k-stabilization is Strictly Stronger than Self-stabilization

Christophe Genolini Sébastien Tixeuil

Laboratoire de Recherche en Informatique, UMR CNRS 8623
Batiment 490, Université de Paris Sud, FR 91405 Orsay cedex, France
Contact author: Sébastien Tixeuil, tixeuil@lri.fr

Abstract

Self-stabilization is a useful and versatile technique for supporting an arbitrary number of
transient faults: a self-stabilizing protocol recovers in finite time starting from any initial system
configuration. However, the cost for self-stabilization is often high: (1) several problems are
impossible to solve in a self-stabilizing way (such as deterministic token passing in uniform rings
of arbitrary size), and (2) even the slightest inconsistency may require the recovery process to
cover the whole network, causing a high recovery time.

The recent definition of k-stabilization studies the scenario where up to k (for a given k)
faults hit processors of a synchronous distributed system by corrupting their state undetectably.
The exact number of faults, the specific faulty nodes, and the time the faults hit are not known.
So far, k-stabilizing protocols were only used to circumvent drawback (2), and the question of
having problems admitting no solution in the self-stabilizing setting while admitting solutions
in the k-stabilizing setting remained open.

We positively answer this question by presenting a k-stabilizing solution for the deterministic
token passing in uniform arbitrary-sized uniform rings. Our solution assumes that no more than
k faults hit the system (and k is lower than ”T_l, where n is the size of the system). Our algorithm
has the additional property of being time adaptive: the time needed to recover from failures is
proportional to the actual number of faults.

1 Introduction

Robustness is one of the most important requirements of modern distributed systems, that go
through transient faults because they are exposed to constant change of their environment.

1.1 A taxonomy of stabilization

Self-stabilization. Introduced by Dijkstra in [9], self-stabilization guarantees that, regardless of
the initial state, the system will eventually converge to the intended behavior or the set of legitimate
states. In more details, let a configuration (or a global state) be a collection of the states of the
individual network nodes, and let Q be some predicate on a configuration. A self-stabilizing protocol
for Q is one that, when starting from an arbitrary configuration reaches a legitimate configuration
(a configuration for which Q holds) and remains in legitimate configurations henceforth (for insight
details, see e.g. [10]).

Due to its support to an arbitrary large number of failures, this technique often suffers from
several drawbacks, among which are (i) some problems are impossible in particular settings ([16]

proves that there exists no deterministic self-stabilizing token passing algorithm in uniform rings),
and (7i) the recovery process may cover the whole network even if only a few nodes failed (e.g. [2,
3,5, 11, 17]).

k-stabilization. Let k-stabilizing protocols (see [7]) be stabilizing protocols for the case that an
upper bound k£ < n on the number of faults is known (where n is the total number of processors).
To model a fault, we use the Hamming distance between configurations (see e.g. [11]). That is, let
C1 and Cs be configurations, the distance between them is the number of nodes whose local states
are different in C7 and Cy. Let C be an illegitimate configuration, and L be a legitimate one with
the smallest distance from C. If L is not unique then let L be any configuration with the smallest
distance (this does not influence the analysis). The number of faults in C' is the distance from L.
The faulty nodes are those whose state in C' and L are different.

Time adaptivity. The fact that the recovery process may involve the whole network does not
scale to modern very large networks. To enable scaling, it was suggested by several researchers
(e.g. [14, 18, 19]) that the smaller is the number of faults to hit a network, the faster should a
network protocol recover. Such protocols (called fault local, fault scalable or time adaptive in the
literature) were suggested first for relatively easier (and less typical) cases, such as the case where
a faulty node can detect that it is faulty [4], or the case of non-reactive tasks [18, 19] (a distributed
function computation that is performed once, and the result is not supposed to ever change), and
then (see [7, 12]) for the token passing problem.

k-time adaptivity. Self-stabilizing algorithms can be seen as a special case of k-stabilizing algo-
rithms (when k = n, the size of the network). Similarly, Time adaptive algorithms can simply be
seen as a refinement of self-stabilizing algorithms. We introduce the notion of k-time adaptivity to
denote the ability to recover from at most k corruptions in a time that depends only on the actual
number of faults. For historical reasons, most of the so-called “time adaptive” aforementioned
papers (e.g. [7, 14, 18, 19]) are k-time adaptive according to our terminology: they all assume a
bound on the number of faults that hit the network in order to provide fast stabilization time.

Our classification is captured by Figure 1 for the algorithm-centric point of view, where the
arrow symbols denote “is a special case of”. For example the arrow between “time adaptivity” and
“self-stabilization” denotes that every time adaptive protocol is also a self-stabilizing protocol.

Figure 2 captures the problem-centric point of view of our classification. For example, every
problem that admits a self-stabilizing solution also admits a (n — 1)-stabilizing solution (e.g. the
self-stabilizing solution), thus the set of problems that can be solved by self-stabilizing algorithms
is included in the set of problems that can be solved by (n — 1)-stabilizing algorithms. For the same
reasons, k-time adaptive problems (problems that can be solved using a k-time adaptive protocol)
are included in the set of k-stabilizing problems (that can be solved using the same protocol as in
the k-time adaptive case).

1.2 Related work

The study of self-stabilizing protocols was initiated by Dijkstra (see [9]), that proposed three
deterministic algorithms on ring networks for the token passing problem. In this problem it is
required that exactly one node “possesses the token” (i.e. a locally computable predicate TOK EN

stabilization time

depends on the number

stabilization time
is finite yet unbounded

of faults
ti ce
ALY TETHOLY e — self-stabilization
corruptions adaptivity
! !
at most & . k_tlm? — k-stabilization
memory corruptions adaptivity

n—1
time
adaptive

2-time

1-time
adaptive

adaptive

Figure 1: Taxonomy of stabilization

Time

adaptive Self-stabilizing
(n — 1)-stabilizing
2-stabilizing

1-stabilizing

Figure 2: Stabilizing problems

holds for that node) at any moment, and that every node eventually holds the token. A common
point of this seminal paper with many subsequent works on self-stabilizing deterministic token
passing is that the system is non-uniform: a distinguished processor may execute a local algorithm
that is different from the other processors. This hypothesis is needed to break symmetry, since [16]
proved that there exists no self-stabilizing uniform deterministic algorithm for the token passing
problem on arbitrary-sized ring networks.

Time adaptivity was first introduced in the context of non-reactive systems. In [18] the notion
of fault locality was introduced, as well as an algorithm for the simple task, called the persistent
bit, of recovering from the corruption of one bit at some k nodes, for an unknown k with output
stabilization time O(klogn) for f = O(n/logn), where f is the effective number of faults that hit
the system. In [19] a stabilizing fault local algorithm is presented for the persistent bit task. If the
number of faults is smaller than n/2 then that algorithm achieves a legitimate state (the same as
a self stabilizing algorithm in this case) and the stabilization time for the output is O(k). These
algorithms are for synchronous networks. An asynchronous, and self stabilizing version of [19] is
described in [20]. In a previous work [13], we prove that there exists a lower bound on the number
of processor actions for dynamic k-stabilizing systems (such as token passing systems) to recover
from as low as 1 memory fault. This lower bound implies that either round complexity must be
used to compute stabilization time, or synchronous systems must be considered.

In [21], an algorithm for the following problem is presented: given a self-stabilizing non-reactive
protocol, produce another version of that protocol which is self-stabilizing, but with output stabi-
lization time in O(1) if k = 1. The transformed protocol has O(T'- D) step stabilization time, where
T is the stabilization time of the original protocol (no analysis is provided for output stabilization
time when k£ > 1), and D is the diameter of the system. The protocol of [21] is asynchronous, and
its space overhead is O(1) per link. However, it requires a self-stabilizing protocol to start with,
and it may suffer a performance penalty in the case of £k > 1. In [4], faults are stochastic, and
consequently the correctness of information can be decided with any desired certainty less than
1. Under this assumption, a time-adaptive algorithm is presented. The algorithm handles both
Input-Output relations, and reactive tasks, however, in reactive tasks inputs may be lost if faults
affect the nodes that “heard” about these inputs. Additional examples for the special case of O(1)
recovery time appears in [8, 11].

Finally, the work by Gosh and Xee (see [14]) provides a method for adding stabilizing properties
to non-stabilizing non-reactive systems, when the number of faults is greatly lower than the size of
the network. However, their complexity results are strongly related to the repartition of the faults:
best results are obtained when the k faults are contiguous (the time complexity is then O(k?)), but
performance decreases (exponential in k) when faults are arbitrarily located.

In [7], Beauquier, Genolini and Kutten provide an asynchronous k-stabilizing algorithm for the
token ring task in a non-uniform setting (one processor is distinguished from the others and may
execute different code). This solution require O(k?) rounds to stabilize and its space overhead is
O(kn). A self-stabilizing algorithm that is also k-stabilizing (with stabilization time O(k)) appears
in [12]. Unlike [7], [12] performs on synchronous systems, yet still requires that the setting is
non-uniform.

1.3 Our contribution

Until now, the notion of k-stabilization was defined and used only to provide better convergence
time when the number of faults that hit the system is small. From a problem-centric point of view,
it is trivial to see that if a problem admits a self-stabilizing solution, it also admits a k-stabilizing
solution (because self-stabilizing algorithms are a special case of k-stabilizing algorithms). Yet there
remains the open question of whether there exists a problem that admits a k-stabilizing solution
and no self-stabilizing one.

We answer positively to this question by showing that the token passing problem, that do not
admit self-stabilizing solutions in some setting, admits a k-stabilizing solution (that we provide) in
the same setting. In more details, we present the first deterministic uniform k-stabilizing algorithm
for token passing in arbitrary-sized rings. Unlike the algorithms previously presented in [7, 12], we
do not assume that a distinguished processor (that may execute actions that are different from the
other processors) is available. All processors are identical and the network setting is symmetrical
(a unidirectional ring): the system is uniform and anonymous.

While k-stabilization permits us to unlock an impossibility result, we moreover retain its ad-
vantages in terms of time complexity. Our token passing algorithm is also k-time adaptive and its
stabilization time is O(f), where f is the actual number of faults that initially hit the system. We

assume that the number of corruptions k is bounded by "T_l.

Outline. Section 2 presents our system settings along with some formal definitions that will be
used during the proofs. In Section, 3 we present a deterministic uniform k-stabilizing algorithm
for token passing, while Section 4 provides proofs and complexity results that are related to this
algorithm. Section 5 provides some concluding remarks.

2 Model

In this section, we refine informal definitions given in the introduction for self-stabilizing, k-
stabilizing, time adaptive and k-time adaptive systems, and give complexity measures.

2.1 Self-stabilization

We model self-stabilizing algorithms as transition systems, whose set of initial configuration is
arbitrary (including configurations that are not normally reachable from some other states).

Definition 1 A transition system is a triple S=(C,—, Z), where C is a set of configurations, — is
a binary relation (transition) on C, and T is a subset of C of initial configurations. An execution
(or computation) of S is a sequence €& = (Ty, T1,Ts,...) where for alli > 1, T; = C; — Cij41 and
Cp € T. A partial execution is a (finite) prefix of an execution.

Definition 2 (Self-stabilization) A transition system S is self-stabilizing for a specification SP
if there is no initial condition in S (that is T = C) and if there exists a non-empty subset L C C of
legitimate configurations, with the following properties: (i) Correctness: every execution starting in
a configuration in L satisfies SP, (ii)Convergence: every execution contains a configuration in L.

A common way to model a self-stabilizing algorithm running on a network is to set up the
following transition system : (i) a configuration C is the set of register values of all network
processors, (ii) C is the set of all possible configurations C, (i) a couple of configurations (C1, Cs)
belongs to the transition relation — if from C, the execution of the algorithm leads to Cb.

2.2 k-stabilization

Roughly speaking, k-stabilizing algorithms have nearly the same definition as self-stabilizing algo-
rithms, except for the addition of some assumptions on the initial configuration: an initial con-
figuration is one that can be constructed from a legitimate configuration by changing the register
values of up to k processors. More formally, let the (Hamming) distance Dist(C1,C2) between two
configurations C; and Cy be the number of processors whose states are different in C; and Co; the
distance between C; and a set of configuration Cs is Dist(C1,Cs) = mingec,{Dist(C1,C)}.

Definition 3 Let S be a system and L a set of configurations. The ball of center £ with radius k
1s the set Ballﬁ of all configurations C' such that the Hamming distance between C and L is smaller
or equal to k.

Definition 4 Let S be a system, C be a configuration and L be a set of configurations. Let L be
a configuration of L such that the distance between C and L is minimal. The set of processors P
in C that are corrupted relatively to L is the set of processors that do not have the same value in
C and in L.

Given a configuration C, the notion of corrupted processor exists only relatively to a specific
legitimate configuration. For some configurations, neither L nor P are unique. However, for the
sake of the proofs it suffices to choose an arbitrary legitimate configuration L in £ whose distance
from C' is minimal. When the set £ is known, we use the term “corrupted processor”, omitting the
reference to L.

Definition 5 (k-stabilization) A system S is k-stabilizing for a specification S if there exists a
non-empty subset L C C of legitimate configurations with the following properties: (i) Correctness:
every execution starting in a configuration in L satisfies S, (ii) k-Convergence: every execution
starting in a configuration in Ballﬁ contains a configuration in L. An execution starting with a
configuration in L is called a legitimate execution.

Note that since Balllz is not necessarily equal to C, a k-stabilizing system is not necessarily self-
stabilizing. The converse is false (every self-stabilizing system is also k-stabilizing for any k& < n,
where n is the number of processors in the network).

2.3 Stabilization time

A way to measure the time efficiency of self-stabilizing and k-stabilizing systems is to evaluate the
number of rounds before reaching a legitimate state.

Definition 6 Given a self-stabilizing (or a k-stabilizing) system and an execution £, the stabilizing
phase is the prefix of £ that ends at the first legitimate configuration. The stabilization time of the
execution is the length of the stabilizing phase. The stabilization time of the system is the greatest
stabilization time (if it exists) of all the possible executions of the system.

The motivation for studying k-stabilization in previous works was to obtain shorter stabilization
time under the assumption of a small number of corrupted processors (making the solution time
adaptive when the number of corrupted processors was bounded by k).

2.4 Time adaptivity, k-time adaptivity

A distributed system is time adaptive if it is self-stabilizing and its stabilization time is polynomial
in the actual number of faults f.

Definition 7 (Time adaptivity) A transition system S is time adaptive for a specification SP
if there is no initial condition in S (that is T = C) and if there exists a non-empty subset L C C
of legitimate configurations, with the following properties: (i) Correctness: every execution starting
in a configuration in L satisfies SP, (i) Convergence: every execution contains a configuration in
L, (i1i) f-Polynomial stabilization time: the stabilization time is bounded by a polynomial in f.

Definition 8 (k-time adaptivity) A system S is k-time adaptive for a specification S if there
exists a non-empty subset L C C of legitimate configurations with the following properties: (i)
Correctness: every execution starting in a configuration in L satisfies S, (ii) k-Convergence: every
erecution starting in a configuration in Ball? contains a configuration in L, (iii) f-Polynomial
stabilization time: the stabilization time is bounded by a polynomial in f.

2.5 System settings

We consider a synchronous system. All processors execute one step of their local code at the same
time. Omne such local step consists in: (i) reading the neighbors’ state, (i) performing some local
calculus, and (7ii) updating variable values. One global step where every processors executes a
local step is called a round.

3 Uniform k-time adaptive token passing

In this section, we describe our uniform token passing algorithm for ring networks, first informally
then formally. Next we informally give the main ideas for its correctness proof, that is extensively
provided in Section 4.

3.1 Informal description

The algorithm that we formally present in Section 3.2 solves the token passing problem in a uniform
network where each processor code is identical and deterministic, yet support up to k faults, where
k< ”T_l. In what follows, k denotes the maximal number of supported failures, whereas f is the
effective number of failures.

The proof of impossibility of [16] stating that there exists no self-stabilizing solution to this
problem is based on a symmetry reasoning: assume that the ring size n is even and that one
contiguous half of the network is corrupted in order that the state of processor i is the same as
that of processor i + . Assume the token was on the non corrupted part of the network: now for
symmetry reasons, two symmetric tokens are present. Assume the system is synchronous, and the
two tokens remain at the same distance from each other forever. This implies that the system never

reaches a configuration where a single token exists in the network, and proves that the system can
not be self-stabilizing.

Algorithm 3.1 Uniform k-stabilizing token passing
Variables :

Val(P) used to compute Val(P) € [0..SND(n) — 1]
the token position

Distance(P) used to compute Distance(P) € [0..2n]
the distance to the nearest
predecessor holding a token

Counter(P) used to delay Counter(P) € [0..2n]
token retransmission

Predicates :

Token(P) <= Val(P)# Val(P~)+1 mod SND(n)
Ready(P) += Counter(P) > Int {%}

(Distan

Guarded Rules :

Val(P) «— Val(P~) 4+ 1 mod SND(n)
R1 Token(P) A Ready(P) = Distance(P) «— Distance(P~) + 1
Counter(P) «— 0
Distance(P) «— 0
R2 Token(P) A —~Ready(P) = { Counter((P))<— Counter(P) + 1
. { Distance(P) «— Distance(P~) 4+ 1
Counter(P) «— 0

R3 —Token(P)

In order to provide support for up to kK memory corruptions, we associate to each token a speed,
which depends on how many correct predecessors a processor have. The knowledge of the number
of correct predecessors is carried out through a variable that captures the distance to the next
predecessor token. Then, a token whose k predecessors are correct will have maximal speed and
move to the next processor every two synchronous rounds, while a token whose k predecessors are
not all correct will get a lower speed, and eventually be catched by a fast token. Since the actual
number of faults is lower or equal to k, we are ensured that none of the tokens resulting from
memory corruption will get a maximal speed and hold it forever. Moreover, when £k < ”771, we are
ensured that at least one token has k correct predecessors, and then get maximal speed to remove
extra tokens. Finally, a careful analysis carried out in Section 4 shows that the stabilization time
from a faulty configuration with f faults is proportional to f.

3.2 Formal description

We assume that when a variable overflows, its value is set to the maximum possible value for that
variable. For example, if variable v = n is in range [0..n] and that we execute v «— v + 1, then v
still equals n. If the calculus is made explicitly using the modulo operator, the modulo operation
takes place after valuing the variable. For example, if variable v = n is in range [0..n] and that we
execute v «— v + 1 mod(n), then v would then equal 0, because v + 1 remains equal to n, and
then nmod(n) equals 0. The core of our algorithm is presented as Algorithm 3.1, where SN D is
a function that returns the smallest non divisor of its argument, and where Int{z} denotes the

T T 3 10
(a) Legitimate conf. L, (b) Corrupted conf. Cs (c) Distance between tokens

Figure 3: Example of configurations

integer part of x.

Notations and definitions If P is a processor, then P~ denotes the predecessor of P and P+
its successor. If T is a token, the support of T is the processor P holding T, and T~ is equal to
P~. The token predecessor of T is the closest predecessor of P holding a token. According to
the unidirectional ring orientation, Dist(P, P’) is the distance between P and P’ including P and
excluding P’. Similarly, Dist(T,T") is the distance between T and 7", including T" and excluding
T

Theorem 1 Provided that no more than k < "T_l faults hit the network, Algorithm 3.1 recovers
correct behavior with respect to token passing specification within O(f) rounds, where f is the actual
number of initial faults.

Proof overview: We define two kinds of legitimate configurations: 7 P-legitimate configurations
are configurations that are legitimate enough for the algorithm to satisfy immediately its specifica-
tion (the output variables are correct), while the fully legitimate configurations (or simply legitimate
configurations) are those where all variables are correct.

A figurative way to visualize each configuration is given in Figure 3, where the ring network is
drawn as a tower, and a higher Val value at a processor is depicted by a higher wall. Given this
representation, a processor has a token if its top line is cut (like processor P in Figure 3.a). Since
operations on Val variables are performed modulo SND(n), the break between the highest and
the lowest value does not denote a token, so that in Figure 3, L is a 7 P-legitimate configuration.
The correctness proof shows that starting from a 7 P-legitimate configuration, the algorithm
satisfies the token passing specification, and that a fully legitimate configuration is reached after at
most 2n rounds. This proof reuses the techniques of [9, 12]. The convergence proof shows that
starting from a fully legitimate configuration that suffered f memory corruptions, a 7 P-legitimate
configuration is reached in time O(f).

In more details, the convergence part is related to the following property: when a group of
contiguous processors is corrupted, at least two tokens appear, one at the “head” of the group, and
the other at the “tail” of the group. Moreover, the head token can not be far from the tail token since
by hypothesis there is at most f corrupted processors on the ring. For example, in configuration
C obtained from L; by corrupting 3 processors (see Figure 3.b), there are two additional tokens.

Token T5 is at the “head” of the corruption, while token 17 is at the “tail” of the corruption, and
the distance between T and T is 3. Then we distinguish three kinds of tokens: (i) the true token
is the token that existed in the legitimate configuration L; (hold by P), (ii) a false token (here T5)
appeared due to a corruption: we wish this token does not move, since a corrector token is nearby,
(iii) a corrector token (here Tp) also appeared due to a corruption: we wish this token moves and
catches the false token. According to our algorithm, token speeds are conversely proportional to
the distance between a token and its predecessor token. Then the false token would move slowly,
whereas the corrector token would move quickly, so that the corrector token eventually catches the
false token and both tokens disappear.

The convergence time is strongly related to the number of rounds needed by corrector token
to catch false tokens. This time is proportional to the distance between the two tokens, in turn
this distance is bounded by the number of faults.

4 Proof of Algorithm 3.1 (Theorem 1)

For this proof, we reuse some techniques previously used in [7, 12], that consider the propagation
of inputs and the propagation of faults: Intuitively, in a non-trivial reactive system, nodes change
their states as a result of the states of their neighbors; for example, when a node P stops holding
the token, and its neighbor P’ starts holding the token as a result. This propagates (to P’) the
input that told P to release the token. If, however, P acted as a result of a fault, then P’ should
not have changed its state; now that it did, P’s state is now corrupted, and we say that the fault
has propagated (to P). Intuitively, the techniques we use here bound the propagation of faults.
Such bounding is essential for time adaptivity, since, if faults propagate to the whole network, any
recovery process would have to be global too.

Hereby we define two kinds of legitimate configurations: 7 P-legitimate configuration are con-
figurations that are legitimate enough for the algorithm to satisfy immediately its specification
(the output variables, i.e. the variables that are involved in the problem specification, are correct),
while the fully legitimate configurations (or simply legitimate configurations) are those where all
variables are correct. In the context of the Token Passing problem (denoted by 7P), the output
variable of a node is a boolean that is true if the node holds a token and false otherwise. This
boolean may be either an actual variable or a predicate of the node.

The correctness proof shows that starting from a 7 P-legitimate configuration, the algorithm
satisfies the token passing specification, and that a fully legitimate configuration is reached after
2n rounds. The convergence proof shows that starting from a fully legitimate configuration that
suffered f memory corruptions, a 7 P-legitimate configuration is reached in time O(f).

4.1 Legitimate configurations
We hereby define legitimate configurations relatively to the token passing problem specification.
Notation 1 A processor P such that Token(P) is true is said to “hold a token”.

Definition 9 (Correct Distance) IfT : C; — C5 is a transition, a correct distance variable is
defined recursively:

1. If P holds a token in Cy, then Distance(P) is correct in Cy if it is equal to 0.

10

2. If P does not hold a token in Cy, then Distance(P) is correct in Co if Distance(P~) is
correct in Cy and that Distancec, (P) equals Distancec,(P~) plus one.

Definition 10 (7 P-Legitimate configuration) A configuration C is 7T P-legitimate if the two
following conditions are satisfied: (i) a single processor P holds a token, and (ii) any other processor
Q@ has its variable Counter(Q) equal to 0.

Definition 11 (Fully legitimate configuration) A configuration C is fully legitimate if the
three following conditions are satisfied: (i) a single processor P holds a token, (ii) any other pro-
cessor @ has its variable Counter(Q) equal to 0, and (iii) all distance variables are correct.

Definition 12 (Token passing) A computation & satisfies the TP (Token passing) specification
if the two following conditions are satisfied: (i) in any configuration of £, exactly one processor
holds a token, and (ii) in €, every processor holds the token infinitely often.

4.2 Proof of correctness

Theorem 2 Any computation whose initial configuration is T P-legitimate satisfies the TP speci-
fication.

Lemma 1 In any computation £ whose initial configuration is T P-legitimate, the number of pro-
cessors holding a token never increases.

Proof: Let 7 : 1 — (5 be a transition such that Cj is 7 P-legitimate and let P be the
processor holding the token in C;. Processor) holding a token is determined by the value of the
two variables Val(Q) and Val(Q~). But only rule R1 may modify the value of variable Val(Q).

Since P is the only processor in C; that may execute R1, only P and P* (the two processors
that are concerned by the modification of Val(P)) may acquire or loose a token. Thus at most two
tokens are present in C. When executing R1, P modifies its Val(P) variable and looses its token,
which means that P does not hold any token in Cs. In turn, starting from any 7 P-legitimate
configuration, the overall number of processors holding a token never increases. O

We notice that starting from any configuration, there exists at least one processor that hold a
token.

Lemma 2 In any configuration, at least one processor holds a token.

Proof: Let Py, Py, ..., P, denote the successive processors of our n-sized ring (with Py = P,).
Assume that no processor hold a token, this means that for any P; (with ¢ > 0), Val(FP;) =
Val(P;41) —i (mod SND(n)). By induction, we get Val(FPy) = Val(P;) —i (mod SND(n)). When
i =n, we obtain Val(Py) = Val(P,) —n (mod SND(n)). This is impossible since Py = P,. O

Lemma 3 Let £ be a computation and let C1 be a legitimate configuration in £. A processor P
that holds a token in C1 may not keep it more than 2n rounds.

11

Proof: We consider the 2n + 1 configurations following Cy in £. If predicate Ready(P) is true
in any of those configurations, P would apply R1 and transmit its token to P*.

Assume that Ready(P) is false in any of the C; configurations following Cy (with ¢ € [1..2n+1]).
Then in each round, P would apply R2 and increment its Counter(P) variable. Thus in Cy;,41, we
would have Counter(P) > 2n + 1.

Since W’M is bounded by 2n, the predicate Ready(P) is satisfied in Cop4+1, which
contradicts our hypothesis. O

Theorem 2 is then deduced from the following argument: (i) in any configuration of £ (that
starts from a legitimate configuration) there is exactly one token (Lemmas 1 and 2), (i) a processor
may not hold a token more than 2n rounds (Lemma 3), thus every processor is ensured to receive
a token infinitely often.

4.3 Proof of convergence

In this section, we assume that there are no more than & memory corruptions, where k£ < ”T_l.
Moreover, we consider the more difficult case of a scattered corruption that consists of x blocks of
contiguous corrupted processors. A corrupted processor has at least one corrupted variable (either
the Val, Distance, or Counter variable).

Definition 13 (Tokens) Let C' be a non-legitimate configuration obtained from legitimate config-
uration L. Let Py be the processor holding a token in L. We distinguish in C' between three kinds
of tokens:

1. P has a False Token if Val(P™) is corrupted (like token T in Figure 3.b).
2. P has a Corrector Token if Val(P~) is not corrupted (like Ty in Figure 3.b).
3. The True Token is:

(a) The token that Py holds if Py is not corrupted (like P in figure 3.b).
(b) The nearest Corrector Token on the ring before Py if Py is corrupted.

We assume without loss of generality that in each of the z blocks of contiguous corrupted
processors, there is exactly one false token per corrector token. Indeed, the case where there are
several false tokens for one corrector token is easier to deal with, since the speed of the false token
is lower, and they are more quickly catched by the corrector token.

Notation 2 Let £ be an execution, Cy be its initial configuration and Tgy,...,Tr; be x False
Tokens. Each False Token has a Corrector Token as token predecessor. We note it Ty;'.

We now introduce several formal definitions that will be used throughout the proof: We denote
by fi(t) the number of corrupted processors in block 4 in the configuration C;, that is the distance
between T; and Tp;. ¢;(t) is the number of (non corrupted) processors between the false token
Tr; and the next corrector token Ty;41. vp; and vy; are the speeds of the false token Tr; and the
corrector token T;, respectively. Note that a speed of e.g. 1/4 means that the token moves every
three rounds.

75 and not Te; to avoid any confusion between T¢; and C;.

12

Definition 14 Let C; be a configuration of £ and let Ty;, Tr; be two tokens. Then we set :
Fi(t) = Dist(Ty;, Tr;) If Distance(Tr;) is correct
) 2% Dist(Ty,, Tr,) in Cy otherwise
ci(t) = Min{Dist(Tpi—1,Ty;),n}
Distance(Ty;)/2n If Distance(Tr;) is correct
vpi(t) = :
0 otherwise
Distance(T;)/2n If Distance(Ty;) is correct
VJ; (t) == .
0 otherwise

We now show that within O(f) rounds, the distance variables get corrected and upper bounded,
whatever the initial values of the processor variables may be.

Lemma 4 After 2f rounds, the 2f successors of Tr have a Distance variable that is correct and
lower than 2f.

Proof: After 2f rounds, the 2f successors of Tr have correct distance information, and the Tr
may only have moved by f positions (if its speed is maximal and equal to 1/2). O

The two following technical lemmas involve properties on sums of processors that will be cor-
rected vs. sums of processors that will be corrupted. If the number of corrupted processors is
small, then the average speed of the false tokens is low and the number of corrupted processors
does not increase (indeed, a small number of corrupted processors implies a large number of correct
processors, so that the average speed of the corrector tokens is high).

Lemma 5 shows that if the sum of the false token speeds is small, then only few extra processors
will be corrupted.

Lemma 5 Let I be the set of all the indices of false tokens. If for any round j between 0 and t—1,
Yiervri(J) < o, then Yeq fi(t) < f +ta.

Proof: We wish to find an upper bound for },.; fi(t). For that, we notice that a Token with
speed v can move only once every % + 1 rounds. From that, we get:

2ier filt) + Dier Int[(t = 1) X vpi(t = 1)]

< (0)

< Yier fi(0) + Yier(t—1) x vpi(t — 1)
< Yier fi(0) + (t—=1)>ervmi(t —1)
< Yier fi(0) + (t—Da

< f + ta

a

Lemma 6 Let I be the set of all the indices of false tokens. After 2f rounds, the execution reaches
a configuration Cay where the three following assertions hold: (i) there are at most 3f corrupted
nodes (ii) all distance variables of corrupted nodes are correct and (iit) >,y vpi(f) < 1/4 holds.

Proof: Assertion (7i) is due to Lemma 5. For assertions (i) and (i), we prove by recurrence
that for any t (0 <t < f—1):

13

(a) In configuration Cy, we have Y ;c;vpi(t) < 1/4

(b) In configuration Cyi1, we have >, fi(t) < 2f +t/4

1. Base case (t =0):

(a) In configuration Cy, Y ;c; vri(t) = 0 since none of the v;(t) are correct.

(b) In configuration C1, >,y fi(t) = f since no corrupted token could move.

2. Assume the property is true for 1,2,...,t — 1 (with (0 < ¢ < f — 2), and let’s prove that the
property also hold for :

(a) In configuration Cy, the number of corrupted nodes > ;c; fi(t) is lower than 2f 4+ ¢/4 <
2.25f (by recurrence hypothesis). Let Ic = {i € I : Distance(T};) is correct }. We
wish to find an upper bound for the sum of speeds:

> icr Vril(t) Yicle Distance(Ty;)(t)/2n
Zie[o 2fi(t)/2n
4.5f/2n
1/4

VAVAVAN|

(b) In configuration Cy1, we wish to find an upper bound on the number of corrupted
nodes.

Yier filt+1) Yier, filt +1) + Yiende fi(t)
Yiere fi(0)+ (@ +1)/4 + 23 ,cn g, fi(0)
23 fi0)+(E+1)/4 + 23 ,en g, fi(0)
23 er, fi(0) + (t+1)/4
of + (t+1)/4

INIANININ I

O
The following lemma captures the fact that if the sum of speeds of corrupting tokens is low
enough, then the correction may occur in a time adaptive way, and be proportional to f.

Lemma 7 Let I be the set of all the indices of false tokens. Let £ be a computation whose ini-
tial configuration includes 3f corrupted nodes having correct distance variables, and such that
Y icrvri(0) < 1/4. Then after 16f rounds, the computation has reached a T P-legitimate con-
figuration.

Proof: We prove by recurrence that for any ¢t (0 <t < f —1):
(a) In configuration Cy, we have Y ;c;vpi(t) < 1/4
(b) In configuration Cyi1, we have >, fi(t) < 4f —t/4

1. Base case (t =0):

(a) In configuration Cp, 3, vri(t) = 1/4 by the definition of Cp.

14

(b) In configuration C1, Y ,c; fi(t) = 3f + « since no more than z Corrupted Tokens (i.e.
all Corrupted Tokens) could move between Cy and C}.

2. Assume the property is true for 1,2,...,t — 1 (with (0 < ¢ < f — 2), and let’s prove that the
property also hold for ¢:

(a) In configuration, Cy, the number of corrupted nodes Y ,c; fi(t) is lower than 4f (by
recurrence hypothesis). We wish to find an upper bound for the sum of speeds:

> ic1 VFi(t) Yier Distance(TEi) (t)/(2n)
>ier 2fi(t)/(2n)
8f/(2n)
1/4

VAVANVANI

(b) In configuration Cy;1, we wish to find an upper bound on the number of corrupted

nodes.
Yier filt+1) = Yer fi(0) + Yier Int[t x vopi(t)] — Yier Intt X vyi(t)]
< 3f + t>ier vri(t) — 3 er(vs(t) — 1)
< 3f + t/4 - t/24 3 er 1
< 4f - t/4

Overall after t = 4 x 4 = 16f rounds, the computation has reached a configuration where no
processor is corrupted. O

We are now ready to prove the convergence property of our algorithm.

Theorem 3 Algorithm 3.1 converges within 18f rounds provided that the number of faults f is
lower than k < "T_l.

Proof: Let £ be an execution of Algorithm 3.1. After 2f rounds, £ reaches a configuration in
which at most 3f processors are corrupted and such that },c; vpi(t) < 1/4 (see Lemma 6). After
another 16 f rounds, £ reaches a 7 P-legitimate configuration (see Lemma 7). O

5 Conclusion

In this paper, we demonstrated the intrinsic interest of k-stabilizing algorithms over self-stabilizing
ones for particular settings where impossibility results hold in the self-stabilizing case due to sym-
metry reasons. In more details, we presented the first uniform deterministic k-stabilizing algorithm
for the token passing problem on unidirectional rings of any size. In addition to tolerating up to
k faults (where k < %), our algorithm is also k-time adaptive, since it recovers from transient
memory corruptions in O(f) time. As captured by [15], fast stabilization time often comes at the
expense of slower response time. In our case, when no faults occur in the system, the token speed
is simply divided by two, while we can tolerate up to "T_l faults at a time.

Throughout the paper, we proved that k-stabilization (resp. k-time adaptivity) is strictly
stronger than self-stabilization (resp. time adaptivity) in the sense that more problems can by
solved by k-stabilizing (resp. k-time adaptive) algorithms than by self-stabilizing (resp. time

15

adaptive) ones. There remains the orthogonal open question that is related to time-adaptivity:
does there exist a problem that admits a self-stabilizing (resp. k-stabilizing) solution but no time
adaptive (resp. k-time adaptive) one?

References

[1]

[2]

[3]

[4]

[5]

[6]

D. Angluin. Local and global properties in networks of processors. In Proceedings of the 12th
Symposium on theory of computing (STOC), pp. 82-93, 1980.

B. Awerbuch, B. Patt-Shamir, and G. Varghese. Self-stabilization by local checking and correction.
In Proc. of the 32nd IEEE Symp. on Foundation of Computer Science (FOCS’91), pp. 268-277, 1991.

B. Awerbuch, B. Patt-Shamir, G. Varghese, and S. Dolev. Self-stabilization by local checking and
global reset. In Proc. 8th International Workshop on Distributed Algorithms (WDAG’94), 1994.

Y. Afek and S. Dolev. Local stabilizer. In Proc. of the 5th Israel Symposium on Theory of Computing
and Systems, June 1997.

Y. Afek, S. Kutten, and M. Yung. Local Detection for Global Self-Stabilization Theoretical Computer
Science, No 186, pp. 199-229, 1997.

J. Beauquier, M. Gradinariu, C. Johnen. Memory space requierements for self-stabilizing leader
election protocols. In Proc. of the 18th Annual ACM Symp. on Principles of Distributed Computing
(PODC"99), pp. 199-208, May 1999.

J. Beauquier, C. Genolini, and S. Kutten. Optimal Reactive k-Stabilization : the case of Mutual Ex-
clusion. In Proc. of the 18th Annual ACM Symp. on Principles of Distributed Computing (PODC’99),
pp- 209-218, May 1999.

I. Chlamtac and S. Pinter. Distributed node organization algorithm for channel access in a multihop
dynamic radio network. IEEE Transactions on Computers, Vol. C-36, No 6, pp. 728-737, June 1987.

E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Communications of the ACM,
Vol. 17, No. 11, pp. 643-644, Nov. 1974.

S. Dolev. Self-stabilization. The MIT Press, 2000.

S. Dolev and T. Herman. Superstabilizing protocols for dynamic distributed systems. Chicago
Journal of Theoretical Computer Science, Vol. 3, No. 4, 1997. Also in Proc. of the Second Workshop
on Self-Stabilizing Systems (WS5795), pages 3.1-3.15, May 1995.

C. Genolini. Optimal k-stabilization: the Case of Synchronous Mutual Exclusion. In Proc. of the
International Conference Parallel and Distributed Computing and Systems (PDCS’00), M. Guizani
and X. Shen editors, pp. 371-376, Nov. 2000.

C. Genolini and Sébastien Tixeuil. A Lower Bound on k-stabilization in Asynchronous Systems. In
Proc. of 21st Symposium on Reliable Distributed Systems (SRDS’2002), Osaka, Japan, October 2002.

S. Gosh and Xee. Scalable Self-stabilization. In Proc. of the 4th Workshop on Self-stabilizing Systems
(WSS°99), pp. 18-24, Austin, Texas, Jun. 1999.

M. G. Gouda and M. Evangelist. Convergence/response tradeoffs in concurrent systems. In Proceed-
ings of the 2nd IEEE Symposium on Parallel and Distributed Processing, pp. 288-292, 1990.

16

[16]

A. Tsraeli and M. Jalfon. Token management schemes and random walks yield self-stabilizing mu-
tual exclusion. In Proc. of the 9th Annual ACM Symp. on Principles of Distributed Computing
(PODC"90), pages 119-129, 1990.

S. Katz and K. J. Perry. Self-stabilizing extensions for message-passing systems. In Distributed
Computing, Vol. 7, 1994.

S. Kutten and D. Peleg. Fault-local distributed mending. J. Algorithms 30(1), pp. 144-165, 1999.

S. Kutten and B. Patt-Shamir. Stabilizing Time-adaptive Protocols. Theoretical Computer Science
220(1):pp. 93-111, 1999.

S. Kutten and B. Patt-Shamir. Asynchronous Time-Adaptive Self Stabilization. a Brief An-
nouncement in the Proc. of the 17th Annual ACM Symp. on Principles of Distributed Computing
(PODC"98), 1998.

S. Ghosh, A. Gupta, T. Herman, and S. V. Pemamraju. Fault-containing self-stabilizing algo-
rithms. In Proc. of the 15th Annual ACM Symp. on Principles of Distributed Computing (PODC’96),
Philadelphia, Pennsylvania, pp. 45-54, USA, May 1996.

17

