
A Self-Stabilizing Link-Coloring Protocol
Resilient to Unbounded Byzantine Faults in

Arbitrary Networks

Toshimitsu Masuzawa and Sébastien Tixeuil

1 Osaka University, Japan, email: masuzawa@ist.osaka-u.ac.jp
2 LRI-CNRS UMR 8623 & INRIA Grand Large, France, email: tixeuil@lri.fr

Abstract Self-stabilizing protocols can tolerate any type and any number of
transient faults. However, in general, self-stabilizing protocols provide no guar-
antee about their behavior against permanent faults. This paper proposes a
self-stabilizing link-coloring protocol resilient to (permanent) Byzantine faults in
arbitrary networks. The protocol assumes the central daemon, and uses 2∆− 1
colors where ∆ is the maximum degree in the network. This protocol guarantees
that any link (u, v) between non faulty processes u and v is assigned a color
within 2∆ + 2 rounds and its color remains unchanged thereafter. Our proto-
col is Byzantine insensitive in the sense that the subsystem of correct processes
remains operating properly in spite of unbounded Byzantine faults.

Keywords distributed protocol, self-stabilization, link-coloring, Byzantine fault,
fault tolerance, fault containment

1 Introduction

Self-stabilization [4] is one of the most effective and promising paradigms for
fault-tolerant distributed computing [5]. A self-stabilizing protocol is guaran-
teed to achieve its desired behavior eventually regardless of the initial network
configuration (i.e., global state). This implies that a self-stabilizing protocol is
resilient to any number and any type of transient faults since it converges to its
desired behavior from any configuration resulting from transient faults. However
the convergence to the desired behavior is guaranteed only under the assumption
that no further fault occurs during convergence.

The problem of vertex or link coloring has important applications related to
resource allocation in distributed systems (e.g. frequency or time slot allocation
in wireless networks), and has been largely studied in the self-stabilizing area.
Self-stabilizing algorithms for distance one vertex coloring have been studied
in [7, 10, 11, 13, 18–20], and for distance two vertex coloring in [9, 12]. To our
knowledge, [17] is the only known self-stabilizing link-coloring algorithm, and is
further discussed thereafter.

There exists several researches on self-stabilizing protocols that are also re-
silient to permanent faults [1–3, 8, 14–16, 21]. Most of those consider only crash

faults, and guarantee that each non faulty process achieves its intended behav-
ior regardless of the initial network configuration. Nesterenko et al. [16] pro-
vide solutions that are self-stabilizing and tolerate unbounded Byzantine faults.
The main difficulty in this setting is caused by arbitrary and unbounded state
changes of the Byzantine process: processes around the Byzantine processes may
change their states in response to the state changes of the Byzantine processes,
and processes next to the processes changing their states may also change their
states. This implies that the influence of the Byzantine processes could expand to
the whole system, preventing every process from conforming to its specification
forever. In [16], the protocols manage to contain the influence of Byzantine pro-
cesses to only processes near them, the other processes begin able to eventually
achieve correct behavior. The complexity measure they introduce is the contain-
ment radius, which is the maximum distance between a Byzantine process and
a processor affected by the Byzantine process. They also propose self-stabilizing
protocols resilient to Byzantine faults for the vertex coloring problem and the
dining philosophers problem. The containment radius is one for the vertex col-
oring problem and two for the dining philosophers problem. In [17], the authors
consider a self-stabilizing link-coloring protocol resilient to Byzantine faults in
oriented tree networks, achieving a containment radius of two. Link-coloring of
the distributed system is an assignment of colors to the communication links such
that no two communication links with the same color share a process in common.
Link-coloring has many applications in distributed systems, e.g., scheduling data
transfer and assigning frequency band in wireless networks.

When the network is uniform (all nodes execute the same code) and anony-
mous (nodes have no possibility to distinguish from one another), a self-stabili-
zing coloring algorithm cannot make the assumption that the color of a link is
determined by a single node. Indeed, since nodes are uniform, it could be that
two nodes have decided (differently) on the color of the link. As a result, the
color of a link must come from some kind of coordination between at least two
nodes. In this paper, we make the realistic assumption that a link color is decided
only by its adjacent nodes. In this context, it follows that, from a Byzantine con-
tainment point of view, link coloring is harder than vertex coloring and dining
philosophers for the following reason: while the two latter problems require only
one process to take an action to correct a single fault (and the aforementioned
papers make that assumption), link colors result from an agreement of two neigh-
boring nodes, and thus can result in the update of two nodes to correct a single
failure.

In this paper, we present a self-stabilizing link-coloring protocol resilient to
unbounded Byzantine faults. Unlike the protocol of [17], we consider arbitrary
anonymous networks, where no pre-existing hierarchy is available. As it was
proved necessary in [17] to achieve constant containment radius, we assume the
central daemon, i.e. exactly one process can execute an action at a given time. We
use 2∆−1 colors, where ∆ is the maximum degree in the network. Our protocol
guarantees that any link (u, v) between non faulty processes u and v is assigned
a color within 2∆ + 2 rounds and its color remains unchanged thereafter. As far

as fault containment is considered, our protocol is optimal, since the influence of
Byzantine processors is limited to themselves. Thus, our protocol also trivially
achieves Byzantine-fault containment with containment radius of one.

2 Preliminaries

2.1 Distributed System

A distributed system S = (P, L) consists of a set P = {v1, v2, . . . , vn} of processes
and a set L of bidirectional communication links (simply called links). A link is
an unordered pair of distinct processes. A distributed system S can be regarded
as a graph whose vertex set is P and whose link set is L, so we use some graph
terminology to describe a distributed system S.

A subsystem S′ = (P ′, L′) of a distributed system S = (P,L) is such that
P ′ ⊆ P and L′ = {(u, v) ∈ L|u ∈ P ′, v ∈ P ′}.

Processes u and v are called neighbors if (u, v) ∈ L. The set of neighbors of
a process v is denoted by Nv, and its cardinality (the degree of v) is denoted
by ∆v(= |Nv|). The degree ∆ of a distributed system S = (P,L) is defined as
∆ = max{∆v | v ∈ P}. We do not assume existence of a unique identifier of
each process. Instead we assume each process can distinguish its neighbors from
each other by locally arranging them in some arbitrary order: the k-th neighbor
of a process v is denoted by Nv(k) (1 ≤ k ≤ ∆v).

Each process is modeled by a state machine that can communicate with its
neighbors through link registers. For each pair of neighboring processes u and
v, there are two link registers ru,v and rv,u. Message transmission from u to v is
realized as follows: u writes a message to link register ru,v and then v reads it
from ru,v. The link register ru,v is called an output register of u and is called an
input register of v. The set of all output (resp. input) registers of u is denoted
by Outu (resp. Inu), i.e., Outu = {ru,v | v ∈ Nu} and Inu = {rv,u |v ∈ Nu}.

The variables that are maintained by processes denote their states. Similarly,
the values of the variables stored in each register denote the state of these regis-
ters. A process may take actions during the execution of the system. An action
is simply a function that is executed in an atomic manner by the process.

A global state of a distributed system is called a configuration and is specified
by a product of states of all processes and all link registers. We define C to be the
set of all possible configurations of a distributed system S. For each configuration
ρ ∈ C, ρ|u and ρ|r denote the process state of u and the state of link register
r in configuration ρ respectively. For a process u and two configurations ρ and
ρ′, we denote ρ

u7→ ρ′ when ρ changes to ρ′ by executing an action of u. Notice
that ρ and ρ′ can be different only in the states of u and the states of output
registers of u.

A schedule of a distributed system is an infinite sequence of processes. Let
Q = u1, u2, . . . be a schedule. An infinite sequence of configurations e = ρ0, ρ1, . . .
is called an execution from an initial configuration ρ0 by a schedule Q, if e satisfies

ρi
ui+1

7→ ρi+1 for each i (i ≥ 0). In this paper, process action are executed atomi-
cally, and we also assume that a locally central daemon schedules the actions of

our processes, i.e., no two neighboring processes may execute their actions at the
same time. In the literature, the central daemon is mostly used in conjunction
with a shared memory model [5], where a process is able to read the whole state
of its neighboring processes. Our scheme uses shared registers instead, in order
to narrow the communication capabilities to what is actually needed to solve the
problem.

The set of all possible executions from an initial configuration ρ0 ∈ C is
denoted by Eρ0 . The set of all possible executions is denoted by E, that is,
E =

⋃
ρ∈C Eρ. We consider asynchronous distributed systems where we can

make no assumption on schedules except that any schedule is weakly fair : every
process appears in the schedule infinitely often.

In this paper, we consider (permanent) Byzantine faults: a Byzantine process
(i.e., a Byzantine-faulty process) can arbitrarily behave independently from its
actions. If v is a Byzantine process, v can repeatedly change its variables and its
output registers arbitrarily.

Let BF = {f1, f2, . . . , fc} be the set of Byzantine processes. We call a process
v (6∈ BF) a correct process. In distributed systems with Byzantine processes,
execution by a schedule Q = u1, u2, . . . is an infinite sequence of configurations
e = ρ0, ρ1, . . . satisfying the following conditions.

– When ui+1 is a correct process, ρi
ui+1

7→ ρi+1 holds (possibly ρi = ρi+1).
– When ui+1 is a Byzantine process, ρi+1|ui+1 and ρi+1|r (r ∈ Outui+1) can

be arbitrary states. For any process v other than ui+1, ρi|v = ρi+1|v and
ρi|r = ρi+1|r (r ∈ Outv) hold.

In asynchronous distributed systems, time is usually measured by asyn-
chronous rounds (simply called rounds). Let e = ρ0, ρ1, . . . be an execution from
configuration ρ0 by a schedule Q = u1, u2, The first round of e is defined to
be the minimum prefix of e, e′ = ρ0, ρ1, . . . , ρk, such that {ui | 1 ≤ i ≤ k} = P .
Round t (t ≥ 2) is defined recursively, by applying the above definition of the
first round to e′′ = ρk, ρk+1, Intuitively, every process has a chance to update
its state in every round.

2.2 Self-Stabilizing Protocol Resilient to Byzantine Faults

The link coloring problem considered in this paper is a so-called static problem,
i.e., once the system reaches a desired configuration, the configuration remains
unchanged forever. For example, the spanning-tree construction problem is a
static problem, while the mutual exclusion problem is not [5]. Some static prob-
lems can be defined by a specification predicate, spec(v), for each process v, which
specifies the condition that v should satisfy at the desired configuration. A spec-
ification predicate spec(v) is a boolean expression consisting of the variables of
Pv ⊆ P and link registers Rv ⊆ R, where R is the set of all link registers.

A self-stabilizing protocol is a protocol that guarantees each process v satis-
fies spec(v) eventually regardless of the initial configuration. By this property,
a self-stabilizing protocol can tolerate any number and any type of transient

faults. However, since we consider permanent Byzantine faults, faulty processes
may not satisfy spec(v). In addition, non faulty processes near the faulty pro-
cesses can be influenced by the faulty processes and may be unable to satisfy
spec(v). Nesterenko and Arora [16] define a strictly stabilizing protocol as a self-
stabilizing protocol resilient to Byzantine faults. Informally, the protocol requires
each process v more than ` away from any Byzantine process to satisfy spec(v)
eventually, where ` is a constant called stabilization radius. A strictly stabilizing
protocol is defined as follows.

Definition 1. A configuration ρ0 is a BF-stable configuration with stabilizing
radius ` if and only if, for any execution e = ρ0, ρ1, . . . and any process v, the
following condition holds:

If the distance from v to any Byzantine process is more than `, then for
any i (i ≥ 0) (i) v satisfies spec(v) in ρi, (ii) ρi|v = ρi+1|v holds, and
(iii) ρi|r = ρi+1|r (r ∈ Outv) holds.

Definition 1 states that, once the system reaches a stable configuration, a
process v more than ` away from any Byzantine process satisfies spec(v) and
never changes the states of v and r (r ∈ Outv) afterwards.

Definition 2 ([16]). A protocol A is a strictly stabilizing protocol with stabi-
lizing radius ` if and only if, for any execution e = ρ0, ρ1, . . . of A starting from
any configuration ρ0, there exists ρi that is a BF-stable configuration with radius
`. We say that the stabilizing time of A is k for the minimum k such that the
last configuration of the k-th round is a BF-stable configuration in any execution
of A.

Definition 3. A protocol A is Byzantine insensitive if and only if every process
eventually satisfies its specification in S′ = (P ′, L′), the subsystem of all correct
processes.

Notice that if a protocol is Byzantine insensitive, it is also strictly stabilizing
with stabilizing radius of 1, but the converse is not necessarily true. So, the
former property is strictly stronger than the latter.

2.3 Link-Coloring Problem

The link-coloring problem consists in assigning a color to every link so that no
two links with the same color are adjacent to the same processor. In the following,
let CSET be a given set of colors, and let Color(u, v) ∈ CSET be the color of
link (u, v).

Definition 4. In the link-coloring problem, the specification predicate spec(v)
for a process v is given as follows:

∀x, y ∈ Nv : x 6= y =⇒ Color(v, x) 6= Color(v, y)

In the following, we denote a link-coloring protocol with b colors as a b-link-
coloring protocol.

3 Link-Coloring Protocol

3.1 Link-Coloring Protocol on arbitrary networks

Our protocol is presented as Algorithms 3.1 and 3.2. It is informally described
as follows: each process maintains a list of colors assigned to its incident links
and periodically exchanges the list with each neighboring process. From the list
received from its neighbor v, a processor u can propose a color for the link (u, v).
This proposed color must not appear in the set of incident colors of u or v. The
system is scheduled by the central daemon, so no two neighboring processes can
propose a color at the same time. Since the set of colors is of size 2∆− 1, u can
choose a color that is not used at u or v. If both u and v are correct, once they
settle on a color c for link (u, v), this color is never changed.

In case of a Byzantine process, it may happen however, that a Byzantine
process keeps proposing colors conflicting with other neighbors proposals. If the
color proposed by the Byzantine process conflict with a color on which two
neighbors u and v have settled on, the proposition is ignored. The remaining
case is when a node u has two neighbors v and w (where u and v are correct
processes and w is Byzantine), and has not settled on any color with either v or
w. The Byzantine process w may continuously proposed colors that conflict with
v to u, and u could always chose the color proposed by w. To ensure that this
behavior may not occur infinitely often, we use a priority list so that neighbors of
a particular node u get round robin priority when proposing conflicting colors.
Then, once u and v (the two correct processes) settle on a color for the link
(u, v), the following proposals from w (the Byzantine process) are ignored by u.

3.2 Correctness Proof

Let u and v be neighboring processes, and let v be the k-th neighbor of u. We
say that register ru,v is consistent (with the state of u) if PCu,v = outColu(k)
and USETu,v = {outColu(m) | 1 ≤ m ≤ ∆u,m 6= k} hold.

Lemma 1. Once a correct process executes an action, its output registers become
consistent and remain so thereafter.

Proof. By the code of the algorithm (see the last three lines).

Corollary 1. In the second round and later, all output registers of correct pro-
cesses are consistent.

The following lemma also holds clearly.

Lemma 2. Once a correct process v executes an action, outColv(k) 6= outColv(k′)
holds for any k and k′ (1 ≤ k < k′ ≤ ∆v) at any time (except that outColv(k) =
outColv(k′) = ⊥ holds temporarily during execution of an action).

Proof. The lemma clearly holds from the following facts:

Algorithm 3.1 The SS link-coloring protocol (Part 1: constants and variables)
constants

∆ = the maximum degree of the network

∆v = the degree of v
Nv(k) (1 ≤ k ≤ ∆v) = the k-th neighbor of v
CSET = {1, 2, . . . , 2∆− 1} // set of all colors

local variables of node v
outColv(x) (1 ≤ x ≤ ∆v);

// color proposed by v for the x-th incident link
// We assume outColv(x) takes a value from CSET ∪ {⊥}
// The value ⊥ is used temporarily only during execution of an atomic step

Decidedv : subset of {1, 2, . . . , ∆v};
// the set of neighbor u such that the color of (u, v) is accepted
// (or finally decided)

UnDecidedv : ordered subset of {1, 2, . . . , ∆v};
// the ordered set of neighbor u such that the color of (u, v) is not accepted
// We assume Decidev ∪ UnDecidedv = {1, 2, . . . , ∆v} holds
// in the initial configuration

variables in shared register rv,u

PCv,u;

// color proposed by v for the link (v, u)
USETv,u;

// colors of links incident to v other than (v, u)
// in-register ru,v has PCu,v and USETu,v

Algorithm 3.2 The SS link-coloring protocol (Part 2: the LINKCOLORING
function)
function LINKCOLORING {

// check the conflict on the accepted color
// This is against that a Byzantine process changes the accepted color.
// Also, this is against the initial illegitimate configuration
// (meaningful only in the first two rounds)
for each k ∈ Decidedv{

if (PCNv(k),v 6= outColv(k))
or (outColv(k) = outColv(k′) for some k′(6= k))
then { // something strange happens

outColv(k) := ⊥;
remove k from Decidedv;
append k to UnDecidedv as the last element;

// if this occurs in the third round or later, Nv(k) is a Byzantine
// process
}

}
// check whether v’s previous proposals were accepted by neighbors
for each k ∈ UnDecidedv{

if PCNv(k),v = outColv(k)
then { // v’s previous proposed was accepted by Nv(k)

remove k from UnDecidedv;
append k to Decidedv;

}
else // v’s previous proposed was rejected by Nv(k)

outColv(k) := ⊥;
}
// check whether v can accept the proposal made by neighbors
for each k ∈ UnDecidedv in the order in UnDecidedv {

// the order in UnDecidedv is important to avoid infinite obstruction of
// Byzantine processes
if PCNv(k),v 6∈ {outColv(m) | 1 ≤ m ≤ ∆v}

then { // accept the color proposed by Nv(k)
outColv(k) := PCNv(k),v;
remove k from UnDecidedv;
append k to Decidedv;

}
else // make proposal of a color for undecided links

outColv(k) := min(CSET\
(({outColv(m) | 1 ≤ m ≤ ∆v} − {⊥}) ∪ USETNv(k),v))

// at least one color is available (remark that outColv(k) = ⊥ holds)
}
for k := 1 to ∆v { // write to its own link registers

PCv,Nv(k) := outColv(k);
USETv,Nv(k) := {outColv(m) | 1 ≤ m ≤ ∆v, m 6= k};

}
}

– When outColv(k) = outColv(k′) and {k, k′} ⊆ Decidedv hold, then either
outColv(k) or outColv(k′) is reset to ⊥. (outColv(k) = outColv(k′) and
{k, k′} ⊆ Decidedv may hold in the initial configuration.)

– v assigns a color c to outColv(k) only when outColv(k′) 6= c holds for any
k′ (k′ 6= k).

Let u and v be any neighboring processes, and let v be the k-th neighbor of
u. In the followings, we say that process u accepts a color c for a link (u, v) if
k ∈ Decidedu and outColu(k) = c holds.

Lemma 3. Let u and v be any correct neighboring processes, and let v be the
k-th neighbor of u and u be the k′-th neighbor of v.

Once v accepts a color of (u, v) in the second round or later, outColu(k) and
outColv(k′) never change afterwards. Moreover, u accepts the color of (u, v) in
the next round or earlier.

Proof. When process v completes its action at which v accepts a color c of (u, v),

outColu(k) = PCu,v = outColv(k′) = PCv,u = c
∧ outColu(k) 6∈ {outColu(m) | 1 ≤ m ≤ ∆u,m 6= k}
∧ outColv(k′) 6∈ {outColv(m) | 1 ≤ m ≤ ∆v,m 6= k′}

holds.
Process u or v never accepts a proposal c for any other incident link, and

never makes a proposal c for any other incident link, as long as outColu(k) =
outColv(k′) = c holds. This implies that outColu(m) 6= c (for eachm 6= k) and
outColv(m) 6= c (for eachm 6= k′) hold as long as outColu(k) = outColv(k′) = c
holds.

Now we show that outColu(k) = outColv(k′) = c remains holding once
outColu(k) = outColv(k′) = c holds. We assume for contradiction that ei-
ther outColu(k) or outColv(k′) changes. Without loss of generality, we can as-
sume that outColu(k) changes first. This change of the color occurs only when
outColu(m) = c holds for some m such that m 6= k. This contradicts the fact
that outColu(m) 6= c (m 6= k) remains holding as long as outColu(k) = c holds.

It is clear that u accepts the color c for the link (u, v) when u is activated
and outColu(k) = PCv,u = c holds. Thus, the lemma holds.

Lemma 4. Let u and v be any correct neighboring processes. Process u accepts
a color for the link (u, v) within 2∆u + 2 rounds.

Proof. Let v be the kth neighbor of u. Let t1, t2 and t3 (t1 < t2 < t3) be the
steps (i.e., global discrete times) when u, v and u are activated respectively, and
u is never activated between t1 and t3. We consider the following three cases of
the configuration immediately before u executes an action at t3. In what follows,
let c be the color such that outColu(k) = c holds immediately before u executes
an action at t3.

1. If PCv,u = c holds: Process u accepts the color c for (u, v) in the action at
t3.

2. If PCv,u(= c′) 6= c holds and v is the first process among processes w such
that PCw,u = c′ in UnDecidedu: Process u accepts the color c′ of PCv,u for
(u, v) in the action at t3.

3. If PCv,u(= c′) 6= c holds and v is not the first process among processes w
such that PCw,u = c in UnDecidedu: Process u cannot accept color c′ for
(u, v) in the action at t3. Process u accepts the color c′ for the link (u,w)
such that w is the first process among processes x such that PCx,u = c′ in
UnDecidedu.

In the third case, Process w is removed from UnDecidedu. From Lemma 3, w
is never appended to UnDecidedu again when w is a correct process. When w is
a Byzantine process, w may be appended to UnDecidedu again but its position
is after the position of u. This observation implies that the third case occurs at
most ∆− 1 times for the pair of u and v before u accepts a color for (u, v).

Now we analyze the number of rounds sufficient for u to accept a color of
the link (u, v). Consider three consecutive rounds. Let t be the time when u is
activated last in the first round of the three consecutive rounds, and let t′ be the
time when u is activated first in the last round of the three consecutive rounds.
It is clear that v is activated between t and t′. This implies that we have at least
one occurrence of the t1, t2 and t3 described above between t and t′. We repeat
this argument by regarding the last round of the three consecutive rounds as the
first round of the three consecutive rounds we consider next. Thus, u accepts a
color of (u, v) within 2∆v + 2 rounds.

From Lemma 4, we can obtain the following theorem.

Theorem 1. The protocol is a Byzantine insensitive link-coloring protocol for
arbitrary networks. The stabilization time of the protocol is 2∆ + 2 rounds.

4 Conclusion

In this paper, we presented the first self-stabilizing link-coloring algorithm that
can be used on uniform anonymous and general topology graphs. In addition
to being self-stabilizing, it is also Byzantine insensitive, in the sense that the
subsystem of correct processes resumes correct behavior in finite time regard-
less of the number and placement of potentially malicious (so called Byzantine)
processes.

The system hypothesis that we assumed (central daemon scheduling) are
necessary to ensure bounded fault-containment of Byzantine processes (as proved
in [17]). However, we assumed that the number of link colors that is available
is 2∆ − 1, where ∆ is the maximum degree of the graph. It is well known that
∆+1 colors are sufficient for link coloring general graphs. Recently, a distributed
(non-stabilizing and non fault tolerant) solution [6] that uses only ∆ + 1 colors
was provided. There remains the open question of a possible tradeoff between
the number of colors used for link coloring and the fault-tolerance properties of
distributed solutions.

Acknowledgements

This work is supported in part by MEXT: “The 21st Century Center of Ex-
cellence Program”, JSPS: Grant-in-Aid for Scientific Research ((B)15300017),
MEXT: Grant-in-Aid for Scientific Research on Priority Areas (16092215) and
MIC: Strategic Information and Communications R&D Promotion Programme
(SCOPE). This work is also supported in part by the FRAGILE and SR2I
projects of the ACI “Sécurité et Informatique” of the French Ministry of Re-
search.

References

1. E. Anagnostou and V. Hadzilacos. Tolerating transient and permanent failures.
Lectures Notes in Computer Science, Vol 725 (Springer-Verlag), pages 174–188,
1993.

2. J. Beauquier and S. Kekkonen-Moneta. Fault-tolerance and self-stabilization: im-
possibility results and solutions using self-stabiling failure detectors. International
Journal of Systems Science, 28(11):1177–1187, 1997.

3. J. Beauquier and S. Kekkonen-Moneta. On ftss-solvable distributed problems.
In Proceedings of the 6th Annual ACM Symposium on Principles of Distributed
Computing, page 290, 1997.

4. E. W. Dijkstra. Self stabilizing systems in spite of distributed control. Communi-
cations of the Association of the Computing Machinery, 17:643–644, 1974.

5. S. Dolev. Self-Stabilization. MIT Press, 2000.
6. Shashidhar Gandham, Milind Dawande, and Ravi Prakash. Link scheduling in

sensor networks: Distributed edge coloring revisited. In Proceedings of Infocom
2005. IEEE Press, 2005.

7. Sukumar Ghosh and Mehmet Hakan Karaata. A self-stabilizing algorithm for
coloring planar graphs. Distributed Computing, 7(1):55–59, 1993.

8. A. S. Gopal and K. J. Perry. Unifying self-stabilization and fault-tolerance. In Pro-
ceedings of the 12th Annual ACM Symposium on Principles of Distributed Com-
puting, pages 195–206, 1993.

9. Maria Gradinariu and Colette Johnen. Self-stabilizing neighborhood unique nam-
ing under unfair scheduler. In Euro-Par 2001: Parallel Processing, 7th Interna-
tional Euro-Par Conference Manchester, UK August 28-31, 2001, Proceedings,
pages 458–465, 2001.

10. Maria Gradinariu and Sébastien Tixeuil. Self-stabilizing vertex coloration and
arbitrary graphs. In Procedings of the 4th International Conference on Principles
of Distributed Systems, OPODIS 2000, Paris, France, December 20-22, 2000, pages
55–70, 2000.

11. Stephen T. Hedetniemi, David Pokrass Jacobs, and Pradip K. Srimani. Linear
time self-stabilizing colorings. Inf. Process. Lett., 87(5):251–255, 2003.

12. Ted Herman and Sébastien Tixeuil. A distributed tdma slot assignment algorithm
for wireless sensor networks. In Algorithmic Aspects of Wireless Sensor Networks:
First International Workshop, ALGOSENSORS 2004, Turku, Finland, July 16,
2004. Proceedings, pages 45–58, 2004.

13. Shing-Tsaan Huang, Su-Shen Hung, and Chi-Hung Tzeng. Self-stabilizing col-
oration in anonymous planar networks. Information processing letters, 95(1):307–
312, 2005.

14. T. Masuzawa. A fault-tolerant and self-stabilizing protocol for the topology prob-
lem. In Proceedings of the 2nd Workshop on Self-Stabilizing Systems, pages 1.1–
1.15, 1995.

15. H. Matsui, M. Inoue, T. Masuzawa, and H. Fujiwara. Fault-tolerant and self-
stabilizing protocols using an unreliable failure detector. IEICE Transactions on
Information and Systems, E83-D(10):1831–1840, 2000.

16. M. Nesterenko and A. Arora. Tolerance to unbounded byzantine faults. In Pro-
ceedings of 21st IEEE Symposium on Reliable Distributed Systems, pages 22–29,
2002.

17. Yusuke Sakurai, Fukuhito Ooshita, and Toshimitsu Masuzawa. A self-stabilizing
link-coloring protocol resilient to byzantine faults in tree networks. In 8th In-
ternational Conference on Principles of Distributed Systems, Grenoble, France,
December 15-17, pages 196–206, 2004.

18. S. Shukla, D. Rosenkrantz, and S. Ravi. Developing self-stabilizing coloring algo-
rithms via systematic randomization. In Proceedings of the International Workshop
on Parallel Processing, pages 668–673, Bangalore, India, 1994. Tata-McGrawhill,
New Delhi.

19. S. Shukla, D. Rosenkrantz, and S. Ravi. Observations on self-stabilizing graph
algorithms for anonymous networks. In Proceedings of the Second Workshop on
Self-stabilizing Systems (WSS’95), pages 7.1–7.15, 1995.

20. Sumit Sur and Pradip K. Srimani. A self-stabilizing algorithm for coloring bipartite
graphs. Inf. Sci., 69(3):219–227, 1993.

21. S. Ukena, Y. Katayama, T. Masuzawa, and H. Fujiwara. A self-stabilizing spanning
tree protocol that tolerates non-quiescent permanent faults. IEICE Transaction,
J85-D-I(11):1007–1014, 2002.

