A Lower Bound on Dynamic k-stabilization
in Asynchronous Systems*

Christophe Genolini
UFR Application Physique et Sportive
Batiment M, Université de Paris X Nanterre, FR 92001 Nanterre cedex
France

Sébastien Tixeuil
Laboratoire de Recherche en Informatique, UMR CNRS 8623
Batiment 490, Université de Paris XI Sud, FR 91405 Orsay cedex

France

January 10, 2003

Abstract

It is desirable that the smaller is the number of faults to hit a network, the faster should
a network protocol recover. We study the scenario where up to k (for a given k) faults hit
processors of a synchronous distributed system by corrupting their state undetectably.

In this context, we show that the well known step complexity model is not appropriate to
study time complexity of time-adaptive protocols (i.e. protocols that recover from memory
corruption in a time that depends only on the number of faults and not on the network size).
In more details, we prove that for non trivial dynamic problems (such as token passing), there
exists a lower bound of Q(D) (where D is the network diameter) steps on the stabilization time
even when as few as 1 corruption hits the system.

This implies that there exist no time adaptive protocol for those problems in the asyn-
chronous step model, even if we assume that the number of faults is bounded by 1 and that the
scheduling of the processors is almost synchronous (between two actions of an enabled processor,
any other processor may execute at most D actions).

Keywords: Self-stabilization, Time adaptivity, Transient failures, Dynamic problems, Asyn-
chronous systems, Lower bound.

1 Introduction

Robustness is one of the most important requirements of modern distributed systems, that go
through transient faults because they are exposed to constant change of their environment. Re-
silience to transient failures has been investigated well in the literature, and four families of tech-
niques can be distinguished.

*This work was supported in part by the french MobiCoop project. Contact Author: Sébastien Tixeuil, Email:
tixeuil@lri.fr, Tel: (33) 1 69 15 42 39, Fax: (33) 1 69 15 65 86.A preliminary abstract of this paper appears in
SRDS’02.



1.1 A taxonomy of stabilization

Self-stabilization. Introduced by Dijkstra in [9], self-stabilization guarantees that, regardless of
the initial state, the system will eventually converge to the intended behavior or the set of legitimate
states. In more details, let a configuration (or a global state) be a collection of the states of the
individual network nodes, and let @ be some predicate on a configuration. A self-stabilizing protocol
for @ is one that, when starting from an arbitrary configuration reaches a legitimate configuration
(a configuration for which @ holds) and remains in legitimate configurations henceforth (for insight
details, see e.g. [10]).

Due to its support to an arbitrary large number of failures, this technique often suffers from
several drawbacks. For example, the recovery process may cover the whole network even if only a
few nodes failed (e.g. [1, 2, 4, 11, 15]).

k-stabilization. Let k-stabilizing protocols (see [5]) be stabilizing protocols for the case that an
upper bound k& < n on the number of faults is known (where n is the total number of processors).
To model a fault, we use the Hamming distance between configurations (see e.g. [11]). That is, let
C' and C; be configurations, the distance between them is the number of nodes whose local states
are different in Cy and Cj. Let C' be an illegitimate configuration, and L be a legitimate one with
the smallest distance from C. If L is not unique then let L be any configuration with the smallest
distance (this does not influence the analysis). The number of faults in C'is the distance from L.
The faulty nodes are those whose state in C' and L are different.

Time adaptivity. The fact that the recovery process may involve the whole network does not
scale to modern very large networks. To enable scaling, it was suggested by several researchers
(e.g. [14, 16, 17]) that the smaller is the number of faults to hit a network, the faster should a
network protocol recover. Such protocols (called fault local, fault scalable or time adaptive in the
literature) were suggested first for relatively easier (and less typical) cases, such as the case where
a faulty node can detect that it is faulty [3], or the case of non-reactive tasks [16, 17] (a distributed
function computation that is performed once, and the result is not supposed to ever change), and
then (see [5, 12]) for the token passing problem.

k-time adaptivity. It is straightforward to see that self-stabilizing algorithms are a special case of
k-stabilizing algorithms (when k& = n, the size of the network). Similarly, Time adaptive algorithms
are simply a refinement of self-stabilizing algorithms. We introduce the notion of k-time adaptivity
to denote the ability to recover from at most k& corruptions in a time that depends only on the
actual number of faults. For historical reasons, most of the so-called “time adaptive” aforementioned
papers (e.g. [5, 14, 16, 17]) are k-time adaptive according to our terminology: they all assume a
bound on the number of faults that hit the network in order to provide fast stabilization time. Our
classification is captured by Figure 1 (see also [13] for more details).

1.2 Related work

The study of self-stabilizing protocols was initiated by Dijkstra (see [9]), that proposed three
deterministic algorithms on ring networks for the token passing problem. In this problem it is
required that exactly one node “possesses the token” (i.e. a locally computable predicate TOK EN
holds for that node) at any moment, and that every node eventually holds the token.



Time adaptivity was first introduced in the context of non-reactive systems. In [16] the notion
of fault locality was introduced, as well as an algorithm for the simple task, called the persistent
bit, of recovering from the corruption of one bit at some k£ nodes, for an unknown k with output
stabilization time O(klogn) for f = O(n/logn), where f is the actual number of faults that hit
the system. In [17] a stabilizing fault local algorithm is presented for the persistent bit task. If the
number of faults is smaller than n/2 then that algorithm achieves a legitimate state (the same as
a self stabilizing algorithm in this case) and the stabilization time for the output is O(k). These
algorithms are for synchronous networks. An asynchronous, and self stabilizing version of [17] is
described in [18].

stabilization time e e .
stabilization time
depends on the number . .
is finite yet unbounded
of faults
! !
ti e
Ay memory — me C self-stabilization
corruptions adaptivity
N N
at most k k-time e
. . C k-stabilization
memory corruptions adaptivity

Figure 1: Taxonomy of stabilization

In [19], an algorithm for the following problem is presented: given a self-stabilizing non-reactive
protocol, produce another version of that protocol which is self-stabilizing, but with output stabi-
lization time in O(1) if £ = 1. The transformed protocol has O(T'- D) step stabilization time, where
T is the stabilization time of the original protocol and where D is the diameter of the network (no
analysis is provided for output stabilization time when k& > 1). The protocol of [19] is asynchronous,
and its space overhead is O(1) per link. However, it requires a self-stabilizing protocol to start with,
and it may suffer a performance penalty in the case of & > 1. In [3], faults are stochastic, and
consequently the correctness of information can be decided with any desired certainty less than
1. Under this assumption, a time-adaptive algorithm is presented. The algorithm handles both
Input-Output relations, and reactive tasks, however, in reactive tasks inputs may be lost if faults
affect the nodes that “heard” about these inputs. Additional examples for the special case of O(1)
recovery time appears in [7, 11].

Finally, the work by Gosh and Xee (see [14]) provides a method for adding stabilizing properties
to non-stabilizing non-reactive systems, when the number of faults is greatly lower than the size of
the network. However, their complexity results are strongly related to the repartition of the faults:
best results are obtained when the & faults are contiguous (the time complexity is then O(%k3)), but
performance decreases (exponential in k) when faults are arbitrarily located.

In [5], Beauquier, Genolini and Kutten provide an asynchronous k-stabilizing algorithm for the
token ring task in a non-uniform setting (one processor is distinguished from the others and may
execute different code). This solution require O(k?) rounds to stabilize and its space overhead is
O(kn). A self-stabilizing algorithm that is also k-stabilizing (with stabilization time O(k)) appears
in [12]. Unlike [5], [12] performs on synchronous systems, yet still requires that the setting is
non-uniform.



1.3 Our contribution

In order to present our results, we recall the two common time related complexity measures: (7)
The sum (over all nodes) of steps, where in one (atomic) step, node P reads a neighbor’s state,
computes, and writes P’s variables, and (ii) asynchronous time, or rounds, the time assuming (for
the sake of time complexity calculation only) that no step lasts longer than one time unit, and that
nodes take steps in parallel.

We show that any dynamic global algorithm (e.g. solving mutual exclusion) that tolerates at
least one memory corruption requires at least (D) steps to converge, where D is the diameter size
of the network. This result implies that there exists no dynamic k-time adaptive global algorithm
in the step complexity model, since its step complexity cannot be a function of k£ (and thus f) alone.
Note that this result does not mean that asynchrony should be avoided in distributed system to
guarantee good convergence time, but rather that complexity should be studied in models that do
support actual parallelism. This also justifies that round complexity was used in previous works to
exhibit actual time adaptivity.

Outline. Section 2 presents our system settings along with some formal definitions that will be
used during the proofs. Section 3 describes first informally then formally our negative result : it is
impossible to construct a time adaptive algorithm for any non-trivial problem in the step model.
Section 5 provides some concluding remarks.

2 Model

We use the classical definitions on graphs that are defined in [6]. In this section, we refine informal
definitions given in the introduction for self-stabilizing, k-stabilizing, time adaptive and k-time
adaptive systems, and give complexity measures.

2.1 Self-stabilization

We model self-stabilizing algorithms as transition systems, whose set of initial configuration is
arbitrary (including configurations that are not normally reachable from some other states).

Definition 1 A transition system is a triple S=(C,—, Z), where C is a set of configurations, — is
a binary relation (transition) on C, and T is a subset of C of initial configurations. An execution
(or computation) of S is a sequence & = (1o, 11,13, ...) where for alli > 1, T; = C; — Ciy1 and
Co € . A partial execution is a (finite) prefiz of an execution.

In asynchronous systems, the difference of speeds between nodes is modeled using a scheduler.

Definition 2 In each configuration, the scheduler chooses a subset of the enabled processors. The
chosen processor(s) execule an action in the next atomic step. A scheduler is central if each time, it
chooses exactly one processor. A scheduler is k-bounded if, between any two actions of an enabled
processor, every other processor execules at most k actions.

The idea of a k-bounded scheduler was introduced in [8]. In the sequel of the paper, we assume a
D-bounded central scheduler, one of the weakest adversary for a distributed asynchronous system.



Then, our lower bound result remains valid for all stronger adversaries: e.g. k-bounded scheduler
(with k& > D), central scheduler, arbitrary distributed scheduler.

Definition 3 (Self-stabilization) A transition system S is self-stabilizing for a specification (of
a problem) SP if there is no initial condition in S (that is T = C) and if there exists a non-empty
subset L C C of legitimale configurations, with the following properties:

e (i) Correctness: every execulion starting in a configuration in L salisfies SP,

e (ii) Convergence: every execution contains a configuration in L.

A common way to model a self-stabilizing algorithm running on a network is to set up the
following transition system : (i) a configuration C' is the set of register values of all network
processors, (ii) C is the set of all possible configurations C, (iii) a couple of configurations (Cy,Cy)
belongs to the transition relation — if from ', the execution of the algorithm leads to C\.

2.2 k-stabilization

Roughly speaking, k-stabilizing algorithms have nearly the same definition as self-stabilizing algo-
rithms, except for the addition of some assumptions on the initial configuration: an initial con-
figuration is one that can be constructed from a legitimate configuration by changing the register
values of up to k processors. More formally, let the (Hamming) distance Dist(Cy,C3) between two
configurations C; and C3 be the number of processors whose states are different in C; and Cjy; the
distance between C and a set of configuration Cy is Dist(Cy,Cz) = mingec, {Dist(Cy,C)}.

Definition 4 Let S be a system and L a set of configurations. The ball of center £ with radius k
is the set Ballﬁ of all configurations C such that the Hamming distance between C' and L is smaller
or equal to k.

The following notion is used heavily in the description of the algorithms, as well as in the proofs.

Definition 5 Let S be a system, C' be a configuration and L be a set of configurations. Let L be
a configuration of L such thal the distance between C' and L is minimal. The sel of processors P
in C' that are corrupted relatively to L is the set of processors thalt do not have the same value in

C and in L.

Given a configuration C', the notion of corrupted processor exists only relatively to a specific
legitimate configuration. For some configurations, neither I nor P are unique. However, for the
sake of the proofs it suffices to choose an arbitrary legitimate configuration L in £ whose distance
from C'is minimal. When the set £ is known, we use the term “corrupted processor”, omitting the
reference to L.

Definition 6 (k-stabilization) A system S is k-stabilizing for a specification S if there exists a
non-empty subset L C C of legitimate configurations with the following properties:

e (i) Correctness: every execulion starting in a configuration in L salisfies S,

e (ii) k-Convergence: every execution starting in a configuration in Balllz contains a configu-
ration in L.



An execution starting with a configuration in L is called a legilimate execution.

Note that since Balllz is not necessarily equal to C, a k-stabilizing system is not necessarily self-
stabilizing. The converse is false (every self-stabilizing system is also k-stabilizing for any & < n,
where n is the number of processors in the network).

2.3 Stabilization time

A way to measure the time efficiency of self-stabilizing and k-stabilizing systems is to evaluate the
number of steps before reaching a legitimate state.

Definition 7 Given a self-stabilizing (or a k-stabilizing) system and an execution &, the stabilizing
phase s the prefiz of £ that ends at the first legitimate configuration. The stabilization time of the
execulion is the length of the stabilizing phase. The stabilization time of the system is the greatest
stabilization time (if it exists) of all the possible executions of the system.

The motivation for studying k-stabilization in previous works was to obtain shorter stabilization
time under the assumption of a small number of corrupted processors (making the solution time
adaptive when the number of corrupted processors was bounded by k).

2.4 Time adaptivity, k-time adaptivity

A distributed system is time adaptive if it is self-stabilizing and its stabilization time is polynomial
in the actual number of faults f.

Definition 8 (Time adaptivity) A transition system S is time adaptive for a specification SP
if there is no initial condition in S (that is T = C) and if there exists a non-empty subset L C C of
legitimate configurations, with the following properties:

e (i) Correctness: every execution starting in a configuration in L satisfies SP,
e (ii) Convergence: every execution contains a configuration in L,

e (iii) f-Polynomial stabilization time: the stabilization time is bounded by a polynomial in f.

Definition 9 (k-time adaptivity) A system S is k-time adaptive for a specification S if there
exists a non-empty subset L C C of legitimate configurations with the following properties:

e (i) Correctness: every execution starting in a configuration in L salisfies S,

e (ii) k-Convergence: every execution starting in a configuration in Balllz contains a configu-
ration in L,

e (iii) f-Polynomial stabilization time: the stabilization time is bounded by a polynomial in f.

3 Impossibility of time adaptivity in the step model

In this section, we prove that any dynamic global algorithm that tolerates at least one memory
corruption requires at least Q(D) steps to converge, where D is the diameter size of the network.



3.1 Informal description

Considering arbitrary reactive tasks on arbitrary graphs hints at the same principle. In a reactive
system, at least one processor may be activated in any configuration (otherwise, there would exist a
terminal configuration and the system would not be dynamic). Moreover, we assume that in order
to be corrected, a faulty processor or one of its neighbors has to be activated by the scheduler.
More precisely, we assume that a configuration C' can be obtained from a legitimate configuration
L by corrupting processor P and such that any computation whose initial configuration is C' may
not reach a legitimate configuration before P or one of its neighbors has been activated (otherwise,
a reactive system would solve a task independently of the state of one of the processors). Under
these hypotheses, it is possible to construct a system computation whose stabilization time in steps
is close to the network diameter.

In the case of the mutual exclusion on a ring network, this result comes from the fact that the
system scheduler may choose to activate any processor in the system. Then, in the case of a single
memory corruption, the system scheduler may ignore the corrupted processor and its neighbors, and
activate only the processor that hold the correct token. This token may move around the (almost)
entire ring before entering in the corrupted zone and correcting memory. By not activating the
corrupted processors, the scheduler prevents them from correcting themselves quickly.

The same idea also hold for other dynamic problems set up on more complex communication
graphs.

3.2 Formal result

Hypothesis and result. We consider a distributed system whose communication graph is ar-
bitrary, and we assume that the system scheduler is central (it activates a single processor at any
time) and D-bounded (between two actions of an enabled processor, every other processor executes
at most D actions, wher D is the network diameter). In addition, the communication graph is bidi-
rectional, the distributed system is non-anonymous (processors have access to unique identifiers)
and non-uniform (processors may execute different code according to their identifier).

We assume that the problem P to solve satisfies:

1. in any configuration, at least one processor can be activated by the scheduler,

2. in any correct computation, each processor is either activated or has at least one of its
neighbors activated at least once,

3. if configuration C' is obtained from configuration L by corrupting processor P, then any
computation whose initial configuration is C' may reach a legitimate configuration only after
either P or one of its neighbors has been activated.

Note that e.g. mutual exclusion satisfies these three hypotheses.
Result We are now able to state our theorem:

Theorem 1 Under the previous hypotheses, any distributed system that tolerales at least one faull
for P has a stabilization time of Q(D) steps.



This lower bound leads up to the following impossibility result concerning time-adaptivity in
asynchrnous systems.

Corollary 1 Under the previous hypotheses, there exists no k-time adaptive system for P in a
graph whose diameter is proportional to the number of processors.

A A ~ .
£ =
P
01 CQ 03 04 C
5
A A ~ .
& =
P
C! / ,
(O Cs c, c!

Figure 2: Constructing a computation whose stabilization time is D — 2

Proof overview of Theorem 1 Given an arbitrary graph GG and an arbitrary distributed system
DS, we construct a computation of DS whose initial configuration is 1-faulty and whose stabilization
time is D — 2. Consider a computation & of DS starting from a legitimate configuration Cy and
a processor P such that the scheduler activates neither P nor one of its neighbors during the first
D -2 first steps of £. Then, if C7 is the configuration obtained from C by corrupting P’s variables,
computation & starting from C{ (and such that the scheduler activates the same processes as in
£) cannot stabilize in less than D — 2 steps.

An example of such a construction is given in Figure 2. The grayed processors denote processors
that can be activated by the system scheduler. In computation £ starting from C7, neither P nor
one of its neighbors are activated during the 4 first steps. Then we consider C7, obtained by
corrupting processor P in configuration C7. Then, if the scheduler activates the same sequence of
processors in £ (the computation starting from C7) as in &, then £ does not converge in less than
5 — 2 steps.

Extensive proofs are provided in the following Section.



4 Proof of impossibility result (Theorem 1)

We consider a distributed system & that tolerates at least one memory corruption for a given
specification P, and whose communication graph G is of size n. Each processor P maintains a set of
variables denoted by State(P). If Cy and Cj are two configurations, then Statec, (P) = Statec, (P)
means that P’s variables have the same values in both C; and C5. Similarly, two configurations
are identical if all processor variables have the same values in any of these two configurations.

Constructing a Q(D) steps computation We define two processors P and P, to be inde-
pendent if the order they are activated by the scheduler is unsignificant to the remaining of the
computation. Otherwise, P, and P, are dependent. Our notion of dependency is related to the
notion of causality [20].

In other terms, if two processors P and P’ are independant in C1, the configuration obtained
by activating P then P’ is the same as the configuration obtained by activating P’ then P.

Remark 1 If two processors are not neighbors, they are independent.
P C, P
o >
1 A3

\/
pr Yo P

Similarly, a processor P and a set of processors {P;} are independent if P is independent with
each of the P,. Otherwise P and {P;} are dependent.

A sequence of processors (F;)o<i<m is dependant if for each processor F;, F; and {P;}o<j<i—1
are dependant.

Lemma 1 Let £ be a system compulation. Lel

o L oy

be the first transition of £ and
P P P P
Cl —1> CQ —2> 03 —3> e — Ci-l—l

be the next i transitions. If processor P and the processor set {P;} are independent, then the
computation obtained by activating first Py, Ps, ..., P; and then P also leads to configuration Ciy1.

Proof: A priori, we have :

P oo, ol
CO - 1 2 3 7 +1
P Cl—Cl—CY .o Cl—Cl,
2 P;

Let us prove that Cii; and Cj; are identical.



By hypothesis, P and P; are independent, thus:

oave
P —
. T 1/ 2
o,/ T
Py 1
In C{, P et P, are independent, thus:
Py

C/_)C/
172
Finally, we obtain: P P P
P C1—Cy—Cs3 ... C;—C}
o _ 1 2 3 7 1+1
0\ P P P
p, C1—Ci—CL ... C/—C]
1 1 P, 2 P, 3 2 P 1+1

Which proves Ci1q = C!

1+1° o

Lemma 2 Let S be a distribuled system that tolerales at least one memory corruption for a given
specification P. Then there exists a computation whose first activaled processor is on the border of
the communication graph and such that the first D — 2 first activated processors are dependent.

Proof: We prove by recurrence that there exists a computation whose first ¢ activated processors
are dependent. Let £ be a system computation whose first activated processor is on the border of
the communication graph (& exists since in any computation, every processor must be activated at
least once).

1. We suppose that the system communication graph has a diameter at least 4. We construct

a computation whose two first activated processors are dependent: Let Cy Fo, C be the
first transition of £. Let P; the first processor of £ that is dependent to Py (P; exists by
Assumption 3 in Section 3.2, note that P; might be F itself). All processors between Fy and
P; are independent from Fy, thus

P Py
Fo C1—Cy—(Cs ... Cj_g—»Cj_l
o
~
ct'—Cct—ct ... Ch_— "
Py 1P2 2P3 3 ]—2P

and
P, Py P2
Cy—Cy—Cly ... Cj_g—aCi_y_ P
Ci—Cijn
Cl—Clhy—Cl .. C_y——C'_ " p,

P, P Pj_1



Now consider computation £ whose initial configuration is C§—1- The two first transitions of

P
& are C]_, So, Cj — Cj41. The two first activated processors in £’ are then dependent.

2. We suppose that the system communication graph has a diameter at least ¢ + 3 (where
i > 1). Assume now that there exists a computation £ whose first ¢ activated processors are
dependent, and let us construct a computation &£’ such that the first i+ 1 activated processors
are dependent. Let P;i; the first processor that is dependent to (Fy, Py, ...P;—1) (Pi+; may
be in the set {Fy, Pi,...P,_1}). None of the processors between P;_; and P,y ; is dependent
to (Fo, P, ...Pi_1), thus we have:

s Py Py P;
0/701_)02 C¢_1—>CZ'—>CZ'+1 Ci-l—j—l
Co
) ! ! l ! !
Pi Cl_’CQ ces C]_1—>C]—>C]+1 es CZ-l—]—l
Pi+1 Pi+]‘_1 Fy
and P P
Ci—>ci+1 e Ci-l—j—l\zﬂ:l Py,
__Cii——Cirjt1
! ! !
Ci—Cis1 -+ Cipjma b,

0

Now consider computation £ whose initial configuration is C’;. The 7 + 1 first transitions of

& are
P P
1A 0 ! 1 lA
/ 1—1 / i+ 7
= Gl = Oy Gl

The ¢ + 1 first activated processors in £’ are then dependent.

In conclusion, it is possible to construct a computation whose first D — 2 activated processors are
dependent, where D is the system communication graph diameter. a

Lemma 3 Let £ be a computation. Let (P, Py, ..., P;) be a sequence of dependent processors. Then
the set of processors denoted by {P;};co.q] is connected.

Proof: We prove this lemma by recurrence on the number of processors in the sequence.

1. We consider a sequence of two dependent processors : they are neighbors and their set is
connected (see Remark 1).

2. Assume the property is verified for a sequence of ¢ processors (¢ > 2). Let us show that the
property still hold for ¢ 4+ 1 processors.

Let P, be the last processor of the sequence. The set of the 7 — 1 first processors is connected
by recurrence hypothesis. Since P; is dependent to the set {P;};cp.i—1], it is dependent to at
least one of the P;. They are then neighbors and the set

{Pi}en.i—nU b

is connected.



Finally, a sequence of dependent processors is connected in the distributed system communication
graph. a

Lemma 4 Let C' be a configuration and let C'S be a connected set of D — 2 processors such that
at least one of the processors in CS is in the border of the communication graph. Then there exists
in G a processor P such that none of P’s neighbors is in C'S.

Proof: Let P’ be a processor in the border of the graph. Let P be a processor such that the
distance between P’ and P is the graph diameter. the distance between P’ and P’s neighbors is
then between D — 1 and D. Thus none of P’s neighbors is in C'S. O

Lemma 5 Let S be a distributed system that tolerates al least one memory corruplion for specifi-
cation P. Then there exisls a computation of S whose stabilizalion phase is at least D — 2 steps.

Proof: Let £ be a computation such that the D — 2 first activated processors (Fy, Py, ..., Py—3)
are a dependent sequence and such that Fp is in the border of the communication graph. Let
P be a processor such that neither P, nor one of its neighbors are in (Fy, P, ..., Pp_3) (P exists
from Lemma 4). Let Cj be the initial configuration of £. Let C{ be the illegitimate configuration
obtained from Cy by corrupting processor P memory. Let us prove that there exists a computation
&' whose initial configuration is C{ that do not converge within D — 2 transitions.

In C, the scheduler may choose to activate Py (since Py and its neighbors have the same

values both in Cj and in C{). The transition CJ o, (' leads the system into an illegitimate
configuration (because neither P nor its neighbors have changed their values). In C7, the scheduler
may choose to activate P;. The system would then reach an illegitimate configuration C%. By
induction, after D — 2 steps, all processors of the sequence (Fy, P, ..., Pp_3) have been activated
by the scheduler, yet the states of P and its neighbors have not been modified, thus the system is
still in an illegitimate state. O

Then Theorem 1 is a direct consequence of Lemma 5 (that ensures the existence of a computation
whose convergence time is Q(D)).

That completes the impossibility result for k-time adaptive algorithms in the step model.

5 Conclusion

In this paper, we investigated the problem of reactive tasks in a time adaptive context. In more de-
tails, we proved that there exists no time adaptive (or k-time adaptive, for what matters) algorithm
for any non-trivial reactive task in the asynchronous step time complexity model.

This impossibility result is due to a lower bound of Q(D) (where D is the network diameter)
on stabilization time for a 1-stabilizing system (i.e. only one corruption may occur) performing
under a D-bounded central scheduler (between any two actions of an enabled scheduler, any other
processor may execute at most D actions).

This work justifies a posteriori that previous works on time adaptivity make use of one of the
two following hypotheses:

1. the system is synchronous (in each configuration, the scheduler chooses all enabled processors
to execute an action) (e.g. [17, 13]),



2.

the time complexity is calculated in rounds (in one round, every enabled processor executes
at least one action) instead of steps (e.g. [18]).

Also, this result implies that Figure 1 can be refined as Figure 3, since there exists some
problems (e.g. mutual exclusion in asynchronous systems) that admit a self-stabilizing solution
(and a fortiori a k-stabilizing solution, for any k), but that admit no k-time adaptive solution (and
a fortiori no time-adaptive solution).

stabilization time e e .
stabilization time
depends on the number . .
is finite yet unbounded
of faults
! !
ti e
Ly memory — me C self-stabilization
corruptions adaptivity .
N N
at most k k-time e
. — . . k-stabilization
memory corruptions adaptivity -

Figure 3: Taxonomy of stabilization revisited

References

[1]

B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and cor-
rection. In Proc. of the 32nd IEEE Symp. on Foundation of Computer Science (FOCS’91),
pp- 268-277, 1991.

B. Awerbuch, B. Patt-Shamir, G. Varghese, and S. Dolev. Self-stabilization by local
checking and global reset. In Proc. 8th International Workshop on Distributed Algorithms
(WDAG’94), 1994.

Y. Afek and S. Dolev. Local stabilizer. In Proc. of the 5th Israel Symposium on Theory of
Computing and Systems, June 1997.

Y. Afek, S. Kutten, and M. Yung. Local Detection for Global Self-Stabilization Theoretical
Computer Science, No 186, pp. 199-229, 1997.

J. Beauquier, C. Genolini, and S. Kutten. Optimal Reactive k-Stabilization : the case of
Mutual Exclusion. In Proc. of the 18th Annual ACM Symp. on Principles of Distributed
Computing (PODC’99), pp. 209-218, May 19909.

C. Berge. Graphs and hypergraphs. Translated from the French by Edward Minieka. Second
revised edition. North-Holland Mathematical Library 6 (1976).

I[. Chlamtac and S. Pinter. Distributed node organization algorithm for channel access in a
multihop dynamic radio network. IEFFE Transactions on Computers, Vol. C-36, No 6, pp.
728-737, June 1987.



[8] S. Delaét. Auto-stabilisation: modele et applications a I'exclusion mutuelle. Ph.D. Disser-
tation, Université Paris Sud December 1995.

[9] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of
the ACM, Vol. 17, No. 11, pp. 643-644, Nov. 1974.

[10] S. Dolev. Self-stabilization. The MIT Press, 2000.

[11] S. Dolev and T. Herman. Superstabilizing protocols for dynamic distributed systems.
Chicago Journal of Theorelical Computer Science, Vol. 3, No. 4, 1997. Also in Proc. of
the Second Workshop on Self-Stabilizing Systems (WS5°95), pages 3.1-3.15, May 1995.

[12] C. Genolini. Optimal k-stabilization: the Case of Synchronous Mutual Exclusion. In Proc. of
the International Conference Parallel and Distributed Computing and Systems (PDCS’00),
M. Guizani and X. Shen editors, pp. 371-376, Nov. 2000.

[13] C. Genolini. Raffinements de I"auto-stabilisation. Ph. D. Thesis, Université de Paris Sud,
Dec. 2000.

[14] S. Gosh and Xee. Scalable Self-stabilization. In Proc. of the jth Workshop on Self-stabilizing
Systems (WS55°99), pp. 18-24, Austin, Texas, Jun. 1999.

[15] S. Katz and K. J. Perry. Self-stabilizing extensions for message-passing systems. In Dis-
tributed Computing, Vol. 7, 1994.

[16] S. Kutten and D. Peleg. Fault-local distributed mending. In Proc. of the 14th Annual ACM
Symp. on Principles of Distributed Computing (PODC"95), Aug. 1995.

[17] S. Kutten and B. Patt-Shamir. Time-adaptive self-stabilization. In Proc. of the 16th Annual
ACM Symp. on Principles of Distributed Computing (PODC’97), pages 149-158, Aug. 1997.

[18] S. Kutten and B. Patt-Shamir. Asynchronous Time-Adaptive Self Stabilization. a Brief
Announcement in the Proc. of the 17th Annual ACM Symp. on Principles of Distributed
Computing (PODC"98), 1998.

19] S. Ghosh, A. Gupta, T. Herman, and S. V. Pemamraju. Fault-containing self-stabilizin
g g
algorithms. In Proc. of the 15th Annual ACM Symp. on Principles of Distributed Compuling
(PODC’96), Philadelphia, Pennsylvania, pp. 45-54, USA, May 1996.

[20] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 1994.



