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Abstract

A self-stabilizing algorithm, regardless of the initial sys-
tem state, converges in finite time to a set of states that sat-
isfy a legitimacy predicate without the need for explicit ex-
ception handler of backward recovery. The �-mutual exclu-
sion is a generalization of the fundamental problem of mu-
tual exclusion : the system has to guarantee the fair sharing
of a resource that can be used by � processors simultane-
ously.

We present a space efficient solution to the �-mutual ex-
clusion problem that performs on uniform unidirectional
ring networks and that is self-stabilizing. Our solution
improves the space complexity of previously known ap-
proaches by a factor of ������ � ������� �

�
� ����������,

while retaining none of their drawbacks in terms of sys-
tem hypothesis (we support unfair scheduler and ensure
strong correctness) or specification verification (we guar-
antee high level �-mutual exclusion). When � is fixed, the
space complexity at each node is constant in average, mak-
ing our approach suitable for scalable systems.

Extensive proofs can be found in [15].

1. Introduction

Self-stabilization. Robustness is one of the most impor-
tant requirements of modern distributed systems since var-
ious types of (transient) faults are likely to occur as these
systems are exposed to constant change of their environ-
ment. One of the most inclusive approaches to fault-
tolerance in distributed systems is self-stabilization [10, 21].
Introduced by Dijkstra [10], this technique guarantees that,
regardless of the initial state, the system will eventually con-
verge to the intended behavior.

The scheduling hypothesis is crucial to the self-
stabilization property of many distributed systems, because
it permits to model the relative speed of the processors in the
distributed system. In this paper, we distinguish between
two main schedulers : the �-bounded scheduler (between
any two actions of an enabled processor, every other pro-

cessor executes at most � actions) and the unfair scheduler
(between any two actions of an enabled processor, every
other processor may execute an infinite number of actions).

�-Mutual Exclusion. The mutual exclusion problem —
one of the most fundamental problems in distributed com-
puting — consists in achieving access serialization to a
common shared resource. A processor accessing this shared
resource is privileged(or holds a privilege). This prob-
lem was generalized by Fisher, Lynch, Burns, and Borodin
in [12] to the �-mutual exclusion problem. This extended
problem can be viewed in two distinct ways : (i) there is a
single shared resource that must not be used by more that
� users at the same time or (ii) there are � shared resources
and the system must achieve access serialization to each of
them. The �-mutual exclusion problem was studied later by
Shavit in [24]. Both [11] and [19] present algorithms for the
� mutual exclusion problem. In [2], a practical application
of �-mutual exclusion is presented. None of the aforemen-
tioned works is self-stabilizing.

More formally, a distributed system satisfies the �-mutual
exclusion specification if and only if it satisfies each of the
two following predicates : (1) �-safety : in any configura-
tion, there are exactly � (� � � � �, where � is the num-
ber of processors in the distributed system) privileges in the
system, (2) fairness : in any computation, any processor
is privileged infinitely often. This specification is referred
as low-level �-mutual exclusion in the literature, and will be
denoted by ����� in the following.

The fairness predicate can be generalized as �-fairness
(formally, in any computation, and for any � � 	�� �
, each
processor holds � privileges infinitely often). The specifi-
cation involving �-safety and �-fairness is referred as high-
level �-mutual exclusion, and will be denoted by �� ��� in
the following.

Related Work. Self-stabilizing solutions to the �-mutual
exclusion problem can be found in [13] (on unidirectional
rings), [1] (on complete networks), [25] (on chain and bidi-
rectional rings), [16] (on trees and bidirectional rings). In



particular, [13] is a generalization of Dijkstra’s first mutual
exclusion algorithm (see [10]). It should be noted that all
these solutions only satisfy the low-level �-mutual exclusion
specification (�����). In addition, [25] and [16] satisfy
a less restrictive form of �-liveness (in any configuration,
there are at most � privileged processors in the system).

It is well-known (see [3]) that there exists no determin-
istic algorithm which solves the mutual exclusion problem
in uniform networks. In order to break this symmetry the
solutions presented in [13, 16, 25] use a distinguished pro-
cessor which performs an algorithm that is different from
the other processors and [1] makes use of unique identifiers
at each processor in the system.

In the context of unidirectional rings, the space complex-
ity (in number of states per processor) of [13] is ��� � ���
(where � is the size of the ring). A natural way to use
this algorithm in uniform unidirectional rings is to com-
pose it with a leader election algorithm for the same topol-
ogy. [5] presented a space-optimal leader election algo-
rithm for uniform unidirectional ring networks. This algo-
rithm uses ����	����� states per processor (where � de-
notes the size of the ring network, and ��	��� denotes the
smallest non divisor of �) under a �-bounded scheduler and
����	����� states per processor under an unfair scheduler.
Then the composition of the two algorithms would result in
��� � �� � ��	����� and ��� � �� � ��	����� states per
processor, respectively.

In [9], randomization is used to break symmetry and a
uniform solution to the �-mutual exclusion problem is pre-
sented in unidirectional rings. Basically, this solution is by
executing simultaneously � instances of the space-optimal
mutual exclusion algorithm presented in [4]. A drawback
of this solution is that it performs correctly only under a
�-bounded scheduler. This solution also suffers from its
weak correctness property : there exists system computa-
tions (even though those computation have probability �)
such that at least one processor is never privileged.

Since [8] presents a uniform self-stabilizing mutual ex-
clusion that behaves correctly under an unfair scheduler
and that exhibits the strong correctness property, the same
method as [9] on [4] could be applied on [8] to obtain a uni-
form self-stabilizing �-mutual exclusion algorithms on uni-
directional rings that performs under the same hypothesis.

In these two cases, the space complexity of [9] is
����	����� states per processor (where � denotes the size
of the ring network, and ��	��� denotes the smallest non
divisor of �), and that of [9]�[8] is ��� � � ��	�������.

Our contribution. In this paper, we concentrate on solv-
ing �-mutual exclusion on uniform unidirectional rings in
a self-stabilizing way. We present two solutions that both
guarantee high level fairness, perform under �-bounded and
unfair scheduler respectively, satisfy weak and strong cor-

rectness respectively, and use ��� � 
 ��� ��� and ��� �

 ��� �� � ��	���� states per processor respectively, where

 ��� �� 
 ����	���� for � � �. Note that ��	��� is con-
stant in average and is ���������.

These results are summarized in the following table :
Algorithm Space Complexity
[13]+[5] (�-bounded) ��� � �� � ��������

[13]+[5] (unfair) ��� � �� � ��������

[9] (�-bounded) ����� �����

[9]+[8] (unfair) ���� � ����������
This paper (�-bounded) ��� � �������

This paper (unfair) ��� � ��������
Both for the �-bounded and unfair scheduler cases,

our solution improves the space complexity of previously
known approaches by a factor �� � ������ (in the case of
[13]+[5]) and by a factor �

�
� ��������� (in the case of [9]

or [9]+[8]). In addition, our unfair solution does not suf-
fer from any of the aforementioned drawbacks in uniform
self-stabilizing �-mutual exclusion algorithms.

Outline. The rest of the paper is organized as follows :
Section 2 describes the computation model that will be used
thereafter, Section 3 presents our algorithms and its correct-
ness proof for the case of a �-bounded scheduler, while Sec-
tion 4 handles the case of the unfair scheduler. Section 5
gives concluding remarks and hints at further developments.

2. Model

Distributed Systems. A distributed system is a collection
of individual computing devices that can communicate with
each other. We model a distributed system � 
 ��� 
� 
� as
a transition system where � is the set of system configura-
tions, 
 � � � � is the set of system transitions, and 
 is
the set of initial configurations. A probabilistic distributed
system is a distributed system where a probabilistic distri-
bution is defined over the system transitions.

We consider ring networks where the processors main-
tain two types of variables: local variables and field vari-
ables. The local variables of �� cannot be accessed by any
of its neighbors, whereas the field variables are part of the
shared register which is used to communicate to � �’s right
neighbor. A processor can write only into its own shared
register and can read only from the shared registers, owned
by its left neighbor or itself. The state of a processor is
defined by the values of its local and field variables. A pro-
cessor may change its state by executing its local algorithm
(defined below). A configuration of a distributed system is
an instance of the state of its processors.

The algorithm executed by each processor is described
by a finite set of guarded actions of the form �guard� �	
�statement�. Each guard of processor �� is a boolean ex-
pression involving ��’s variables and ��’s left neighbor’s



field variables. A processor �� is enabled in configuration
� if at least one of the guards of the program of � � is true
in �. Let � be a configuration and �� be the set of enabled
processors in �. We denote by 
� � ��� the set of con-
figurations that are reachable from � if every processor in
�� executes an action starting from �. A computation step
is a tuple ��� ��� ���, where �� � 
� � ���. Note that all
configurations� 
� � ��� are reached from � by executing
exactly one computation step. In a probabilistic distributed
system, every computation step is associated with a proba-
bilistic value (the sum of the probabilities of the computa-
tional steps determined by 
� � ��� is 1). A computation
of a distributed system is a maximal sequence of compu-
tation steps. A history is a finite prefix of a computation,
while a factor is a finite sequence of a computation.

Let � be a history or a factor, then ���������, �������
and �������� denote respectively the length of �, the last
configuration in �, and the first configuration in �. Let
� be a computation, �������� denotes its initial configu-
ration . Let � be a history, let � be a factor such that
�������� 
 �������, and let � be a computation such that
�������� 
 �������. Then 	��
 denotes a history contain-
ing the sequence of computation steps in � followed by the
sequence of computation steps in �, while ���� denotes a
computation containing the sequence of computation steps
in � followed by the sequence of steps in �.

Scheduler. A scheduler can be considered as an adver-
sary. Intuitively the “luck” (i.e., the probabilistic part) of
the algorithm and the scheduler play an infinite game. In
this game, in any configuration �, during a computation �,
the scheduler might use the history of the computation up to
configuration �, and then chooses a non-empty subset of the
enabled processors in � (according to some internal rules in
the scheduler) to execute their enabled action.

A choice function for a history � returns a subset of en-
abled processors �� in �������. A scheduler can be de-
fined by a collection of choice functions. A computation �

satisfies a choice function � if and only if for any history � �

of � such that � 
 ������ ��� ��� � � ��, ����� 
 �� .
A strategy �� is a tuple �� 
 ��� ��, where � is a configu-

ration of � and � is a choice function of a scheduler. A com-
putation � of � is called a ��-computation where �� 
 ��� ��
if and only if (i) �������� 
 � and (ii) if � satisfies the choice
function � . In other words, an ��-computation � is such that
every choice of an enabled processor (by the scheduler) is
the result of an application of the choice function of strategy
�� to the history (of �) at the time the choice was made.

Let �� be a strategy. An ��-cone �� corresponding to a
history � is the set of all possible ��-computations which
create the same history � (more details in [22]). The prob-
abilistic value of an ��-cone �� is the probabilistic value of
the history � (i.e., the product of the probability of every

computation step in �). An ��-cone ��� is called a sub-cone
of �� if and only if �� 
 	��
, where � is a computation
fragment.

In [6], each strategy is the base for a probabilistic space
in which any set of ��-computations has an associated prob-
abilistic value.

Probabilistic Self-Stabilizing Systems. A probabilistic
self-stabilizing system is a probabilistic distributed system
satisfying two important properties: probabilistic conver-
gence (the system converges to a configuration satisfying
a legitimacy predicate) and correctness (once the system
is in a configuration satisfying a legitimacy predicate, it
satisfies the system specification). The literature on self-
stabilization discusses two variants of the probabilistic self-
stabilizing systems: the systems with weak correctness—
the system correctness is only probabilistic, and the systems
with strong correctness—the system correctness is certain.

The problem with systems satisfying the weak correct-
ness is that there is always at least one infinite, incorrect
computation. Even though the theoretical probability to ob-
tain an incorrect computation is zero, this is a weakness of
the system for any actual applications.

Notation 1 Let � be a system, � be a scheduler, and
�� 
 ��� �� be a strategy such that � is a configuration of
� and � is a choice function of �. We use 
������ to
represent the set of ��-computations that reach a configura-
tion �� such that �� satisfies the predicate ���� (denoted
as �� � ����). The notation ���
������� is used to
express the probabilistic value associated with 
������.

Definition 1 (Closed Predicate) A predicate ���� de-
fined on the system configurations is closed if and only if
the following condition is true: ���� holds in configura-
tion � implies that ���� also hold in any configuration � �

reachable from �.

The weak self-stabilizing systems is defined below us-
ing a special predicate, the legitimacy predicate, defined on
configurations. A computation � of � satisfying a predicate
�� is denoted as � � �� .

Definition 2 (Weak Probabilistic Stabilization) A system
� is weak self-stabilizing under � for a specification �� if
and only if there exists a closed predicate � on configura-
tions such that in any strategy �� 
 ��� �� of � under � the
following two conditions are satisfied:
(i) The probability of the set of ��-computations, starting
from �, reaching a configuration � �, such that �� satisfies �

(the legitimacy predicate), is � (probabilistic convergence);
(Formally, ���� � ��
���� 
 �) and
(ii) The probability of the set of computations, starting from
a configuration �� such that �� satisfies �, and satisfying



�� , is � (weak correctness). (Formally, ���� � ��
� � �� �
� 
 �������, �������� � � and ��� � ���� 
 �.)

The Weak probabilistic stabilizing systems only guaran-
tee the weak correctness (once the system is in a configu-
ration satisfying the legitimacy predicate, the system satis-
fies the specification with probability �). A desirable prop-
erty for the probabilistic distributed self-stabilizing systems
would be a strong correctness. This would ensure that start-
ing from a configuration satisfying the legitimacy predicate,
the system unconditionally satisfies its specification. Such
systems are called strong stabilizing systems.

Definition 3 (Strong Probabilistic Stabilization) A sys-
tem � is strong self-stabilizing under � for a specification
�� if and only if there exists a closed predicate � on
configurations such that in any strategy �� 
 ��� �� of �

under �, the two following conditions hold:
(i) The probabilistic convergence property is satisfied;
(Formally, ���� � ��
���� 
 �)
(ii) All computations, starting from a configuration � �

such that �� satisfies �, satisfy �� (strong correctness).
(Formally, ������ � �� � � 
 ������� such that �������� � �

then ��� � �� ).

Note that Definition 3 is stronger than Definition 2 (that
was used in [17, 4])

Convergence of Probabilistic Stabilizing Systems
Building on previous works on probabilistic automata (see
[20, 22, 23, 26]), [6] presented a framework for proving
self-stabilization of probabilistic distributed systems. In the
following we recall the main results of [6], which are based
on a key property of the system called local convergence
and denoted by ��. This �� property is a progress
statement that has positive probability as those presented in
[7] (for the case of deterministic systems) and [22] (for the
case of probabilistic systems).

An ��-cone �� satisfies the �� property, denoted as
������� ���� Æ� ��, where ��� and ��� are two predi-
cates defined on configurations and ��� is a closed predi-
cate, if the following two conditions hold: (i) ������� satis-
fies ���; and (ii) The probability of all ��-computations in
�� reaching a configuration ��, such that �� satisfies ���,
in at most � computation steps, is at least Æ. Informally, the
�� property characterizes a probabilistic self-stabilizing
system in the following way: The system reaches a config-
uration which satisfies a particular predicate, in a bounded
number of computation steps, with a positive probability.
We now formally capture the notion of �� below:

Definition 4 (Local Convergence) Let �� be a strategy,
��� and ��� be two predicates on configurations, where
��� is a closed predicate. Let �� be a ��-cone with

������� � ��� and let � denote the set of sub-
cones ��� of the cone �� such that the following is true
for every sub-cone ���: �������� � ��� and �� �

�, ���������� � ��������� � � . The cone �� sat-
isfies �� ����� ���� Æ��� if and only if �Æ � �,
���

�
�����

���� � Æ.

Now, if in strategy ��, there exist Æ�� � � and ��� � �
such that any ��-cone, �� with ������� � ���, satisfies
������� ���� Æ��� ����, then the main theorem of the
framework presented in [6] states that the probability of
the set of ��-computations reaching configurations satisfy-
ing ��� � ��� is 1. Formally:

Theorem 1 ([6]) Let �� be a strategy. Let ��� and
��� be closed predicates on configurations such that
���������� 
 �. If �Æ�� � � and ���� � � such
that any ��-cone �� with ������� � ���, satisfies the
�� ����� ���� Æ��� ���� property, then ���
����� 
 �,
where ���� 
 ��� � ���.

Remark 1 If any strategy of a distributed system verifies
Theorem 1 with ��� being the true predicate (that is triv-
ially verified in any system configuration) and ��� being
the legitimacy predicate then the system satisfies the proba-
bilistic convergence as defined in Definition 3.

Note 1 Note that the previous result can easily be extended
to histories. Details on this extension can be found in [14].

3. Weak self-stabilizing l-mutual exclusion un-
der k-bounded scheduler

In the following, we present a self-stabilizing algorithm
that satisfy specification �� ��� . In Algorithm 3.1, we
provide a solution that performs under a �-bounded sched-
uler, and ensures weak correctness.

Informal Description of Algorithm 3.1 Algorithm 3.1
performs on �-sized unidirectional ring networks. It uses
a generalization of the token management system presented
in [18, 4], and ensures the fair circulation of exactly � (� � �)
tokens (or privileges) among system processors, provided
that the system scheduler is �-bounded: between any two
actions of an enabled processor, any other processor exe-
cutes at most � actions. Randomization is used for two pur-
poses: (i) to break the system symmetry and (ii) to ensure
the high level fairness property.

In more details, a processor holding � � � tokens (i.e. a
multi-privileged processor), randomly chooses the amount
of tokens to be released but one. If the result of coin toss-
ing is �, then all tokens remain at the processor. Similarly,
a processor holding a single token (i.e. a single-privileged
processor) tosses a coin to decide between blocking and re-
leasing its token.



Algorithm 3.1 Self-stabilizing �-Mutual exclusion under a
�-bounded scheduler (for �)
Field: �� � ��� �� � ��� ��� �� (the privilege)

Variables: ����� holds any value in �0, l-1�.

Functions:

��	�	� � ��� � ����� ��	 �� � � ��� ���


� 	�����
�
��	� �

����
���

� , if ��	�	� � �

� , if ��	�	� �� �

and ��	�	� ��	 � � �
��	�	� ��	 � , if ��	�	� ��	 � �� �

Macros:

���� 
� 	�����
�
�(	)� �� 
� �������������� ��	 ���� ��� ���

���� 	�����
�
(	)� �� 
� ����� � �� ��	 �� � � ��� ���

���� 	�����
�
��	� � ����� 
� ��������� � � � �
� ���
���	����

Actions:

��:: 
� 	�����
�
��	� � � ��

���� 	�����
�
��	�� if (����� �� �) then ���� 
� 	�����
�
�(	);

��:: 
� 	�����
�
��	� � � ��

���� 	�����
�
��	�� if (����� = 1) then ���� 	�����
�
(	);

Detailed Description of Algorithm 3.1 Every processor
executing Algorithm 3.1 maintains a integer field variable.
As stated in Section 2, this field variable can be read and
wrote by its owner, and read by the right neighbor processor
of its owner.

The difference between the field variable of a processor
and the field variable of its left neighbor is called a gap. We
assume that these field variables are bounded and that all
operations on them are made modulo � � 
 ��� ��, with


 ��� �� 
 ���
���������������

�
����� (1)

where 
���� is the smallest non divisor of � that also divides
��� � � ��. Note that when � is odd, 
 ��� �� 
 �.

Depending on �, 
 ��� �� and its gap value, a processor
computes its number of privileges through a local function:
� ���!������. The result of this function indicates which
rule should be executed by the processor: (1) A multi-
privileged processor may execute rule �� and randomly
chooses the number of privileges to be hold (and implic-
itly the number of privileges that will be passed to its right
neighbor). This multi-privileged processor has to keep at
least one privilege. (2) A single-privileged processor may
execute rule �� and randomly choose to hold or pass its
privilege.

3.1. Analysis of Algorithm 3.1

In this section we prove that Algorithm 3.1 is self-
stabilizing for the �� ��� specification. The �-liveness
property is guaranteed by the following properties:(1) there
exists no deadlock configuration (i.e. a configuration where
no rule is enabled at any processor), (2) the system holds at

least � tokens at any time, (3) in any computation, the total
number of privileges never increases.

Lemma 1 In any configuration of Algorithm 3.1, the sum
of gaps is 0 and there exists no configuration where all gaps
equal �.

Proof: Let � be an arbitrary configuration of Algorithm 3.1.
Let !�� � � � � !	 be the field variables of the processors in �.
The sum of the gaps is determined by those variables: �!��
!	� � �!� � !�� � �!� � !�� � � � �� �!	 � !	��� 
 �.

Let � be an arbitrary computation of Algorithm 3.1. Sup-
pose that there is a configuration in � where all gaps equal
�. The number of gaps is �, hence by Lemma 1 we obtain:
� 
 � � ������ � 
 ��� ���. This implies that 
 ��� �� di-
vides �, which is in contradiction with definition of 
 ��� ��
(see equation (1)). �

As an immediate corollary, there exists no configuration
where the number of privileges is �, and thus there exists no
deadlock configuration.

Lemma 2 There exists a configuration of Algorithm 3.1
with exactly � privileges.

Proof: There exists a configuration � such that ����� gaps
equal � and one gap equals 	 (i.e. the number of privileges
is deduced from 	). Summing up the gaps in configuration �

leads to: ��������	 
 �� ��� ��
 ��� ���. The solutions
of the previous equation are 	� 
 �� �� � � 
�� � � � �� � 
��.
By � ���!������ definition, in any case the corresponding
number of privileges is �. �

Lemma 3 In any computation of Algorithm 3.1, there exists
no configuration where there are less than � privileges.

Proof: Let � be an arbitrary computation of Algorithm 3.1.
Let us assume that there exists a configuration � in � where
the sum of the privileges is less than �. If �� denotes the
number of processors without privileges, there are � � ��

processors holding privileges, yet the total number of priv-
ileges is less than �. Since �� processors have no privilege,
there are �� gaps equal to �. By Lemma 1, we obtain:

�� � � � � 
 ������ � 
 ��� ��� (2)

where � is the sum of the gaps at processors holding at least
one privilege. By our assumption, the number of privileges
is lower than �, hence � can be written as:

� 
 �� � � � �� (3)

where �� " � and �� �
 �. Using (3), equation (2) becomes:

��� � ���� � � �� 
 ������ � 
 ��� ��� (4)

Equation (4) implies that � divides ��, which is impossible
because �� " � and �� �
 �. By contradiction, configuration
� with less than � privileges is impossible. �



Lemma 4 In any computation of Algorithm 3.1, the num-
ber of privileges never increases.

Corollary 1 In any computation of Algorithm 3.1, any con-
figuration reachable from a configuration with exactly �

privileges has exactly � privileges.

Definition 5 A legitimate configuration is a configuration
with exactly � privileges.

Definition 6 Let � be a computation of Algorithm 3.1. A
round in � is the smallest factor of � in which every system
processor held at least one privilege.

3.1.1 Proof of Correctness

In the following, we prove that Algorithm 3.1 satisfies spec-
ification �� ��� with probability �. In more details, we
show that for any strategy, the set of computations reaching
a legitimate configuration and satisfying �� ��� has prob-
ability 1. From previous definitions, it is sufficient to prove
that for any strategy and any cone of computations ��, such
that ������� is a legitimate configuration, �� has a sub-cone
���� (where �� is a round) of positive probability.

Lemma 5 Let �� be an arbitrary strategy of Algorithm 3.1
under a �-bounded scheduler. Let �� be a cone such that
������� is a legitimate configuration. There exists a positive
probability # and a positive number � such that �� has a
sub-cone ���� of probability at least #, with �� a round and
���������� " � .

Corollary 2 Any strategy of Algorithm 3.1 under a �-
bounded scheduler satisfies �� ��� with probability 1.

3.1.2 Proof of Convergence

In order to prove the convergence of Algorithm 3.1 we
prove that in any strategy of the algorithm under a �-
bounded scheduler the local convergence property (see Def-
inition 4) hold in any cone ��, where ������� is a non-
legitimate configuration (it contains more than � privileges).

Lemma 6 Let �� be a strategy of Algorithm 3.1 under a �-
bounded scheduler. Let �� be a cone such that ������� is not
a legitimate configuration. There exists a positive probabil-
ity # and a positive number � such that �� has a sub-cone
���� of probability #, and such that ������ �� is a legitimate
configuration and ���������� " � .

Proof: Let �� be a cone such that � 
 ������� is not a legit-
imate configuration. Let ����������
 be the privileged pro-
cessors (ordered clockwise), and let �� ���������
 be their
respective number of privileges. We assume that 	 � de-
notes the distance between the �� and ����. Since � is non-
legitimate, the total number of privileges in � is � � � �.

From Lemma 4, � � never increases. In the following we
prove that � � decreases with positive probability until it
reaches �, by showing that there exist a positive probabil-
ity that a processor �
 eventually holds all privileges. In
such a configuration, by Lemmas 2 and 3, �
 holds exactly
� privileges.

Assume that each time �� is chosen by the scheduler,
it releases at most one token. Assume also that each time
a processor different from �� executes its action, it does
not release any privilege while �� still holds its privilege.
Then, there is a cone ��� of positive probability such that in
��������, all privileges held by �� in � were transfered to ��.
By using the same reasoning, there exists a cone �����

of
positive probability such that in ������
���, all privileges
are blocked at �
, and � �
 
 �. Let us denote by ���� the
cone �����

; this cone has probability:

� 	
��
���

�
�� ���

��� ��	����	��

	���
��� ������� ��

�����



�

��	�

���

��
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�
������� 

��
���

�
�
�
� ��
���

��	����	��

�

� � ��

�

 ��

�

Corollary 3 In any strategy the probability of the set of
computations reaching legitimate configuration is 1.

Proof: From Theorem 1 and Lemma 6 the corollary is
proven. Note that the hypothesis of Theorem 1 holds since
our bound was shown for the worst possible scenario. �

Theorem 2 Algorithm 3.1 self-stabilizes to �� ��� under
a �-bounded scheduler.

3.2. Space Complexity

The two following lemmas prove that ��	��� is
��������� and is constant in average.

Lemma 7 ��	��� 
 ���������.

Proof: When � is an odd number, ��	��� 
 �. Let us
prove that when � 
 �� ��, ��	��� 
 ���������. We use
the Stirling formula which gives an approximation for ��:

�� 

�
�� $ � �

�
�

�

�� �
� �

�

��� �
��

�
�

��

��
(5)

By Equation 5, we obtain � � � � �� when � � � � �.
This implies ��	��� 
 ���������. �

Lemma 8 ��	��� is constant in average.

We now prove that for any � � �, 
 ��� �� 
 ����	����,
in the worst case. We then prove that 
 ��� �� is constant in
average.



Lemma 9 Assume � � �. There exists �, (� � � " �) such
that for any � � �, 
 ��� �� � ���	��� � ��.

Proof: We study the values of 
 ��� �� for � � �. For any
odd number �, we have 
 ��� �� 
 � and ��	��� 
 �, hence
in this case, and for all � " �, we have 
 ��� �� � ��	�����.

We now study the case when � 
 � � ��, which implies
��	��� 
 ����. We prove that there exists � � � such that

 ��� �� 
 � � � and � does not depend on �.

Number � can be written as � 
 ����
��, where � �

�� � � � � ��. We describe using similar formalism numbers
� � �� �, with � � 
�� � � � � �� � 
��, which are used in the
calculus of 
 ��� ��:

�� ��� 
 ����
��� ��� �� � 
�� � � � �� � 
��� (6)

Suppose that there exists no � " � such that 
 ��� �� 
 ���.
This means that for any � " � and for any � � 
�� � � � � �� �

��, � � � is not a divisor of �� � � � ��. Formally, this
assertion can be written as:

����
���� 
 ������%���� ��� � 
�� � � � � ��� (7)

when � 
 � and as:

�� ��
 � �� & 
 �� � ��� %� � ��
�& � 
�� � � � � � � ��� �� � 
�� � � � � ��� (8)

when � � � � �. We now substract (7) from (8) and obtain:

& � � 
 �� � ��� �%� � %�� � ��� � ���
�& � 
�� � � � � � � ��� �� � 
�� � � � � ��� (9)

Two cases are to be considered to compute the value of
�: (a.) %� � %� 
 � and then Equation (9) becomes:
& � � 
 �� � �� �& � 
�� � � � � � � ��� �� � 
�� � � � � ���.
(b.) %� � %� �
 � and then Equation (9) becomes: � 

�������
��
��

�����
� � 
 �& ���� ��� � ���� � (note that by

definition of %� and %�, if %� � %� �
 �, then %� � %� 
 �)
In order to prove that our assumption (there exists no

� " � such that 
 ��� �� 
 � � �) is false, it is sufficient to
show that in case (a.) there exists & such that for any �, the
equation is false; and that in case (b.), there exists & and �

such that the equation is false.
In the first case, it is sufficient to take & 
 � � �. In the

second case, we assume � has its minimal hypothesis value,
i.e. � 
 �. Exhaustive calculus proves that for any � � �,
there exists � " � and & � � � � such that Equation (9) is
false. By minimizing terms in the equation, we obtain � as
a minimal value of �. �

Lemma 10 Assume � � �. 
 ��� �� 
 ���������.

Lemma 11 Assume � � �. 
 ��� �� is constant in average.

Lemma 12 Each processor executing Algorithm 3.1 re-
quires ��� � ������� states, where � is the size of the ring.
On average the number of states required by each processor
is ����.

Proof: Each processor � maintains one field variable !�,
that ranges from � to ��
 ��� ����. Since its local variable
���	� that ranges from � to ��� is used for clarity only and
is not conserved between any two rule executions, we do
not consider it for space complexity. By Lemma 10, overall
each processor needs ��� � ������� states.

From Lemma 8, 
 ��� �� is constant on average, and each
processor variable uses ��
 ��� �� states, hence the number
of states required by each processor is ����. �

4. Strong self-stabilizing l-Mutual exclusion
under unfair scheduler

In this section, we overview how to transform Algo-
rithm 3.1 into a strong self-stabilizing algorithms that copes
with unfair scheduling. The method is a variation of that
presented in [8] that improves memory overhead.

Overview The transformed algorithm consists in two lay-
ers: (i) the �-privileges layer has similar behavior as Algo-
rithm 3.1 but guarantee strong correctness, and (ii) the fair
tokens layer, which permits to cope with unfair scheduling.

The �-privileges layer is obtained from Algorithm 3.1 as
follows: each privilege is added a speed that indicates how
many processors it should traverse before being stopped.
Each processor on the path of a non-zero speed privilege
decreases its speed by one. Eventually the privilege speed
reaches �, and the currently holding processor sets a new
randomly choosen speed for the privilege.

The fair tokens layer is described in [6] and guarantees
that even when the system is running under an unfair sched-
uler, every processor executes infinitely many actions, and
that between any two actions of a given processor any other
processor executes a bounded number of its own actions.
As such, the fair tokens layer transforms the unfair sched-
uler into a �-bounded scheduler.

Then, a processor is privileged (in the sense of the �-
mutual exclusion algorithm) if it holds both a privilege
(from the �-privileges layer) and a fair token (from the fair
tokens layer).

The final protocol is obtained by the combination of the
two layers using a special technique of composition — the
cross-over composition — defined in [6]. Detailed explana-
tions and extensive proofs of the resulting algorithm can be
found in [15].

Memory requirements The fair tokens layer of [6] re-
quires ��	���— smallest non divisor of � — states. This



bound was proven optimal in [4] for unidirectionnal rings.
The �-privileges layer requires only two different speeds to
guarantee strong correctness, so it doubles the number of
states at each processor. Overall, the memory requirement
for the strong stabilizing protocol under unfair scheduler is
��� � ��������.

5. Concluding Remarks

We presented two probabilistic self-stabilizing algo-
rithms for �-mutual exclusion in unidirectional rings of uni-
form processors. While the stabilization time of both al-
gorithms may be quite long, they do have nice properties
with concern to scheduling assumtions and space require-
ments. Algorithm 3.1 supports a �-bounded scheduler (be-
tween any two actions of a processor, every other proces-
sor executes at most � actions), guarantees weak correct-
ness (the probability of a processor getting at least one
privilege once the system is stabilized is �) and requires
��� � ������� states per processors. In Section 4 is pre-
sented a transformation of Algorithm 3.1 that ensures strong
stabilization in spite of unfair scheduling. Overall, the
space improvement over previously known approaches is a
������ � ������� �

�
� ���������� factor in the worst case.

When � is considered constant, then the average number of
states (over all possible ring sizes) is also constant for the
two algorithms. There remains the open question of state
optimality for self-stabilizing uniform �-mutual exclusion
algorithms.
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