
chacun de ses voisins a une couleur différente de la sienne, alors tous les
neeuds du systeme sont également assurés de cette propriété. Par contre,
le probleme de trouver un arbre vers une destination (étudié dans la sec-
tion 3.2.1) n’est pas un probleme local : chaque nceud (sauf la destination)
dispose simplement d’un pointeur vers un de ses voisins (son pére dans
I’arbre), mais n’a aucun moyen de savoir si la structure générale induite
par les voisins ainsi choisis induit bien un arbre vers la destination (il peut
trés bien s’agir d'une racine isolée et d’un anneau orienté entre les autres
neceuds). Pour les taches dynamiques, le probleme du passage de jeton entre
les nceuds d"un réseau (détaillé dans la section 3.2.2) est également un pro-
bléme global : si un nceud ne détecte pas de jeton dans son voisinage im-
médiat, il ne peut pas en conclure qu’il n’en existe pas dans le réseau ; sil
en possede un, il n’a aucun moyen de savoir qu’il n’en existe pas un autre.

3.2.1 Probléemes globaux statiques

Historiquement, la recherche de solutions auto-stabilisantes a des pro-
blemes globaux statiques sur des graphes généraux a plutot traité des ré-

14

seaux non-orientés ot les communications sont bidirectionelles et s’effec-
tuent au moyen de registres partagés (voir [23]). Ce modéle permet d’écrire
les algorithmes et les preuves d’une maniere élégante et concise. Pour im-
planter effectivement de tels protocoles dans les systemes réels, ot les pro-
cesseurs communiquent par échange de messages, des transformateurs pré-
servant la propriété des algorithmes originaux sont nécessaires. De tels
transformateurs sont présentés dans|2, 23], et sont basés sur des variantes
du protocole du bit alterné ou de la fenétre glissante. Toutefois, 1'utilisa-
tion de tels transformateurs implique que les récepteurs sont capables d’en-
voyer des acquittements de maniere périodique, et les liens du réseau doi-
vent donc étre bidirectionnels. De plus, ces transformateurs font 1’hypo-
thése que les processeurs possedent des informations sur leur voisinage
(i.e. ils connaissent l'identité de leurs voisins).

Par conséquent, dans les réseaux unidirectionnels, les transformateurs
basés sur les acquittements ne peuvent pas étre utilisés pour exécuter des
algorithmes auto-stabilisants communicant par passage de messages. En
effet, deux voisins pourraient n’étre reliés que par un lien unidirectionnel.
De surcroit, dans les réseaux unidirectionnels a passage de messages, il est
généralement facile d’obtenir la liste de ses voisins entrants (en vérifiant
qui a «récemment» envoyé un message), mais il est tres difficile (voire im-
possible) de maintenir 1’ensemble de ses voisins sortants (dans un réseau
satellite ou un réseau de capteurs, un émetteur n’est en général pas capable
de savoir qui écoute l'information qu’il communique).

La particularité des hypotheses systéeme et le manque de transforma-
teurs génériques a conduit a la conception d’algorithmes auto-stabilisants
spécifiques pour les réseaux unidirectionnels [1, 16, 26] et [21, 30, 31, 20].
Les solutions [1, 16, 26] et [21] sont «classiques» au sens ou une chouche
d’auto-stabilisation est ajout a un algorithme non stabilisant bien connu
pour assurer la stabilisation. Ceci induit typiquement un surcofit potentiel
(en temps, en mémoire, en connaisances sur le réseau). A l'inverse, les ap-
proches proposées dans [30, 31, 20] sont basées sur des conditions portant
sur les algorithmes locaux : soit la condition est satisfaite (et 1’algorithme
est auto-stabilisant), soit la condition n’est pas satisfaite (et I’algorithme ne
stabilise pas). Par suite, aucun surco@it n’est induit par I'ajout de la pro-
priété d’auto-stabilisation a 'algorithme (l’algorithme d’origine n’est pas
modifié).

De nombreux problémes globaux statiques se ramenent a la construc-
tion d’un arbre (ou d"une forét), suivant une métrique particuliere. On ob-
tient suivant les cas un arbre en largeur, en profondeur, ou qui minimise
(ou maximise) un ou plusieurs critéres particuliers. L'algorithme réparti
peut alors étre réduit a I'exécution sur chaque nceud d'un opérateur spéci-
fique au probléme a traiter [29]. Quand cet opérateur vérifie certaines pro-
priétés [30, 31, 20], I'algorithme dérivé est auto-stabilisant. Cette maniere
de procéder permet ensuite de faciliter grandement la production de solu-

15

tion auto-stabilisantes : elle est générique (suivant 'opérateur, le graphe
de communication, l'ordonnancement) et permet lors de 1’écriture de la
preuve de juste vérifier que les propriétés attendues sont bien satisfaites
par l'opérateur. En outre, cette solution peut étre utilisée dans des réseaux
ou les communications ne sont pas fiables (pertes, duplications, déséquen-
cements) et régle donc de maniere uniforme certains problémes caractéris-
tiques des réseaux sans fils (voir également sections 4.3.1 et 5.2).

Les solutions de [30, 31] sont génériques mais s’exécutent dans un mo-
dele a mémoire partagée unidirectionnel. Dans [31], I'atomicité des com-
munications est composée : en une étape atomique, un processeur est ca-
pable de lire le véritable état de tous ses voisins et de modifier son propre
état. Dans [30], 'atomicité est de type lecture-écriture : en une étape ato-
mique, un processeur est capable de lire I'état de 1'un de ses voisins, ou de
mettre a jour son propre état, mais pas les deux. Aucune de ces approches
ne peut étre transformée par 1'un des transformateurs précités pour s’exé-
cuter dans des réseaux a communication par passage de messages. Les so-
lutions [16, 26] et [21] sont spécifiques (un seul probleme particulier est
considéré, le routage dans [16], la communication de groupe dans [26]),
le recensement dans [21], mais s’exécutent dans des réseaux a passage de
messages unidirectionnels. Alors que [16, 26] supposent des communica-
tion fiables, [21] tolere des pertes, duplications, et déséquencements de
messages. La solution de [1] propose une solution générique dans le mo-
dele a passage de messages, mais suppose que les communications sont
tiables (avec des liens FIFO), que les liens ont des identifiants uniques, et
que le réseau est fortement connexe, trois hypothéses que [30, 31, 20] ne
font pas.

Dans [20] est proposé un algorithme générique qui peut étre instancié
pour résoudre des taches statiques, et qui s’exécute dans des réseaux unidi-
rectionnels o1 les processeurs communiquent par échange de messages. La
solution de [20] est auto-stabilisante (elle retrouve en un temps fini un com-
portement correct depuis n'importe quel état initial). Elle tolere également
la perte équitable des messages, la duplication finie, le déséquencement ar-
bitraire a la fois dans la phase de stabilisation et dans la phase stabilisée.
En outre, cette approche présente plusieurs aspects intéressants : le réseau
n’a pas besoin d’étre fortement connexe, les processeurs n’ont pas besoin
de savoir si le réseau comprend des cycles, et aucune borne sur la taille, le
diametre ou le degré maximum du réseau n’a besoin d’étre connue. Toute-
fois, si de telles informations sont connues, le temps de stabilisation peut
s’en trouver fortement réduit, jusqu’au diametre effectif du réseau.

La table 3.1 résume les différences principales entre les travaux cités
en considérant les criteres suivants : surcotit, modele de communication,
fiabilité des communications, et nature de l'algorithme. Notons que tous
ces algorithmes ont un temps de stabilisation similaire, linéaire en fonction
du diametre du réseau, et sont donc optimaux concernant ce critere (voir

16

Référence | Surcofit Communication Fiabilité des Algorithme
communications

[1] oui passage de messages fiable generique
[16] oui passage de messages fiable spécifique
[30] non registres partagés fiable générique
[21] oui passage de messages non-fiable spécifique
[31] non mémoire partagée fiable générique
[26] oui passage de messages fiable spécifique
[20] non passage de messages non-fiable générique

TAB. 3.1 — Auto-stabilisation des problemes statiques dans les réseaux uni-
directionnels

section 3.2.3).

3.2.2 Problemes globaux dynamiques

L’ «étalon» des algorithmes auto-stabilisants pour des problemes dyna-
miques (et le premier algorithme publié) est celui de 1’exclusion mutuelle
sur un anneau unidirectionnel. Le probléme de I’exclusion mutuelle est un
probléme fondamental dans le domaine de 'informatique répartie [65, 5].
Considérons un systéme réparti de n processeurs. Tous les processeurs, de
temps a autre, peuvent avoir a exécuter une section critique de leur code
durant laquelle exactement un processeur est autorisé a utiliser une res-
source partagée. Un systeme réparti qui résoud le probleme de I’exclusion
mutuelle doit garantir les deux propriétés suivantes : (i) exclusion mutuelle :
exactement un processeur est autorisé a exécuter sa section critique a un
instant donné; (ii) équité : tout processeur doit étre en mesure d’exécuter sa
section critique infiniment souvent au cours de 'exécution. Une technique
classique consiste a faire passer a chaque processeur un message spécial
appelé jeton. La réception du jeton signifie que le processeur peut entrer
en section critique. Ce jeton doit permettre le respect des contraintes de
I'exclusion mutuelle : étre présent en un unique exemplaire et passer infi-
niment souvent par chaque processeur.

Intuitivement, un protocole d’exclusion mutuelle auto-stabilisant par
passage de jeton garantit que, méme si on part d’un état ot la spécifica-
tion de l’exclusion mutuelle n’est pas respectée (zéro ou plusieurs jetons
sont présents dans le systeme), alors en un nombre fini d’étapes, un seul
jeton circule équitablement dans le réseau. En pratique, quand les nceuds
communiquent par passage de messages, on se borne a prouver qu’a partir
d’une configuration a plusieurs jetons, on aboutit en un temps fini a une
configuration a jeton unique. En effet, [55] ont prouvé que dans le cas ou
on se trouve dans un systéme réparti ot les processeurs communiquent
par passage de messages, il est indispensable de disposer d"un mécanisme
de temporisation (timeout) pour injecter des jetons spontanément : si un tel
mécanisme n’est pas disponible, le systeme ne peut étre auto-stabilisant

17

puisqu’il se retrouverait bloqué en démarrant d’une configuration initiale
sans messages.

Un réseau est uniforme si tout processeur exécute le méme code, et il
est anonyme si les processeurs ne disposent par d’identificateurs pour exé-
cuter des sections de code différentes. Bien sfir, si un protocole fonctionne
dans un réseau uniforme et anonyme, alors il fonctionne a fortiori dans un
réseau non uniforme ou non anonyme. Les protocoles uniformes et ano-
nymes sont ceux qui offrent le plus de flexibilité lors d"un déploiment dans
un réseau (et plus particulierement dans un réseau de grande taille) en rai-
son de 'absence de vérifications supplémentaires (identifiant uniques sur
le réseau, code différent déployé de maniéere adéquate, etc.). Depuis les trois
protocoles d’exclusion mutuelle auto-stabiliante par passage de jeton pro-
posés dans l'article fondateur [22], de nombreux travaux ont traité de ce
probleme dans différents contextes et par exemple [42, 19, 10, 13, 67, 51] et
[18] dans le cas des anneaux de processeurs unidirectionnels anonymes et
uniformes.

Un protocole d’exclusion mutuelle par passage de jeton est transparent
vis a vis de 'application qui utilise le protocole si il ne modifie pas le for-
mat des jetons qui sont échangés par 'application. Une telle propriété est
souhaitable si par exemple le contenu du jeton est utilisé par I'application
(c’est le cas dans un réseau de type Token Ring ou FDDI, ou1 le jeton contient
également les informations devant étre transmises au destinataire). En ef-
fet, un protocole transparent est plus facile a implanter (il ne modifie pas
le format des trames de ’application) et plus facile a intégrer a des réseaux
hétérogenes (dont certaines parties utilisent un protocole de passage de je-
ton différent). En outre, la charge de la vérification de l'intégrité des mes-
sages peut étre déléguée entierement a 1’application. Parmi les protocoles
précités, seuls [42, 10] et le protocole synchrone de [18] sont transparents
vis a vis de l'application qui utilise le protocole. Les protocoles présen-
tés dans [13, 67, 51] et [18] utilisent soit plusieurs types de jetons (et donc
ajoutent un champ type aux messages de 1’application), soit des informa-
tions supplémentaires a chaque jeton circulant de maniere a assurer la sta-
bilisation.

Comme montré dans [14], il est impossible de résoudre le probleme de
I'exclusion mutuelle auto-stabilisante dans un anneau unidirectionnel ano-
nyme et uniforme au moyen d'un protocole déterministe quand la taille
n’est pas premiére. Aussi les solutions précédentes sont elles toutes pro-
babilistes. Parmi celles-ci, [42, 10] ne proposent pas de calcul du temps de
stabilisation, et les temps de stabilisation moyens attendus de [13, 51] et [18]
sont de l'ordre de n?, o n désigne la taille de 'anneau, et celui de [67] est
de l'ordre de n? log(n). Dans [28], il est prouvé que le temps de stabilisation
de [42, 10] est de ©(n?) avec un ordonnancement synchrone.

Un autre critere d’évaluation est celui du temps de service, c’est a dire
le temps, en phase stabilisée, entre deux passages du jeton sur un proces-

18

Protocole Connaissance | Temps de Temps de Mémoire | Transparent
den stabilisation | service
[13] oui o(n®) O(n?) O(log(n)) | non
[67] non O(n?log(n)) | O(nlog(n)) | O(1) non
[51] oui O(n?) O(n) O(log(n)) | non
[42,10],[28] | non 0(n?) O(n?) 0 oui
[18, 28] non o(n?) O(n) 0(1) oui
[28] oui O(n) O(n) O(log(n)) | oui
[28] oui O(n) O(n) O(1) oui

TAB. 3.2 — Algorithmes de passage de jeton auto-stabilisants

seur. Ce temps est important pour évaluer les performances du protocole
quand il n’y a pas de défaillances et ainsi évaluer son surcofit par rapport
a un protocole non stabilisant. Dans un systéme a n processeurs, le temps
de service est en 2(n), puisque si chaque processeur attend le minimum de
temps, il attend autant que les autres. Le temps de service n’est pas calculé
dans [42, 10, 13], et il est dans [67, 51] et [18] de I'ordre de n?, n?logn, et n,
respectivement. Dans [28], il est prouvé que le temps de service de [42, 10]
est de ©(n?) avec un ordonnancement synchrone. Notons que [18] (respec-
tivement [41]) a été le premier a proposer un algorithme d’exclusion mu-
tuelle (respectivement de [-exclusion mutuelle) qui garantit un temps de
service borné sous un ordonnancement arbitraire.

Dans [28] sont proposés plusieurs protocoles auto-stabilisants pour les
réseaux synchrones anonymes et uniformes en anneau unidirectionel ot les
processeurs communiquent par échange de messages. Les deux premiers
protocoles sont des transpositions dans un modeéle a passage de messages
des protocoles de [42, 10] d'une part, et de [18] d’autre part, qui utilisent
dans leur version d’origine un modele a mémoire partagée. Ensuite, [28]
propose deux protocoles basés sur la notion de ralentisseur. Chaque proces-
seur peut se proclamer ralentisseur et ralentir les jetons qu’il regoit avec une
certaine probabilité. Suivant la puissance du ralentisseur considéré (quan-
tité de mémoire disponible), les résultats de complexités obtenus sont dif-
férents, mais chacun des protocoles a un temps de stabilisation moyen et
un temps de service moyen en O(n).

Les résultats enoncés précédemment sont reportés sur la table 3.2. Comme
indiqué dans la section 3.2.3, le probleme de 1'exclusion mutuelle par pas-
sage de jeton dans le modele proposé est en {2(n). Le dernier algorithme
présenté dans [28] est donc optimal pour tous les criteres considérés (temps
de stabilisation, temps de service, mémoire utilisée, et transparence). En
outre, il peut étre exprimé simplement :

1. chaque nceud possede un état qui peut prendre deux valeurs, normal
et ralentisseur;

2. un nceud normal qui recoit un jeton retransmet le jeton a son succes-

19

PO 0
OO OO0

FIG. 3.2 — Construction d"un arbre des plus courts chemin vers d

seur dans l’anneau ;
3. un nceud ralentisseur qui regoit un jeton garde le jeton;

4. a chaque unité de temps (le systeme est supposé synchrone), chaque

neceud normal devient ralentisseur avec probabilité ﬁ, sinon (s'il

est ralentisseur) il devient normal avec probabilité %

Sur n étapes synchrones, il y a une probabilité constante d’obtenir un
seul ralentisseur, et que ce ralentisseur reste le méme pendant n étapes.
Alors, tous les jetons se retrouvent sur le méme nceud ralentisseur, et sont
fusionnés au cours des n étapes. Par la suite, un jeton fait le tour de 'an-
neau en moyenne en 2n étapes (il reste en moyenne n étapes sur un unique
ralentisseur, et une étape sur tous les autres nceuds).

3.2.3 Optimalité et passage a I’échelle

Les problémes globaux présentent un probleme de performance lors-
qu’on s’intéresse au passage a 1’échelle. Par exemple, la figure 3.2 montre
deux configurations d"un algorithme auto-stabilisant de construction d’arbre
des plus courts chemins vers une destination. Entre les deux configura-
tions, seul le poids d'une aréte (marquée en gras) a changé. Cependant,
cette unique modification a induit le changement de parent de la moitié
des nceuds du réseau.

De maniere duale, la figure 3.3 montre une configuration initiale d’'un
algorithme auto-stabilisant d’exclusion mutuelle par passage de jeton dans
un anneau anonyme (les identifiants ont été placés uniquement pour dis-
tinguer les nceuds dans le texte). Quand un processus possede le jeton (ce
qui est déterminé par son voisinage uniquement), il apparait en noir. Le but
de l'algorithme est de garantir qu’au bout d’un temps fini, un unique jeton
circule dans le réseau. Pour des raisons de symétrie du systeme, il n’est pas
possible de concevoir dans ce contexte un algorithme qui supprimerait le
jeton placé en n/2 + 1 mais pas celui placé en 1. Le seul moyen pour faire
décroitre le nombre de jeton consiste a les déplacer sur ’'anneau de telle
sorte qu’ils se rejoignent. Etant donné que la distance qui sépare les deux
jetons initialement est de I'ordre de n —la taille du réseau —, et que le dépla-
cement d"un jeton requiert ’action d’au moins un nceud, il faut au moins

20

FIG. 3.3 — Exclusion mutuelle par passage de jeton auto-stabilisante

qu’'un nombre de nceuds proportionnel a n agisse pour que les jetons se
rejoignent.

Pour des réseaux de taille modeste (comprenant quelques dizaines ou
quelques centaines de nceuds), il reste envisageable de tenter de résoudre
des problémes globaux. Pour des réseaux de grande taille (plusieurs di-
zaines ou centaines de milliers de nceuds), des algorithmes auto-stabilisants
résolvant des problémes globaux, méme s’ils sont optimaux comme ceux
développés dans les sections 3.2.1 et 3.2.2, ne peuvent plus étre envisagés.

21

Chapitre 4

Solutions pour
I’auto-stabilisation a grande
échelle

L’auto-stabilisation, dans sa forme originelle, n’est pas adaptée aux sys-
témes a grande échelle. Toutefois, en restreignant certains aspects de la dé-
finition de base, il est possible de conserver des propriétés de tolérance aux
pannes intéressantes pour les systemes a grande échelle. Ces restrictions
consistent a restreindre 1’étendue ou la nature des fautes qui sont consi-
dérées pour permettre un retour rapide a la normale, ou encore le type
de problémes que I'on se propose de résoudre. Pour certaines approches,
la propriété d’auto-stabilisation reste conservée, et des propriétés additio-
nelles, utiles dans les systemes a grande échelle, sont ajoutées.

4.1 Restreindre la nature des fautes

4.1.1 Deétection et correction d’erreurs

Le moyen le plus simple pour ajouter la propriété d’auto-stabilisation
a un systeme est d’utiliser un mécanisme de détection et de correction des
fautes. Les approches historiques [55, 8] sont globales (au moins un nceud
recoit des informations de chacun des autres, ou envoie des informations a
chacun des autres) et ne sont pas adaptées aux systemes a grande échelle.
Toutefois, plusieurs approches récentes sont envisageables pour de tels sys-
temes :

détecteurs et correcteurs localisés : Toutes les taches ne sont pas équiva-
lentes lorsqu’il s’agit de détecter qu’une corruption de mémoire a eu
lieu. Par exemple, pour se rendre compte qu'un coloration des noeuds
est incorrecte, il suffit de regarder les couleurs de ses voisins et de les

22

comparer avec la sienne. Chaque nceud détectant un conflit peut de-
mander une action de correction. Par contre, pour s’assurer qu’une
orientation du réseau est sans cycle, il faut potentiellement regarder
a une distance proportionnelle a la taille du systeme (voir [11]).

Bien entendu, un algorithme particulier peut ajouter des variables
supplémentaires pour permettre une détection plus rapide (par ex-
emple la distance a la racine pour la construction d"un arbre, chaque
neeud est alors en mesure de vérifier que son «pere» dans 1’arbre est
bien a une distance inférieure a la sienne). C’est sur ce principe qu’est
construit le stabiliseur local de [3]. En parallele avec I'exécution nor-
male du systéme, les nceuds surveillent Iétat de leur voisinage, a une
distance qui dépend du probléme et de I’algorithme utilisé. Cette sur-
veillance permet de détecter certaines corruptions de mémoire, et de
déclencher une opération de correction adaptée. La phase de correc-
tion utilise la redondance des informations utilisées pour la détec-
tion : chaque noeud posséde une copie de I'état de chacun de ses voi-
sins a une certaine distance k. Cette redondance réserve la technique
a des algorithmes pour lesquels cette distance est petite, en effet la
mémoire et les échanges associés croissent de maniere exponentielle
en fonction de cette distance.

détecteurs et correcteurs probablement corrects : Cette approche consiste
a considérer que des corruptions de mémoire réellement arbitraires
sont hautement improbables. Des arguments probabilistes sont uti-
lisés pour établir que en général, les corruptions de mémoire qui ré-
sultent des fautes survenues peuvent étre détectées au moyen de tech-
niques classiques en théorie de l'information, comme la redondance
des données ou les codes de détection et de correction d’erreurs. En
particulier, dans [44], on utilise des codes de détection d’erreur pour
déterminer qu'une corruption de mémoire est survenue, avec grande
probabilité. Si 'article considere uniquement le cas ot une seule cor-
ruption survient (c’est-a-dire qu'un seul nceud du systéme est touché
par cette corruption), il permet de retrouver un comportement correct
en une seule étape de correction. Pour un systéme, méme a grande
échelle, ot les corruptions de mémoire sont localisées dans chaque
voisinage et ne sont pas malicieuses (c’est-a-dire qu’elles sont détec-
tables par des techniques comme des codes de redondance cycliques),
cette approche apparait indiquée.
Une approche similaire a été suivie récemment dans [49]. Le principe
de base est le suivant : a chaque variable de l’algorithme de départ,
on associe k variables (3 dans l’article mentionné). Ensuite, a chaque
acces a une variable particuliére (c’est-a-dire en fait un ensemble de &
variables représentant une variable logique), on utilise une fonction
de parité qui permet de distinguer les corruptions visibles des ab-

23

sences de corruptions (ou des corruptions invisibles). Une corruption
visible correspond & une détection par le code de parité. A chaque
fois qu'une corruption visible est détectée, on utilise une fonction de
majorité bit a bit pour rétablir la valeur de la variable avant que la
corruption ne survienne. Cette approche a pour défaut d’augmenter
la mémoire et les traitements sur un nceud particulier d"un facteur k.
Par contre, la simplicité de sa mise en ceuvre rend son implantation
facile sur des nceuds peu puissants (comme des réseaux de capteurs).

4.1.2 Préservation de prédicats

Un systeme auto-stabilisant n’a pas besoin d’étre initialisé. De plus,
quand les parametres ou 'environnement changent, il est en mesure de
s’adapter au nouveau contexte sans qu’il y ait besoin d’écrire du code spé-
cifique pour traiter les cas non prévus lors de la conception du systeme.
Cette généralité dans I'approche de la tolérance aux pannes et de 1’adap-
tativité est indubitablement un point fort de 1’auto-stabilisation, mais dans
un systeme a grande échelle, les aspects de dynamicité et de changement
inopiné de 'environnement sont beaucoup plus susceptibles de se produire
que des corruptions arbitraires de la mémoire des nceuds du systeme.

Plusieurs travaux récents dans le domaine de I’auto-stabilisation se con-
centrent sur des solutions plus robustes que les solutions simplement sta-
bilisantes dans des contextes fortement dynamiques. A la base, ces algo-
rithmes sont auto-stabilisants, et bénéficient donc des propriétés qui en ré-
sultent. De plus, ils préservent un prédicat local quand certains change-
ments particuliers se produisent. D’une certaine maniére, ils garantissent
certaines propriétés quand des défaillances restreintes (mais potentielle-
ment fréquentes) se produisent, et garantissent simplement 1’auto-stabili-
sation quand des défaillances arbitraires interviennent. On peut dénombrer
plusieurs approches complémentaires :

super-stabilisation : cette propriété (définie dans [25]) stipule qu'un algo-
rithme super-stabilisant est auto-stabilisant d 'une part, et préserve un
prédicat (typiquement un prédicat de stireté) quand des changements
de topologie surviennent dans une configuration légitime. Ainsi, les
changements de topologie sont restreints : si ces changements inter-
viennent lors de la phase de stabilisation, le systeme peut ne jamais
stabiliser. Par contre, s’ils interviennent seulement apres qu’un état
global correct a été atteint, le systéme reste stable. Cette propriété est
strictement plus forte que la propriété d’auto-stabilisation : dans un
systeme auto-stabilisant, les changements de topologie seraient assi-
milés & des défaillances transitoires (les nceuds n’ont pas en mémoire
une vision correcte de leur voisinage), et aucune garantie de stireté ne
pourrait étre donnée si a partir d’un état global correct, un tel chan-
gement de topologie survenait.

24

auto-stabilisation et communications non fiables : il s’agit ici des al-

gorithmes a la fois auto-stabilisants et tolérant des pannes de liens
(pertes, duplications, déséquencements, voir paragraphe 2.1). Si les
pannes de liens sont transitoires (ou intermittentes mais se produi-
sant rarement), 1’auto-stabilisation «simple» permet de revenir a la
normale. Si par contre ces pannes interviennent de maniere intermit-
tente mais réguliere, le bon comportement du systeme n’est plus ga-
ranti. Remarquons tout d’abord que pour que le probleme admette
une solution, il est nécessaire que ces pannes de liens ne soient pas
completement arbitraires :

— pertes : si un canal peut perdre tous les messages qui transitent a
travers lui, on ne peut résoudre aucun probléme non trivial. On
fait donc I'hypothese que les pertes sont équitables, c’est-a-dire que
si un nceud envoie une infinité de messages sur un lien adjacent, le
lien délivre une infinité de messages au nceud situé a 'autre extré-
mité du lien. Bien stir, le lien peut, ce-faisant, perdre une infinité de
messages.

— duplications : si un canal peut dupliquer infiniment un message qui
transite par ce canal, alors aucun probléme non trivial ne peut étre
résolu de maniere auto-stabilisante. En considérant que suite a une
défaillance transitoire les liens de communications contiennent des
messages erronés, ceux-ci peuvent étre dupliqués et délivrés aux
neceuds adjacents a 1'infini, et compromettre l'intégrité du systeme
indéfiniment. Aussi, on fait 'hypothése qu'un méme message ne
peut étre dupliqué qu'un nombre fini (mais potentiellement non
borné) de fois.

Sous ces hypotheses (pertes équitables, duplication finie, déséquen-

cement arbitraire), plusieurs solutions existent et restent auto-stabili-

santes. En particulier, cela signifie que les défaillances des liens peu-
vent se produire pendant la phase de stabilisation, mais aussi pen-
dant la phase stabilisée. Aussi, a partir d"une configuration légitime,
les pertes, duplications et désequencements qui pourraient se pro-
duire n’ont pas d’impact sur la correction du systéme (elles sont donc
masquées a l'utilisateur du systéme). Dans [21], une solution au pro-
bléme du recensement (trouver tous les nceuds d'un systéme et leurs
positions respectives) présente les caractéristiques évoquées précé-
demment, et dans [20] une solution générique (c’est-a-dire paramé-
trable pour différentes métriques) est donnée au probléme de la cons-

truction d’arborescences (voir également section 3.2.1).

Ces deux solutions présentent des caractéristiques communes pour la

résistances aux différents types de défaillances des liens de communi-

cations. Pour gérer les pertes, chaque noeud réémet régulierement son
dernier message. Pour gérer les duplications, I'algorithme utilisé sa-
tisfait la propriété d’idempotence (c’est-a-dire que la réception succes-

25

sive d'un méme message plusieurs fois ne change pas 1’état du nceud
qui le recoit). Enfin, pour les déséquencements, I'algorithme traite
chaque message de maniere indépendante (ce qui conduit pour [21]
a utiliser des messages de taille importante).

routage auto-stabilisant sans boucles : les prédicats que 1'on souhaite
préserver ici sont caractéristiques des protocoles de routage. L'inté-
rét principal de la construction des tables de routage par un algo-
rithme réparti est de pouvoir effectuer leur mise a jour de maniere
dynamique, et en particulier alors que le réseau est en cours d'utilisa-
tion. Maintenant, quand une table de routage est modifiée localement
sur un nceud, le chemin qu'un message particulier transitant par ce
neeud est également modifié. Si on ne prend pas de précautions parti-
culieres, a un instant donné, des boucles logiques peuvent se produire
quand on suit le cheminement des tables de routage en cours de mise
a jour. Ces boucles logiques augmentent le nombre de sauts qu'un
message particulier doit parcourir et, si ce message a une durée de
vie limitée, peuvent conduire a la suppression du message. Le rou-
tage sans boucles permet de garantir que lors de la modification des
tables de routages, a tout instant aucune boucle logique n’existe dans
le systéme. Dans [17], une version auto-stabilisante d"un algorithme
de routage sans boucles est présenté. Cependant, dans un environne-
ment fortement dynamique, il est possible que méme un algorithme
de routage sans boucles se révele insuffisant.

Sur la figure 4.1, une exécution possible d'un algorithme de routage
sans boucles est représenté, avec un message qui doit étre acheminé
jusqu’a la destination d. Les changements des cofits sur les liens de
communications occasionnent des mises a jour successives des tables
de routage. A chaque instant, un noeud particulier utilise sa table de
routage local, et & chaque instant, aucune boucle logique n’existe jus-
qu’a la destination. Cependant, la dynamicité du réseau fait qu'une
boucle logique est construite au cours du temps, empéchant le mes-
sage d’arriver a destination. Dans [54], un algorithme auto-stabilisant
sans boucles et préservant les routes est présenté. La propriété de pré-
servation des routes signifie que si un arbre est initialement construit
vers une destination, tout message émis vers cette destination arrive
en temps fini. La technique générale pour aboutir a ce résultat se dé-
compose en deux phases :

1. avant de changer de parent dans l’arbre qui le mene a la desti-
nation, un nceud s’assure aupres de tous ses descendants que ce
changement n’occasionnera pas de boucle ;

2. les modifications de la table de routage ont une priorité infé-
rieure a la transmission des messages, de telle sorte qu'un mes-
sage se dirigeant vers la racine voit toujours décroitre la distance

26

FIG. 4.1 — Routage sans boucles en environnement dynamique

27

(pour une métrique particuliére) qui le sépare de la racine.

Ainsi, si des changements des poids des liens ont lieu apres qu’un
arbre a été construit, les messages arrivent toujours a destination. Si
de plus il ne se produit pas de changement des poids des liens pen-
dant une certaine période, alors le systeme converge vers un arbre
des plus courts chemins (toujours suivant une métrique particuliere)
vers la destination.

4.2 Restreindre I'étendue géographique des fautes

Dans son acceptation classique, 1’auto-stabilisation ne donne pas de
contraintes sur le nombre de fautes qui peuvent frapper un systeme. Cette
généralité peut ne pas étre vérifiée dans un systeme a grande échelle, tel
qu'un réseau de capteurs ou un réseau ad hoc de grande taille (plusieurs
centaines de nceuds. En effet, du fait du grand nombre de noeuds présents,
il est hautement probable que la grande majorité d’entre eux vont fonction-
ner correctement. Par contre, il est tout aussi probable que tout au long de
I'exécution, plusieurs d’entre eux soient sujets a des pannes intermittentes.

En supposant que les fautes qui peuvent se produire ne concernent ja-
mais qu'une petite partie du réseau, il est possible de concevoir des al-
gorithmes qui convergent plus rapidement que des algorithmes auto-sta-
bilisants classiques. Pour se donner un cadre formel, on considere que la
distance a une configuration légitime est égale au nombre de nceuds dont
il faut changer la mémoire pour atteindre une configuration légitime (de la
méme maniere que pour une distance de Hamming). Bien str, il est pos-
sible que méme si on est a distance k£ d’une configuration légitime, plus de
k nceuds ont en fait vu leur mémoire corrompue. Du point de vue du re-
tour a un état normal, on considére uniquement la configuration légitime
la plus proche.

Les travaux qui cherchent a minimiser le temps de stabilisation dans
un contexte ol peu de fautes se produisent distinguent généralement deux
degrés de stabilisation :

la stabilisation «visible» : ici, seules les variables de sortie de I'algorithme
sont concernées. Les variables de sortie sont typiquement utilisées
par l'utilisateur du systéme. Par exemple, si on considere un algo-
rithme de construction d’arbre, seul le pointeur vers le nceud parent
fait partie des variables de sortie.

la stabilisation «interne» : ici, toutes variables de I'algorithme sont concer-
nées. Ce type de stabilisation correspond a la notion classique de
l’auto-stabilisation.

Dans beaucoup de travaux, seule la stabilisation «visible» s’effectue ra-
pidement (c’est-a-dire en temps relatif au nombre de fautes qui frappent

28

le systeme, plutot qu’en un temps relatif a la taille du dit systeme), la sta-
bilisation «interne» restant le plus souvent proportionnelle a la taille du
réseau. Les algorithmes qui présentent cette contrainte ne sont donc pas
capables de tolérer une fréquence de fautes plus élevée. Considérons en
effet un algorithme dont le temps de stabilisation visible est une fonction
de k (e nombre de fautes) et dont la stabilisation interne est une fonction
de n (la taille du systéeme). Maintenant, si une nouvelle faute survient alors
que la stabilisation visible est effectuée mais pas la stabilisation interne,
cela peut mener a un état global comprenant un nombre supérieur a k de
défaillances, et aucune garantie ne peut plus étre donnée sur le nouveau
temps de stabilisation visible.

4.2.1 k-stabilisation

La k-stabilisation se définit comme 1’auto-stabilisation, en restreignant
les configurations de départ aux configurations qui sont a distance au plus
k d’une configuration légitime. Du fait de 1’environnement moins hostile,
il est possible de résoudre des problémes impossibles dans le cas de ’auto-
stabilisation générale, et de proposer des temps de stabilisation visibles ré-
duits, méme pour des taches globales comme celles décrites paragraphe 3.2.

Par exemple, il est notoire [50] qu’il est impossible de résoudre le pro-
bleme du passage de jeton équitable de maniere auto-stabilisante anonyme
(les nceuds ne peuvent pas étre distingués) et déterministe quand le graphe
de communication est un anneau unidirectionnel (un nceud ne peut rece-
voir des informations que de son voisin de gauche, et ne peut envoyer des
informations qu’a son voisin de droite). L’argument principal de la preuve
d’impossibilité est le suivant : considérons une configuration ot le systeme
de n nceuds contient un unique jeton et est stabilisé. Sur la figure 4.2, le je-
ton est localisé sur le nceud dont I'état est e2. On construit alors un nouveau
systeme de taille 2n et reproduisant les états des processeurs de maniere
symétrique (c’est-a-dire que le nceud ¢ posseéde le méme état local que le
neceud ¢ + n). Il existe deux jetons dans ce nouveau systeme, et si on exécute
le code des nceuds en utilisant un ordonnancement synchrone, les deux
jetons perdurent a jamais (le premier systéme de taille n laissant I'unique
jeton perdurer a jamais).

Dans [35], on considere qu’au plus k£ < % fautes peuvent frapper le
systeme (oul ¢ est une petite constante) ; dés lors, le probleme du passage
de jeton peut étre résolu de maniere déterministe et k-stabilisante. L'idée de
base est d’ajouter une vitesse aux jetons. Cette vitesse est proportionnelle au
nombre de nceuds correct précédant le jeton (ce nombre est calculé via une
variable qui estime la distance au prochain jeton). Ensuite, un jeton dont les
k prédécesseurs sont corrects aura une vitesse maximale, tandis qu'un jeton
dont les k prédécesseurs ne sont pas tous corrects aura sa vitesse ralentie,
et sera rattrapé par un jeton correct. Le temps de stabilisation visible de cet

29

@8&

FIG. 4.2 — Impossibilité de 'exclusion mutuelle sur un anneau uniforme

algorithme est en O(k).

4.2.2 Auto-stabilisation adaptative en temps

Pour certains problemes, une corruption de mémoire peut entrainer une
cascade de corrections dans tous le systeme [8]. Il serait pourtant naturel
que lorsque moins de défaillances frappent le systéme, la stabilisation soit
plus rapide. C’est ce principe que développe l’auto-stabilisation adaptative
en temps (en anglais time adaptive stabilization, scalable stabilization ou encore
fault local stabilization).

L’auto-stabilisation adaptative en temps a d’abord été étudiée pour les
taches statiques. Une tache en particulier, le bit persistent fait 1’objet de [59,
60] : il s’agit de tolérer la corruption d"un bit sur k£ nceuds, lorsque k est in-
connu de chaque noeud. Ces deux approches sont basées sur de la collecte
d’information aupres des autres nceuds pour effectuer ensuite un vote a la
majorité pour établir la valeur véritable. Dans [60], le temps de stabilisa-
tion visible est de O(klog(n)), pour k < O(%). Dans [59], si le nombre
de fautes est inférieur a %, alors le temps de stabilisation visible est de O (k).
Ces deux algorithmes supposent un ordonnancement synchrone. Toujours
pour les taches statiques, [37] propose un algorithme qui transforme un
premier algorithme A auto-stabilisant pour une tache statique en un nou-
vel algorithme A’ lui aussi auto-stabilisant, mais dont le temps de stabili-
sation visible est constant si k vaut 1. Son temps de stabilisation interne est
de O(T x D), ou T est le temps de stabilisation de A et ou D est le diametre
du réseau. L'algorithme de [37] s’exécute avec un ordonnancement asyn-
chrone. Un autre procédé de transformation d’algorithme est celui présenté
dans [38] : ce procédé ajoute des propriétés de stabilisation a un algorithme

30

non stabilisant pour un probleme statique, dans le cas ot le nombre de
fautes est largement inférieur a la taille du réseau. Cependant, les résultats
de complexité obtenus dépendent fortement de la répartition des fautes qui
frappent le systéme : les meilleurs résultats sont obtenus quand les k fautes
sont contigiies (le temps de stabilisation est alors en O(k?)), mais les perfor-
mances décroissent (de maniére exponentielle en k) quand les fautes sont
localisées de maniere arbitraire.

Le cas des taches dynamiques est plus délicat a traiter dans le contexte
de I’adaptativité en temps [36]. Considérons par exemple le cas de 1'ap-
parition d’une seule faute dans le probléme du passage de jeton dans un
réseau. Dans une exécution correcte (sans fautes), le jeton se propage dans
le réseau, et du fait de la localité des échanges d’informations, la propaga-
tion du jeton ne peut se faire que de proche en proche (voir I'exécution A de
la figure 4.3, o1 le noeud marqué J possede le jeton, et ot les nceuds grisés
sont les seuls capables d’agir). Or, quand une faute se produit a 1’autre bout
du réseau (voir I'exécution B de la figure 4.3, o1 le nceud marqué F est fau-
tif), elle ne peut étre corrigée que dans le voisinage (toujours en raison de la
localité des échanges d’information). Méme avec une hypothese d’ordon-
nancement borné, il peut se faire que les actions corrigeant la faute n’in-
terviennent qu’apres un temps proportionnel a la taille du réseau (et non
en fonction du nombre de fautes qui frappent le réseau). Ce cas de figure
n’apparait pas pour les taches statiques : si une faute survient dans une
configuration légitime, seul le voisinage est en mesure d’agir pour corri-
ger. Ce résultat implique que pour obtenir des algorithmes pour des taches
dynamiques qui soient adaptatifs en temps, il est nécessaire de considérer
que le systéme est soumis a un ordonnancement synchrone (ou supposer
que dans un intervalle de temps fixé appelé round, tous les nceuds qui ont
la capacité d’agir le font).

Plusieurs solutions au probleme du passage de jeton dans un anneau
ont été proposés dans ce contexte [12, 34] et [35]. IIs utilisent soit un ordon-
nancement synchrone ([34], [35]), soit mesurent le temps de stabilisation
visible en rounds ([12]). L'algorithme de [12] stabilise en temps O(k?), celui
de [34] en O(k), et celui de [35] en O(f), ot f est le nombre effectif de fautes
qui frappent le réseau (par opposition a k la borne sur le nombre maximum
de fautes qui peuvent étre tolérées).

4.2.3 Une classification

Il est possible de classer les algorithmes auto-stabilisants, k-stabilisants,
et adaptatifs en temps suivant la difficulté des problemes qu’il est possible
de résoudre dans chaque cas. Par exemple, s’il est possible de résoudre
un probléme de maniere auto-stabilisante, il est également possible de le
résoudre de maniere k-stabilisante (qui peut le plus peut le moins). Si-
milairement, s’il est possible de résoudre un probléeme de maniere adap-

31

FIG. 4.3 — Adaptativité en temps pour les problemes dynamiques

32

Auto-stabilisation

(n-1)-stabilisation

2-stabilisation

1-stabilisation

FIG. 4.4 — Classification des problemes pour la k-stabilisation et I’adaptati-
vité en temps

tative en temps, il est également possible de le résoudre sans essayer de
contraindre le temps de stabilisation visible. Ainsi, la classe des problémes
solubles de maniere adaptative en temps est un sous ensemble de la classes
des problemes solubles de maniére auto-stabilisante, qui est elle-méme un
sous ensemble de la classes des problemes admettant une solution k-stabi-
lisante (voir figure 4.4). Ces inclusions sont strictes : des problemes peuvent
étre résolus de maniére k-stabilisante, mais pas auto-stabilisante (voir pa-
ragraphe 4.2.1), d’autres peuvent étre résolus de maniere auto-stabilisante,
mais pas adaptative en temps (voir paragraphe 4.2.2).

4.3 Restreindre les classes de problémes a résoudre

Dans le paragraphe 3.2, plusieurs problémes spécifiques aux systemes
répartis sont globaux, c’est-a-dire quune modification sur un élément du
systeme peut entrainer des répercussions dans tout le systeme. Dans cette
section, il s’agit de parvenir a obtenir de bonnes performances (i.e. des per-
formances qui ne dépendent pas de la taille du systeme) dans des systémes
a grande échelle. A l'inverse des sections 4.1 et 4.2, nous supposons que les
corruptions de mémoire peuvent étre parfaitement arbitraires, et que leur
étendue est également arbitraire. Le principe est d’étudier des algorithmes
dits localisés, c’est-a-dire que la correction dans une partie du systéme ne
dépend pas de celle des autres parties du systeme.

4.3.1 Problémes localisés

Les problemes d’allocations de ressources (en général dérivés de pro-
blemes de coloration de graphes) présentent généralement des contraintes

33

locales, ce qui fait qu’il sont le plus souvent localisables, c’est-a-dire so-
lubles par des algorithmes localisés.

Allocation de créneaux TDMA

L’évitement et la gestion des collisions sont des aspects fondamentaux
dans les protocoles pour les réseaux sans fils. Indirectement, un protocole
de communication qui permet d’éviter les collisions permet d’économiser
I"énergie, puisque le besoin de retransmettre un message s’en trouve réduit.
L’acces au médium de communication par multiplexage temporel (TDMA,
pour Time Division Multiple Access, ol les utilisateurs émettent sur la méme
fréquence chacun a leur tour, les uns apres les autres) est une technique
raisonnable pour éviter les collisions.

Le probleme algorithmique de 1’allocation des créneaux de temps dans
TDMA est lié au probleme classique de 'allocation des fréquences dans
FDMA (pour Frequency Division Multiple Access, ot les utilisateurs utilisent
des fréquences différentes pour communiquer). Pour FDMA, chaque cou-
leur représente une fréquence, et pour éviter les collisions, on assure que
tous les sommets a distance deux (ou moins) les uns des autres ont des
couleurs différentes. Une contrainte supplémentaire est que les couleurs
choisies par des sommets voisins sont suffisamment distantes pour éviter
les interférences. Si I’ensemble des couleurs utilisées est 1'intervalle des en-
tiers [0, A], alors les couleurs (f,, f,,) des sommets voisins (v, w) doivent sa-
tisfaire | f, — fu| > 1 pour éviter les interférences. La notation standard pour
exprimer une telle contrainte est L(¢;, {2) : pour toute paire de sommets a
distance i € {1, 2}, les couleurs difféerent d’au moins ¢;. La coloration d'un
graphe pour FDMA devrait donc satisfaire la contrainte L(2,1). De plus,
une solution qui optimise le nombre de couleurs utilisées est préférable,
puisqu’elle réduit le nombre de fréquences nécessaires. Le probleme de la
coloration dans TDMA est légerement différent. Soit L'(¢1, ¢2) la contrainte
que pour toute paire de sommets a distance i € {1, 2}, les couleurs different
de ¢; mod (A + 1). Cette contrainte exprime les problémes aux bordures
des créneaux de temps. La contrainte de coloration usuelle pour TDMA est
L'(1,1). Si les créneaux sont imprécis (par exemple parce que la synchro-
nisation dans le temps n’est pas parfaite), il est possible de demander une
séparation plus stricte des couleurs, comme L'(2,2). Minimiser le nombre
de couleurs pour TDMA est souhaitable, car si une période de temps cor-
respondant a la séquence de couleurs 0..\ est ramenée a l'intervalle unitaire
[0, 1], chaque couleur représente une fraction 1/(A+1) de la bande passante.
Donc plus A est petit et mieux la bande passante est utilisée.

Le premier algorithme auto-stabilisant de type TDMA pour les réseaux
de capteurs est présenté dans [56]. Ils partent d"une topologie en grille (ex-
tensible a toute topologie par plongement dans la grille) et supposent que
chaque sommet connait sa position dans la grille (cette position est utilisée

34

pour calculer 1'allocation des créneaux). Utiliser leur approche dans des
graphes généraux requiert que le plongement dans la grille soit le méme
pour tous les sommets et connu avant la mise en ceuvre de l'algorithme.
Par conséquent, cet algorithme ne peut étre utilisé dans des réseaux évo-
luant dynamiquement. Dans [45], un algorithme d’allocation de créneaux
de temps est proposé, et gere les évolutions dynamiques du réseau, les
défaillances transitoires, et le passage a I'échelle. L'approche pour gérer a
la fois la dynamicité du réseau et les défaillances transitoires est celle de
I"auto-stabilisation, qui assure que le systéeme converge vers une allocation
TDMA valide aprés une défaillance transitoire ou un changement de to-
pologie. Le cas du passage a 1’échelle est traité par le fait que 1’algorithme
probabiliste d’allocation de créneaux de temps présente un temps moyen
de stabilisation en O(1). La base de cet algorithme consiste en une tech-
nique de coloration rapide probabiliste, qui pourrait étre exploitée afin de
résoudre d’autres problémes dans les réseaux de capteurs, ou dans certains
réseaux ad hoc. Cette technique consiste a colorier rapidement le graphe
pour effectuer un nommage unique de voisinage, et est détaillée ci-apres.

Nommage unique de voisinage

Un algorithme qui effectue un nommage unique de voisinage donne
a chaque noeud un nom distinct de celui de ses N k voisins, o1 k est une
constante donnée et ot N* désigne le voisinage a distance k. Ceci peut
sembler bizarre étant donné que généralement, on suppose que les nceuds
disposent déja d"un identifiant unique (par exemple, 'adresse MAC de leur
dispositif réseau sans fils), mais si on essaie d’utiliser ces identifiants pour
de la coloration, I'ensemble potentiellement grand des identifiants peut
poser probleme lors du passage a ’échelle. Il est donc intéressant d’af-
fecter des noms, tirés d"un espace de taille constante, en s’assurant qu’ils
sont localement uniques. Ce probleme peut étre vu comme une colora-
tion de N*. L'idée de base de l'algorithme de coloration est le suivant :
soit v = [A!] pour un ¢ > k'. Si un nceud ne posséde pas une couleur
unique (choisie entre 0 et) dans son cache de N;f (supposé réémis ré-
guliérement par chaque nceud a tout son voisinage en utilisant des tech-
niques de type CSMA /CA — emph Carrier Sense Multiple Access / Collision
Avoidance), il choisit une nouvelle couleur aléatoirement parmi les couleurs
disponibles. Une propriété-clé de cet est la suivante : la propriété d"uni-
cité de la couleur d’un nceud p est stable. De maniere similaire, la pro-

"l y a un compromis a trouver pour le choix de ¢ dans v = A’. D’abord, t devrait
étre suffisamment grand pour que le choix d’un nouvel identifiant soit unique avec grande
probabilité. En général, de grandes valeurs de ¢ diminuent le temps de convergence moyen
de l'algorithme de nommage unique de voisinage, et de petites valeurs de ¢ réduisent la
constante d, qui a son tour réduit le temps de convergence moyen des algorithmes qui
utilisent ce nommage unique.

35

priété d’unicité de tout sous-ensemble des nceuds est également stable. En
d’autres termes, une fois qu'un nceud est considéré comme unique pour
tous les voisinages auxquels il appartient, il est stable. Il est alors possible
de raisonner a partir d'un modele markovien sur les exécutions et montrer
que la probabilité d'une séquence d’actions menant d’un ensemble stable
donné a un ensemble stable plus grand est positive. En outre, le nommage
unique de voisinage de [45] possede une propriété que les identifiants glo-
baux du systeme n’ont pas : comme les identifiants sont de taille constante,
la plus longue chaine d’identifiants croissants dans le graphe est également
de taille constante. Cette taille constante permet de construire d’autres al-
gorithmes auto-stabilisants a partir de cette brique de base (par exemple,
[62] utilise cette technique de nommage unique de voisinage a distance 2
pour construire une hiérarchisation du réseau, et [45] 'utilise & distance 3
pour une allocation de créneaux TDMA), tout en conservant un temps de
stabilisation constant, et donc indépendant de la taille du réseau.

4.3.2 Tolérer les entités malicieuses

Comme indiqué dans le chapitre 2.1, le modéle de défaillance byzan-
tin est le plus fort : un nceud du systéme peut tout simplement exhiber un
comportement arbitraire. Bien siir, pour causer des dommages au systéme,
il est nécessaire que ce comportement arbitraire passe inapercu aupres des
neeuds corrects, c’est-a-dire que les valeurs communiquées et échangées
doivent rester dans les intervalles de valeurs que les autres noeuds s’ap-
prétent a trouver. La plupart des solutions classiques utilisent une ou plu-
sieurs hypothéses qui ne sont pas réalistes dans les systéemes a grande
échelle comme ceux des réseaux de capteurs ou les réseaux ad hoc de
grande taille :

1. ils supposent une connectivité totale (voir paragraphe 3.1);

2. ils supposent qu’une large majorité des nceuds est correcte (en géné-
ral égale a plus des deux tiers des nceuds);

3. ils supposent que les nceuds ont acces a des primitives cryptogra-
phiques stires (ce qu'un capteur a la capacité de traitement limitée
n’est pas en mesure de fournir).

Puisque certains problemes sont a priori localisables, est intéressant de
s’intéresser a leur capacité a tolérer des fautes plus importantes que des
simples corruptions de mémoires, comme les fautes byzantines. Plus préci-
sément, on cherche a concevoir des algorithmes qui :

1. sont auto-stabilisants;
2. peuvent s’exécuter sur des topologies (dynamiques) quelconques;

3. n'utilisent pas de primitives cryptographiques ;

36

4. ne font pas d’hypotheses sur le nombre de nceuds byzantins;

5. tolerent les noeuds byzantins au sens ou ceux-ci n‘ont que peu d’in-
fluence sur les nceuds corrects.

Une premiere approche pour obtenir des algorithmes pour obtenir de
telles propriétés est présentée dans [63]. Le rayon de contamination by-
zantin est défini comme la distance jusqu’a laquelle le comportement des
neeuds byzantins se fait sentir. On cherche évidemment a obtenir un rayon
de contamination le moins grand possible. Un probleme est r-restrictif si
sa spécification interdit des combinaisons d’états dans une configuration
sur des nceuds a distance au plus r. Par exemple, le probleme de la colora-
tion des noeuds d’un réseau est 1 restrictif, puisque deux nceuds voisins ne
doivent pas avoir la méme couleur. Par contre, le probleme de la construc-
tion d’un arbre est r-restrictif (pour tout » compris entre 1 et n — 1) car la
correction implique que tous les parents choisis doivent former un arbre.
Le théoreme principal de [63] stipule que si un probleme est r-restrictif, le
meilleur rayon de contamination que 1'on peut obtenir est r. Il est facile
de voir que l'algorithme de nommage unique de voisinage mentionné sec-
tion 4.3.1 est 1-restrictif pour un voisinage a distance 1, et admet d’ailleurs
un rayon de contamination de 1 : si un noeud byzantin agit, il ne peut
prendre — pour avoir un effet — que la méme couleur que 1'un de ses voisins ;
ce voisin agit, mais s'il est correct, il prend une couleur qui n’est prise par
aucun de ses voisins, ce qui fait que la réaction au comportement byzantin
s’arréte des ce nceud.

Dans [68], les auteurs considérent le probleme du coloriage des liens
dans des réseaux dont la topologie est un arbre, de maniere auto-stabi-
lisante et tolérant les byzantins. Le coloriage des liens consiste a affecter
des couleurs a chaque lien de telle sorte que deux liens adjacents au méme
neeud n’ont pas la méme couleur. Cette coloration présente également des
applications dans le domaine de 1’allocation de fréquences dans les réseaux
sans fils. Le fait que le réseau soit un arbre (orienté) permet de simplifier
le probleme, car le réseau n’est pas symétrique, et la décision de colora-
tion peut étre prise par un seul des deux nceuds adjacents (le nceud pere
dans [68]). Malgré le modele simplifié, les auteurs montrent que :

1. il est nécessaire d'utiliser au moins d + 1 couleurs, ou d est le degré
maximum du graphe de communication pour permettre un rayon de
contamination constant (alors que d couleurs seraient suffisants si-
non);

2. il est nécessaire d’avoir un ordonnancement spatial (voir section 3.1)
centralisé si on souhaite tolérer a la fois des corruptions de mémoire
et des byzantins;

3. il existe un algorithme pour les arbres orientés qui utilise d + 1 cou-
leurs et possede un rayon de contamination de 2.

37

Quand le réseau est uniforme (tous les nceuds exécutent le méme code)
et anonyme (les nceuds n’ont pas de moyen de se distinguer 1'un de l’autre),
un algorithme auto-stabilisant de coloriage des liens ne peut plus faire I'hy-
pothese que la couleur d"un lien est déterminée par un unique nceud. En ef-
fet, puisque les noeuds sont uniformes, il ne peut y avoir priorité de 'un sur
I'autre, et la coloration de ’aréte qui les joint doit résulter d"un accord local
entre eux. Dans [61], un algorithme de coloration des arétes auto-stabilisant
et tolérant les byzantins est présenté. A la différence de [68], I'algorithme
de [61] considere des réseaux uniformes et arbitraires (et non des arbres
orientés), et utilise 2d — 1 couleurs (au lieu de d + 1). En ce qui concerne le
rayon de contamination byzantin, le protocole de [61] est optimal, puisque
lI'influence d"un nceud byzantin est limitée a eux-mémes ; c’est-a-dire que le
sous-systéeme composé uniquement des processus correct est toujours cor-
rect.

Le principe de I'algorithme de [61] est le suivant : chaque nceud main-
tient une liste de couleurs affectées a ses liens incidents, et échange périodi-
quement cette liste avec ses voisins. A partir de la liste recue de son voisin v,
un neeud u peut proposer une couleur pour le lien (u, v). Cette couleur pro-
posée ne doit pas apparaitre dans I'ensemble des couleurs incidents de u ni
de v. L'ordonnancement spatial étant central (du fait de la nécessité mon-
trée dans [68]), il est impossible que deux voisins proposent une couleur en
méme temps. Puisque 'ensemble des couleurs disponibles est 2d — 1, u est
toujours en mesure de proposer une couleur qui n’est déja utilisée ni par v,
ni par v. Si a la fois u et v sont corrects, la couleur ¢ du lien (u, v) n’est plus
jamais changée. En cas de nceud byzantin, il peut cependant arriver qu’un
tel byzantin propose sans arrét des couleurs en conflit avec celles des autres
voisins. Si cette couleur est en conflit avec une couleur sur laquelle u et v se
sont déja mis d’accord, cette proposition est ignorée. Le cas restant survient
quand v a deux voisins v et w (o1 u et v sont corrects et w byzantin) et u ne
s’est encore mis d’accord ni avec v, ni avec w. Le nceud byzantin w pourrait
continuellement proposer des couleurs en conflit avec v, et u pourrait tou-
jours choisir la couleur proposée par w. Pour assurer que ce comportement
ne peut pas se produire infiniment souvent, [61] utilise une liste des priori-
tés de telle sorte que les voisins de u obtiennent alternativement la priorité
dans la proposition de la couleur du lien. Ensuite, une fois que u et v se
sont mis d’accord sur la couleur du lien (u,v), cette couleur ne peut plus
étre modifiée par w, car ses propositions sont systématiquement rejetées.

38

Chapitre 5

Conclusion et perspectives

Les techniques classiques d’algorithmique répartie tolérante aux pannes
sont pour la plupart inadaptées au passage a 1’échelle. Les utiliser condui-
rait a des mécanismes qui soit cotitent trop de ressources (mémoire, temps
de calcul), soit sont disproportionnés par rapport au probléme a résoudre.

Pour contourner les résultats d'impossibilité dans le cadre de I’auto-sta-
bilisation, plusieurs pistes ont été suivies : restreindre les hypotheses sur les
fautes susceptibles de se produire (que ce soit leur nature, ou leur localisa-
tion géographique), ou restreindre le type d’applications que 1'on se pro-
pose de résoudre. Pour le cas particulier des réseaux sans fils, plusieurs pro-
blemes d’allocation de ressources (fréquences, créneaux de temps) peuvent
étre résolus de maniere fortement tolérante aux pannes : corruption arbi-
traire des mémoires, comportement malicieux étendus.

La frontiére entre les probléemes impossibles a résoudre car trop cotiteux
et ceux que 'on sait traiter avec des contraintes raisonnables reste malgré
tout bien floue. Plusieurs résultats récents montrent qu’il existe probable-
ment un compromis entre les ressources utilisées et la capacité a tolérer
des défaillances, mais un gros travail supplémentaire est encore nécessaire
pour obtenir une vision précise de ce compromis.

5.1 Perspectives théoriques

Depuis sa définition en 1974 par Dijkstra [22], I'auto-stabilisation dis-
pose de fondements mathématiques solides. Il n’est d’ailleurs pas surpre-
nant que divers formalismes issus des Mathématiques, de 1’Automatique,
ou de I'Informatique aient été tour a tour utilisés pour prouver 'auto-sta-
bilisation : les fonctions de transfert [69], les systemes d’itérations [7], I’al-
gebre max-plus [31], la réécriture de mots [9], la logique temporelle [58] ou
d’ordre supérieur [64], etc. Les travaux mentionnés dans les chapitres pré-
cedents ouvrent la possibilité de développer d’autres aspects théoriques
lies a la notion d’auto-stabilisation.

39

5.1.1 Auto-stabilisation en compétition

Dans les approches «purement» auto-stabilisantes, les différents nceuds
collaborent pour accomplir une tadche commune (satisfaire la spécification
du probléme), en dépit d'un environnement qui est vu comme un adver-
saire tentant de faire échouer la stabilisation. Dans 1’auto-stabilisation en
présense de nceuds byzantins (mentionnée section 4.3.2), on distingue deux
sous-ensembles de nceuds, ceux qui exécutent correctement 1’algorithme
(les nceuds corrects), et ceux qui tentent de faire échouer la stabilisation (les
neeuds byzantins). La encore, tous les noeuds corrects collaborent a la méme
tache, et tous les nceuds byzantins ont des ressources illimitées pour mener
leurs actions.

Il est probable que le modéle de I'auto-stabilisation en présence de by-
zantins est trop extréme pour correspondre a la réalité. Par exemple, dans
le routage interdomaine dans Internet, les nceuds ont un objectif commun
(permettre I’acheminement des communication a travers Internet) mais éga-
lement un objectif local (par exemple, maximiser son profit personnel). On
peut alors raffiner le modele d’auto-stabilisation en présence de byzantins
en un modele non plus binaire (corrects contre byzantins), mais unifié dans
l'objectif global et en compétition dans 1'objectif local. Un exemple de tel
probleme est le suivant : on considere un réseau ou les nceuds sont parti-
tionnés en deux groupes, les pro-débit (qui cherchent a maximiner le débit)
et les pro-latence (qui cherchent a minimiser la latence) ; ensuite on souhaite
construire dans un réseau ot chaque lien a une débit et une latence don-
née un arbre couvrant. Si chaque nceud exécute un algorithme auto-stabi-
lisant comme ceux décrits section 3.2.1, on peut facilement construire des
exemples ol1 un arbre couvrant ne sera jamais construit. Par suite, trouver
un algorithme auto-stabilisant qui permette de résoudre un objectif global
puis de maximiser un objectif local en tenant compte du fait que cette maxi-
misation peut mettre en péril I’objectif global est un probleme ouvert.

5.1.2 Complexité et auto-stabilisation

Il existe une grande quantité de résultats d'impossibilité ou de bornes
inférieures en algorithmique distribuée. Pour les résultats de bornes infé-
rieures, proportionnellement, peu de résultats concernent spécifiquement
I"auto-stabilisation. L'explication est double :

1. borne inférieure en mémoire : si un algorithme distribué «classique»
(i.e. non-stabilisant) a necéssairement besoin d’une certaine quantité
de mémoire, alors un algorithme auto-stabilisant également (il doit
fonctionner correctement a partir de la configuration initiale de 1'al-
gorithme classique) ;

2. borne inférieure en temps : si un algorithme distribué a nécessairement
besoin d’un certain temps avant de résoudre un probléme, alors un

40

algorithme auto-stabilisant aussi (le temps de stabilisation est égal au
maximum, sur toutes les éxécutions possibles du systeme, dont celles
qui partent d’un état bien connu).

En d’autres termes, les résultats de bornes inférieures de I’algorithmique
classique se transposent directement vers 1’auto-stabilisation, mais I'inverse
n’est pas necéssairement vrai. En particulier, de nombreux problémes im-
possible a résoudre de maniere auto-stabilisante (notamment pour des rai-
sons de symétrie dans la configuration initiale du systeme) peuvent 1’étre
facilement par un algorithme initialisé (en particulier en restreignant les
configurations initiales de maniére a ce qu'une symétrie ne puisse appa-
raitre).

Récemment, plusieurs algorithmes distribués d’approximation de pro-
blemes NP-complets ont été développés. Des versions auto-stabilisantes de
certains d’entre eux commencent tout juste a apparaitre. Il existe en géné-
ral un compromis entre la localité de I’algorithme (la quantité d'information
qu’il doit connaitre de son voisinage) et son efficacité (la qualité de 1'ap-
proximation proposée). Dans un contexte d’auto-stabilisation, la question
de savoir si ce compromis existe reste ouverte.

5.1.3 Auto-stabilisation systématique

Au cours des chapitres précédents (et en particulier la section 3.2.1),
nous avons montré qu’une condition sur le code exécuté par un algorithme
réparti pouvait impliquer 1’auto-stabilisation du systeme tout entier, sous
des hypotheéses systemes tres diverses. En particulier, suivant le modéle
considéré (atomicité faible ou forte), des résultats différents sont obtenus
(ordre partiel dans le cas de l'atomicité forte, ordre total dans la cas de
I’atomicite forte). Or, un ordre partiel permet de résoudre le probleme de la
liste ordonnée des ancétres, ce qui dans un graphe fortement connexe (qui
correspond a la plupart des cas pratiques) permet en utilisant la technique
de [25] de résoudre tout probleme statique. Le fait que le méme opérateur
(utilisant I'ordre partiel) ne fonctionne pas correctement dans un modéele a
atomicité faible n'implique pourtant pas qu’il n’existe aucun opérateur per-
mettant de résoudre le probleme. Un algorithme ad hoc a méme été proposé
dans [21] pour résoudre le probleme de la liste ordonnée des identifiants
dans un modele a atomicité faible. La question ouverte est celle de 1’exis-
tence d'un opérateur universel (pour les taches statiques) dans un modele
a atomicité faible.

Par la suite, méme si un tel opérateur existe et montre I'universalité de
I'approche, il n’est pas nécessairement le plus adapté pour résoudre un pro-
bleme particulier. En effet, l'espace mémoire (en O(nlogy(n))) et la quan-
tité d’informations transférée sur le réseau reste importante par rapport a
d’autres opérateurs spécialisés. Actuellement la technique qui consiste a

41

trouver un opérateur adéquat pour résoudre un probleme, méme si elle
permet de simplifier considérablement la preuve d’auto-stabilisation, reste
ad hoc. La question de savoir s’il est possible, systématiquement, a partir
d’un spécification d’un probleme statique donné, de concevoir I'opérateur
satisfaisant aux propriétés enoncées, semble mériter qu'on s’y intéresse.

5.2 Perspectives pratiques

Lorsque qu’une théorie est mature, les applications arrivent sans tar-
der. Pour l'auto-stabilisation, de nombreux protocoles actuellement utilisés
dans le routage sur Internet utilisent des principes d’auto-stabilisation, a
des degrés divers. Par exemple, le protocole d’échange d’état des liens dans
OSPF (Open Shortest Path First, un protocole de routage intra-domaine dans
Internet) a été prouvé auto-stabilisant par Nancy Lynch. Hors du domaine
du routage cependant, les applications restent pour le moment limitées.
Cette limitation peut s’expliquer par différents facteurs, dont les deux prin-
cipaux sont les suivants :

1. les hypotheses de I'auto-stabilisation ne s’appliquent pas a tous les systemes
réels : par exemple, ’auto-stabilisation suppose que les processeurs
ne cessent jamais leur exécution, or il est bien connu qu’une suite de
trois instructions mal écrites (et pouvant résulter d’'une corruption
de mémoire) suffit & bloquer définitivement le processeur Pentium
d’Intel ;

2. on ne dispose pas pour les logiciels courants d"un support d’application auto-
stabilisant : les systemes d’exploitation (bureautique et réseaux) sur
lesquels s’appuient les logiciels actuellement développés n’ont pas
été congus ni prouvés auto-stabilisants, et construire des briques lo-
gicielles auto-stabilisants au dessus de telles fondations peut sembler
artificiel.

Systemes auto-stabilisants

Pour rendre possible de développement véritable de systémes répartis
auto-stabilisants, deux approches complémentaires sont possibles :

la conception ascendante : on part des fondements du systemes (matériel,
systeme d’exploitation), et on aboutit & des programmes qui se basent
sur des fondations elles-mémes auto-stabilisantes. Par exemple, le
travail de Shlomi Dolev et de son équipe s'inscrit spécifiquement dans
ce cadre. Dans [24], ils proposent des mécanismes pour rendre auto-
stabilisant un processeur, c’est a dire pour garantir qu’au bout d’un
temps fini, le processeur exécute indéfiniment les instructions élé-
mentaires fetch, decode, execute. Plusieurs approches sont décrites : il

42

est possible de concevoir a partir de rien un nouveau processeur, ou
bien d’ajouter un mécanisme matériel externe (appelé watchdog) pour
vérifier que le processeur ne se trouve pas dans un état incorrect. Par
la suite, dans [27], ils ont posé les bases d'un systeme d’exploitation
minimal mais auto-stabilisant, et ont considéré des services supplé-
mentaires (gestion de la mémoire dans, compilation de code dans). Si
les fondations de ce travail sont cohérentes et permettent de se rendre
compte de 'avancement général du projet, il est également clair que
la mise a disposition d'un systeme complet et utilisable pour des ap-
plications évoluées prendra encore plusieurs années.

la conception descendante : on part des applications que l'on souhaite
développer et qui correspondent a des besoins actuels et clairement
exprimés, et on montre que, sous ’hypotheses que les couches infé-
rieures sont auto-stabilisantes, ces nouveaux services sont eux aussi
auto-stabilisants. La vérification de la propriété d’auto-stabilisation
dans ce contexte pose de nombreux problemes pratiques, car 1’auto-
stabilisation est compromise par des exécutions particulieres du sys-
témes, dont la probabilité d’occurrence est infinitésimale. De plus, re-
produire une exécution particuliere qui a mis en évidence un pro-
bleme de I'implantation d"un algorithme auto-stabilisant sur un sys-
teme réel (potentiellement composé d'un grand nombre de machines
réelles) diminue encore cette probabilité.

Nous avons élaboré une infrastructure, FAIL-FCI [46], qui devrait per-
mettre a terme la conception descendante de systemes auto-stabilisants.
Cette infrastructure est actuellement développée dans le cadre de divers
projets (le projet GrideXplorer de I’ACI «Masse de Données», et le projet
FRAGILE de I’ACI «Sécurité et Informatique»), et prend la forme de deux
composants principaux :

1. un langage de spécification de scénarios de fautes (FAIL, pour FAult In-
jection Language) : ce langage permet de spécifier, en utilisant un for-
malisme proche des automates synchronisés, des scénarios destinés
a des mesures quantitatives (toutes les = secondes, une proportion y
des composants du systéme a une probabilité z de subir une panne)
ou qualitatives (une fois que le processus p; de ma machine m; a exé-
cuté la ligne de code z, alors le processus ps de la machine my doit
subir une panne avant d’exécuter la ligne de code y). Ceci permet en
particulier de spécifier des scénarios de fautes évolués, comme des
fautes en cascade (ou épidémiques) ot il existe un rapport de causa-
lité entre la premiere faute et les suivantes.

2. un intergiciel d’injection de pannes distribué (FCI, pour FAIL Cluster Im-
plementation) : ce logiciel s’exécute entre le systeme d’exploitation et
I'application sous test. Un point fort de cette approche est qu’elle est
transparente pour le concepteur et le programmeur de 'application,

43

car le code source de 'application n’est pas modifié et I'application
n’a pas a étre recompilée.

En I'état actuel, FAIL-FCI permet d’élaborer des scénarios de fautes (ou
d’attaques en considérant des fautes malicieuses) élaborés, et le prototype
développé permet d’injecter des fautes dans deux types d’applications ré-
parties :

1. les applications natives (c’est a dire élaborées a partir de code compilé
en programme exécutable, ce qui est généralement le cas en C ou en
FORTRAN);

2. certaines applications fonctionnant sous machine virtuelle (pour l'ins-
tant, seul le code de la machine virtuelle Java est supporté [48]).

Les fautes qu'il est possible d’injecter via notre outil sont limitées dans
sa version actuelle : les pannes crash (suivies d’un redémarrage éventuel
a partir de l’état initial) et les suspensions (généralement suivies d"une re-
prise) qui servent a simuler ’asynchronisme du systeme.

FAIL-FCI a déja permi de révéler des anomalies de fonctionnement dans
plusieurs applications (comme une application de calcul global dans [47]),
et a été remarqué dans le cadre du réseau d’excellence européen Core-
GRID : pour le deuxieme programme joint d’activité (démarré en septembre
2005), une tache spécifique «Injection de fautes et stress d’applications» a
été introduite. Nous prévoyons de poursuivre le développement de notre
outil. En particulier, nous prévoyons la possibilité d’introduire de nou-
veaux types de fautes (corruption de mémoire, préemption de ressources),
de tester de nouveaux types d’applications (par exemple les applications
Pair-a-Pair, bien connues pour leur capacité a passer a ’échelle, n'ont été
que faiblement étudiées concernant les aspects de tolérance aux pannes), et
de permettre 'injection de pannes pour d’autres modeles d’exécution (par
exemple les applications basées sur MPI). Un autre aspect utile serait de
développer la possibilité de rejouer des exécution réelles (modélisées par
des traces d’utilisateurs) pour juger de la performance d’une application
dans des conditions réelles.

Le but a terme de FAIL-FCI serait de disposer d’un outil pour effec-
tuer des bancs d’essais standardisés pour la tolérances aux fautes dans les
systemes répartis.

Réseaux de capteurs sans fils

Les réseaux de capteurs sans fils représentent 1'une des perspectives les
plus évidentes pour l'application effective de ’auto-stabilisation dans les
systeémes réels. Les raisons de 1'engouement constaté de la communauté
sont multiples, mais les deux principales sont les suivantes :

la nature des problémes a résoudre : de nombreux problémes actuelle-
ment étudiés dans le domaine des réseaux de capteurs peuvent étre

44

modélisés par des graphes, pour lesquels de nombreuses solutions ré-
parties, voire auto-stabilisantes, sont connues. En outre, 1’aspect dis-
tribué de la solution est ici essentiel car au vu de la taille des réseaux
de capteurs actuellement prévu dans les prochaines années (plusieurs
dizaines de milliers), il est impensable d’imaginer initialiser un tel ré-
seau composant par composant suite aux résultats d’un algorithme
séquentiel.

Dans le modele réseau en couches communément accepté pour les
réseaux sans fils, ’algorithmique répartie intervient dans les quatre
couches les plus hautes : liaison de données, réseau, transport et ap-
plication. Dans les solutions proposées jusqu’a présent toutefois, 1'es-
sentiel se situe dans les couches liaison de données et réseau.

Pour la couche liaison de données, et plus particulierement la sous-
couche d’accés au médium de communication (MAC), plusieurs types
de protocoles peuvent étre utilisés, les plus répandus dans le cadre
des réseaux sans fils étant CSMA, TDMA [45] ou FDMA. Dans tous
les cas, 1’objectif principal est de permettre I’acces au médium en dé-
pit de problemes qui compromettent la performance du réseau (la-
tence, débit) ou l'énergie utilisée pour communiquer (cruciale dans
les réseaux de capteurs). Le probleme principal est celui des colli-
sions, qui survient lorsque des nceuds voisins utilisent le médium
radio de maniére concomitante pour émettre des informations; les
neceuds récepteurs peuvent alors recevoir un signal brouillé ou inuti-
lisable. Dans les réseaux de capteurs, d’autres problemes viennent
se greffer, comme celui qui fait que recevoir un signal est presque
aussi cotiteux (en terme d’énergie consommée) que rester en attente
de réception d’un signal ; cette limitation pratique induit sur le plan
algorithmique des techniques qui proposent un compromis entre la
latence et la consommation électrique pour communiquer dans le ré-
seau.

De par leur nature, les techniques lies au TDMA et au FDMA sont
liées au coloriage des nceuds ou des liens d'un graphe. Comme les
réseaux sans fils que nous considérons doivent étre auto-organisés,
ce coloriage ne peut étre prédéfini avant de déployer le systeme, et
doit résulter d"un algorithme exécuté par le systéme lui-méme : un al-
gorithme distribué. Les solutions distribuées actuelles aux problemes
de coloriage de graphes montrent que des bornes théoriques existent
quant a la qualité du coloriage effectué suivant la localité de 1'algo-
rithme distribué (celle-ci étant directement liée a 1'énergie consom-
mée). En outre, TDMA requiert que les horloges des nceuds du sys-
teme soient synchronisées, ce qui peut nécessiter 1'utilisation d’algo-
rithmes répartis de synchronisation d’horloge. D’autres algorithmes
distribués basées sur des solutions a des problemes de graphes peu-

45

vent étre utiles pour la couche réseau : par exemple, il est possible de
construire une infrastructure efficace du point de vue de I'énergie en
auto-organisant le réseau de maniere hiérarchique ou en déterminant
un sous réseau présentant des propriété particulieres. Les probléemes
de graphe considérés sont alors le plus souvent liés a la notion d’en-
semble dominant (ensemble de nceuds capable de communiquer avec
tous les autres nceuds du graphe), le but consistant a rendre cet en-
semble aussi petit et/ou efficace que possible.

les spécificités techniques des réseaux de capteurs : les réseaux de cap-
teurs sans fils sont des machines basées sur des composants simples
et peu cotiteux. Ces machines supportent peu de périphériques, peu
de services systéme, et leur systeme d’exploitation reste de trés petite
taille : par exemple, TinyOS, le systeme d’exploitation utilisé dans la
grande majorité des plates-formes actuellement déployées dans le mi-
lieu académique, utilise 3450 octets pour son code et 226 octets pour
ses données. Cette taille réduite rend possible I’étude de I’auto-stabi-
lisation a l’échelle du systeme d’exploitation tout entier. En outre, le
fait que ces réseaux de capteurs vont étre fabriqués et déployés a tres
grande échelle induit nécessairement que la tolérance aux pannes doit
étre considérée des le départ comme un composant essentiel. Pour
la plupart des applications considérées (collecte de données sur une
longue période), des solutions non-masquantes, comme 1’auto-stabi-
lisation, sont probablement préférable, du fait de "utilisation moindre
de ressources par rapport aux approches masquantes a base de répli-
cation et de consensus.

L’essort actuel de la recherche dans le domaine des résaux de capteurs
laisse supposer qu’a moyen terme, ces réseaux seront effectivement dé-
ployés a grand échelles (plusieurs dizaines de milliers de nceuds). Dans ce
cadre, il n’est plus question d’administrer de maniere individuelle chaque
composant du réseau, et de gérer les pannes au moyen d’un intervention
humaine. Les techniques pour 1'auto-stabilisation & grande échelle, déve-
loppées pour l'instant de maniere théorique, gagneraient a étre déployées
de maniere massive sur de vrais périphériques. En effet, elles permettraient
de gérer de maniere unifiée et simple 1’auto-organisation rendue nécessaire
par le passage al’échelle, et la tolérance aux pannes qui se produiront inévi-
tablement et constament. De plus, ’adaptation de la plate-forme d’injection
de fautes FAIL-FCI aux réseaux de capteurs est a I’étude et serait, a notre
connaissance, unique.

46

Bibliographie

[1] Yehuda Afek and Anat Bremler-Barr. Self-stabilizing unidirectional
network algorithms by power supply. Chicago |. Theor. Comput. Sci.,
1998, 1998.

[2] Yehuda Afek and Geoffrey M. Brown. Self-stabilization over unre-
liable communication media. Distributed Computing, 7(1) :27-34, 1993.

[3] Yehuda Afek and Shlomi Dolev. Local stabilizer.]. Parallel Distrib.
Comput., 62(5) :745-765, 2002.

[4] Luc Onana Alima, Joffroy Beauquier, Ajoy Kumar Datta, and Sébas-
tien Tixeuil. Self-stabilization with global rooted synchronizers. In
Proceedings of the 18th International Conference on Distributed Computing
Systems, 26 - 29 May, Amsterdam, The Netherlands, pages 102-109. IEEE
Press, 1998.

[5] James H. Anderson, Yong-Jik Kim, and Ted Herman. Shared-memory
mutual exclusion : major research trends since 1986. Distributed Com-
puting, 16(2-3) :75-110, 2003.

[6] Dana Angluin. Local and global properties in networks of processors
(extended abstract). In STOC "80 : Proceedings of the twelfth annual ACM
symposium on Theory of computing, pages 82-93, New York, NY, USA,
1980. ACM Press.

[7] Anish Arora, Paul C. Attie, Michael Evangelist, and Mohamed G.
Gouda. Convergence of iteration systems. Distributed Computing,
7(1) :43-53, 1993.

[8] Baruch Awerbuch, Boaz Patt-Shamir, George Varghese, and Shlomi
Dolev. Self-stabilization by local checking and global reset (extended
abstract). In Gerard Tel and Paul M. B. Vitanyi, editors, Distributed Al-
gorithms, 8th International Workshop, WDAG '94, volume 857 of Lecture
Notes in Computer Science, pages 326-339. Springer, 1994.

[9] Joffroy Beauquier, Béatrice Bérard, Laurent Fribourg, and Frédéric
Magniette. Proving convergence of self-stabilizing systems using
first-order rewriting and regular languages. Distributed Computing,
14(2) :83-95, 2001.

47

[10] Joffroy Beauquier, Stéphane Cordier, and Sylvie Delaét. Optimum
probabilistic self-stabilization on uniform rings. In Proceedings on the
Workshop on Self-stabilizing Systems, pages 15.1-15.15, 1995.

[11] Joffroy Beauquier, Sylvie Delaét, Shlomi Dolev, and Sébastien Tixeuil.
Transient fault detectors. In Shay Kutten, editor, Distributed Compu-
ting, 12th International Symposium, DISC '98, Andros, Greece, September
24-26, 1998, Proceedings, pages 62-74. Springer, 1998.

[12] Joffroy Beauquier, Christophe Genolini, and Shay Kutten. Optimal
reactive -stabilization : The case of mutual exclusion. In Proceedings of
the Eighteenth Annual ACM Symposium on Principles of Distributed Com-
puting, pages 209-218, 1999.

[13] Joffroy Beauquier, Maria Gradinariu, and Colette Johnen. Memory
space requirements for self-stabilizing leader election protocols. In
Proceedings of the ACM Conference on Principles of Distributed Computing
(PODC 99), pages 199-208, 1999.

[14] James E. Burns and Jan K. Pachl. Uniform self-stabilizing rings. ACM
Trans. Program. Lang. Syst., 11(2) :330-344, 1989.

[15] David Cavin, Yoav Sasson, and André Schiper. Consensus with unk-
nown participants or fundamental self-organization. In Ioanis Ni-
kolaidis, Michel Barbeau, and Evangelos Kranakis, editors, Ad-Hoc,
Mobile, and Wireless Networks : Third International Conference, ADHOC-
NOW 2004, Vancouver, Canada, July 22-24, 2004. Proceedings, volume
3158 of Lecture Notes in Computer Science, pages 135-148. Springer,
2004.

[16] Jorge Arturo Cobb and Mohamed G. Gouda. Stabilization of routing
in directed networks. In Ajoy Kumar Datta and Ted Herman, editors,
Self-Stabilizing Systems, 5th International Workshop, WSS 2001, Lisbon,
Portugal, October 1-2, 2001, Proceedings, volume 2194 of Lecture Notes in
Computer Science, pages 51-66. Springer, 2001.

[17] Jorge Arturo Cobb and Mohamed G. Gouda. Stabilization of general
loop-free routing. J. Parallel Distrib. Comput., 62(5) :922-944, 2002.

[18] Ajoy K Datta, Maria Gradinariu, and Sébastien Tixeuil. Self-stabilizing
mutual exclusion using unfair distributed scheduler. In IEEE Inter-
national Parallel and Distributed Processing SYmposium (IPDPS’2000),
pages 465-470, Cancun, Mexico, May 2000. IEEE Press.

[19] Sylvie Delaét. Auto-stabilisation : Modele et Applications a I’Exclusion
Mutuelle. PhD thesis, Université Paris Sud, December 1995.

[20] Sylvie Delaét, Bertrand Ducourthial, and Sébastien Tixeuil. Self-
stabilization with r-operators revisited. In Proceedings of the Seventh
Symposium on Self-stabilizing Systems (5SS’05), volume 3764 of Lecture
Notes in Computer Science, pages 68-80, Barcelona, Spain, October 2005.
Springer Verlag.

48

[21] Sylvie Delaét and Sébastien Tixeuil. Tolerating transient and intermit-
tent failures. Journal of Parallel and Distributed Computing, 62(5) :961-
981, May 2002.

[22] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed
control. Commun. ACM, 17(11) :643-644, 1974.

[23] S. Dolev. Self-stabilization. MIT Press, March 2000.

[24] Shlomi Dolev and Yinnon A. Haviv. Self-stabilizing microprocessor -
analyzing and overcoming soft-errors (extended abstract). In Chris-
tian Miiller-Schloer, Theo Ungerer, and Bernhard Bauer, editors, Orga-
nic and Pervasive Computing - ARCS 2004, International Conference on Ar-
chitecture of Computing Systems, Augsburg, Germany, March 23-26, 2004,
Proceedings, volume 2981 of Lecture Notes in Computer Science, pages
31-46. Springer, 2004.

[25] Shlomi Dolev and Ted Herman. Superstabilizing protocols for dyna-
mic distributed systems. Chicago |. Theor. Comput. Sci., 1997, 1997.

[26] Shlomi Dolev and Elad Schiller. Self-stabilizing group communication
in directed networks. Acta Inf., 40(9) :609-636, 2004.

[27] Shlomi Dolev and Reuven Yagel. Toward self-stabilizing operating
systems. In 15th International Workshop on Database and Expert Systems
Applications (DEXA 2004), with CD-ROM, 30 August - 3 September 2004,
Zaragoza, Spain, pages 684-688. IEEE Computer Society, 2004.

[28] Philippe Duchon, Nicolas Hanusse, and Sébastien Tixeuil. Optimal
randomized self-stabilizing mutual exclusion in synchronous rings. In
Proceedings of the 18th Symposium on Distributed Computing (DISC 2004),
number 3274 in Lecture Notes in Computer Science, pages 216-229,
Amsterdam, The Nederlands, October 2004. Springer Verlag.

[29] Bertrand Ducourthial. New operators for computing with associative
nets. In Luisa Gargano and David Peleg, editors, SIROCCO’98, 5th In-
ternational Colloquium on Structural Information & Communication Com-
plexity, pages 51-65. Carleton Scientific, 1998.

[30] Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with r-
operators. Distributed Computing, 14(3) :147-162, July 2001.

[31] Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with
path algebra. Theoretical Computer Science, 293(1) :219-236, 2003. Ex-
tended abstract in Sirrocco 2000.

[32] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility
of distributed consensus with one faulty process. . ACM, 32(2) :374-
382, 1985.

[33] Felix Freiling, Rachid Guerraoui, and Petr Kouznetsov. The failure
detector abstraction. Technical Report TR-2006-003, 2006.

49

[34] Christophe Genolini. Optimal k-stabilization : the case of synchronous
mutual exclusion. In Proceedings of Parallel and Distributed Computing
Systems (PDCS’2000), pages 371-376, November 2000.

[35] Christophe Genolini and Sébastien Tixeuil. Reactive k-stabilization
and time adaptivity : possibility and impossibility results. Technical
Report 1276, Laboratoire de Recherche en Informatique, University of
Paris Sud XI, 2001.

[36] Christophe Genolini and Sébastien Tixeuil. A lower bound on k-
stabilization in asynchronous systems. In Proceedings of IEEE 21st Sym-
posium on Reliable Distributed Systems (SRDS’2002), Osaka, Japan, Oc-
tober 2002.

[37] Sukumar Ghosh, Arobinda Gupta, Ted Herman, and Sriram V. Pem-
maraju. Fault-containing self-stabilizing algorithms. In Proceedings of
the Fifteenth Annual ACM Symposium on Principles of Distributed Com-
puting, pages 45-54, 1996.

[38] Sukumar Ghosh and Xin He. Scalable self-stabilization. J. Parallel Dis-
trib. Comput., 62(5) :945-960, 2002.

[39] Mohamed G. Gouda and F. Furman Haddix. The linear alternator.
In Sukumar Ghosh and Ted Herman, editors, 3rd Workshop on Self-
stabilizing Systems, pages 31-47. Carleton University Press, 1997.

[40] Maria Gradinariu and Sébastien Tixeuil. Self-stabilizing vertex colo-
ring of arbitrary graphs. In International Conference on Principles of Dis-
tributed Systems (OPODIS’2000), pages 55-70, Paris, France, December
2000.

[41] Maria Gradinariu and Sébastien Tixeuil. Tight space uniform self-
stabilizing l-mutual exclusion. In IEEE International Conference on
Distributed Computing Systems (ICDCS’01), pages 83-90, Phoenix, Ari-
zona, May 2001. IEEE Press.

[42] Ted Herman. Probabilistic self-stabilization. Information Processing Let-
ters, 35(2) :63-67, 1990.

[43] Ted Herman. Models of self-stabilization and sensor networks. In
Samir R. Das and Sajal K. Das, editors, Distributed Computing - INDC
2003, 5th International Workshop, volume 2918 of Lecture Notes in Com-
puter Science, pages 205-214. Springer, 2003.

[44] Ted Herman and Sriram V. Pemmaraju. Error-detecting codes and
fault-containing self-stabilization. Inf. Process. Lett., 73(1-2) :41-46,
2000.

[45] Ted Herman and Sébastien Tixeuil. A distributed tdma slot assign-
ment algorithm for wireless sensor networks. In Proceedings of the First
Workshop on Algorithmic Aspects of Wireless Sensor Networks (AlgoSen-
sors’2004), number 3121 in Lecture Notes in Computer Science, pages
45-58, Turku, Finland, July 2004. Springer-Verlag.

50

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

William Hoarau and Sébastien Tixeuil. A language-driven tool
for fault injection in distributed applications. In Proceedings of the
IEEE/ACM Workshop GRID 2005, page to appear, Seattle, USA, Novem-
ber 2005.

William Hoarau, Sébastien Tixeuil, and Fabien Vauchelles. Fault in-
jection in distributed java applications. Technical Report 1420, Labo-
ratoire de Recherche en Informatique, Université Paris Sud, October
2005.

William Hoarau, Sébastien Tixeuil, and Fabien Vauchelles. Fault injec-
tion in distributed java applications. In International Workshop on Java
for Parallel and Distributed Computing (joint with IPDPS 2006), page to
appear, Greece, April 2006. IEEE.

Chin-Tser Huang and Mohamed G. Gouda. State checksum and its
role in system stabilization. In 25th International Conference on Distri-
buted Computing Systems Workshops (ICDCS 2005 Workshops), pages 29—
34. IEEE Computer Society, 2005.

Amos Israeli and Marc Jalfon. Token management schemes and ran-
dom walks yield self-stabilizing mutual exclusion. In Proceedings of
the Ninth Annual ACM Symposium on Principles of Distributed Compu-
ting, pages 119-131, 1990.

Colette Johnen. Service time optimal self-stabilizing token circulation
protocol on anonymous unidrectional rings. In Proceedings of the IEEE
Symposium on Reliable Distributed Systems, pages 80-89. IEEE Press,
2002.

Colette Johnen, Luc Onana Alima, Ajoy Kumar Datta, and Sébastien
Tixeuil. Self-stabilizing neighborhood synchronizer in tree networks.
In Proceedings of the 19th International Conference on Distributed Compu-
ting Systems, pages 487—494, Austin, TX, USA, May-June 1999. IEEE
Computer Society.

Colette Johnen, Franck Petit, and Sébastien Tixeuil. Auto-stabilisation
et protocoles réseaux. Technique et Science Informatiques, 23(8) :1027-
1056, 2004.

Colette Johnen and Sébastien Tixeuil. Route preserving stabilization.
In Proceedings of the Sixth Symposium on Self-stabilizing Systems (555'03),
Lecture Notes in Computer Science, San Francisco, USA, june 2003.
Springer Verlag. Also in the Proceedings of DSN’03 as a one page
abstract.

Shmuel Katz and Kenneth J. Perry. Self-stabilizing extensions for
message-passing systems. Distributed Computing, 7(1) :17-26, 1993.

Sandeep S. Kulkarni and Umamaheswaran Arumugam. Collision-free
communication in sensor networks. In Shing-Tsaan Huang and Ted

51

Herman, editors, Self-Stabilizing Systems, 6th International Symposium,
SSS 2003, volume 2704 of Lecture Notes in Computer Science, pages 17—
31. Springer, 2003.

[57] Sandeep S. Kulkarni and Umamaheswaran Arumugam. Transforma-
tions for write-all-with-collision model. In Marina Papatriantafilou
and Philippe Hunel, editors, Principles of Distributed Systems, 7th In-
ternational Conference, OPODIS 2003, volume 3144 of Lecture Notes in
Computer Science, pages 184-197. Springer, 2004.

[58] Sandeep S. Kulkarni, John M. Rushby, and Natarajan Shankar. A case-
study in component-based mechanical verification of fault-tolerant
programs. In Anish Arora, editor, 1999 ICDCS Workshop on Self-
stabilizing Systems, Austin, Texas, June 5, 1999, Proceedings, pages 33—40.
IEEE Computer Society, 1999.

[59] Shay Kutten and Boaz Patt-Shamir. Stabilizing time-adaptive proto-
cols. Theor. Comput. Sci., 220(1) :93-111, 1999.

[60] Shay Kutten and David Peleg. Fault-local distributed mending. J.
Algorithms, 30(1) :144-165, 1999.

[61] Toshimitsu Masuzawa and Sébastien Tixeuil. A self-stabilizing link co-
loring algorithm resilient to unbounded byzantine faults in arbitrary
networks. In Proceedings of OPODIS 2005, Lecture Notes in Computer
Science, page to appear, Pisa, Italy, December 2005. Springer-Verlag.

[62] Nathalie Mitton, Eric Fleury, Isabelle Guérin-Lassous, and Sébastien
Tixeuil. Self-stabilization in self-organized wireless multihop net-
works. In Proceedings of the 25th IEEE International Conference on Dis-
tributed Computing Systems Workshops (IWWAN'05), pages 909-915, Co-
lumbus, Ohio, USA, June 2005. IEEE Press.

[63] Mikhail Nesterenko and Anish Arora. Tolerance to unbounded by-
zantine faults. In 21st Symposium on Reliable Distributed Systems (SRDS
2002), pages 22—. IEEE Computer Society, 2002.

[64] 1. S. W. B. Prasetya. Mechanically verified self-stabilizing hierarchical
algorithms. In Ed Brinksma, editor, Tools and Algorithms for Construc-
tion and Analysis of Systems, Third International Workshop, TACAS 97,
Enschede, The Netherlands, April 2-4, 1997, Proceedings, volume 1217 of
Lecture Notes in Computer Science, pages 399—-415. Springer, 1997.

[65] Michel Raynal. A simple taxonomy for distributed mutual exclusion
algorithms. Operating Systems Review, 25(2) :47-50, 1991.

[66] Michel Raynal. A short introduction to failure detectors for asynchro-
nous distributed systems. SIGACT News, 36(1), March 2005.

[67] Laurent Rosaz. Self-stabilizing token circulation on asynchronous uni-
form unidirectional rings. In Proceedings of the ACM Conference on Prin-
ciples of Distributed Computing (PODC 2000), pages 249-258, 2000.

52

[68] Yusuke Sakurai, Fukuhito Ooshita, and Toshimitsu Masuzawa. A self-
stabilizing link-coloring protocol resilient to byzantine faults in tree
networks. In Principles of Distributed Systems, 8th International Confe-
rence, OPODIS 2004, volume 3544 of Lecture Notes in Computer Science,
pages 283-298. Springer, 2005.

[69] Oliver E. Theel and Felix C. Girtner. An exercise in proving conver-
gence through transfer functions. In Anish Arora, editor, 1999 ICDCS
Workshop on Self-stabilizing Systems, Austin, Texas, June 5, 1999, Procee-
dings, pages 41-47. IEEE Computer Society, 1999.

[70] Sébastien Tixeuil. Auto-stabilisation Efficace. PhD thesis, University of
Paris Sud XI, January 2000.

[71] George Varghese and Mahesh Jayaram. The fault span of crash fai-
lures. |. ACM, 47(2) :244-293, 2000.

53

