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Abstract

Self-stabilizing protocols can resist transient failures and guarantee system recovery
in a finite time. We highlight the connexion between the formalism of self-stabilizing
distributed systems and the formalism of generalised path algebra and asynchronous
iterations with delay. We use the later to prove that a local condition on locally ex-
ecuted algorithm (being a strictly idempotent r-operator) ensures self-stabilization of
the global system. As a result, a parametrized distributed algorithm applicable to any
directed graph topology is proposed, and the function parameter of our algorithm is
instantiated to produce distributed algorithms for both fundamental and high level ap-
plications. Due to fault resilience properties of our algorithm, the resulting protocols are
self-stabilizing at no additional cost.

1 Introduction

Self-stabilization Robustness is one of the most important requirements of modern dis-
tributed systems. Two approaches are possible to achieve fault-tolerance: on the one hand,
robust systems use redundancy to mask the effect of faults, on the other hand, self-stabilizing
systems (see [11, 25]) may temporarily exhibit an abnormal behavior, but must recover cor-
rect behavior within finite time. Self-stabilization copes with memory corruption, and with
processors and links crash and restart (see [23]). This also means that the complicated task
of initializing distributed systems is no longer needed, since self-stabilizing protocols re-
gain correct behavior regardless of the initial state. The concern of several researchers is to
demonstrate the applicability of the self-stabilization property to the current communication
technology (for example, high-speed and mobile communication networks, see [9, 16]).

Related Work Silent systems [12] are systems where the communication between the pro-
cessors is fixed from some point of the execution. In our model, registers are used for com-
munication between processors. Then a silent system has the property that the contents
of the communication registers is not changed after some point in the execution. When

1



the algorithm checks that a register needs to be changed before performing a write opera-
tion, all write operations may be eliminated when the silent system has reached a legitimate
configuration. Silent systems are used to solve tasks such as leader election, spanning tree
construction or single source shortest path algorithms. Note that several tasks fundamental
to distributed systems are inherently non silent. Such tasks include mutual exclusion or to-
ken passing, where the contents of communication registers have to change infinitely often
in every possible execution of the system.

Historically, research in self-stabilization over general networks has mostly covered undi-
rected networks where bidirectional communication is feasible (the Update protocol of [13],
or the algorithms presented in [2, 14]). Bidirectional communication is usually heavily used
in bidirectional self-stabilizing systems to compare one node state with those of its neighbors
and check for consistency. The self-stabilizing algorithms that are built upon the paradigm
of local checking (see [5, 6]) use this scheme. The lack of bidirectional communication was
overcome in recent papers using several techniques. Strong connectivity (which is a weaker
requirement than bidirectionality) was assumed to build a virtual well known topology on
which the self-stabilizing algorithm may be run (a tree in [1]). As many self-stabilizing algo-
rithms exists for rings ([11]) or trees ([3]) in the literature, these constructions may be used
to reuse existing algorithms in general networks.

The restriction of having either bidirectional communication media or strongly con-
nected unidirectional networks are reasonable when the task to be solved is dynamic and the
system is asynchronous: e.g. for traversal algorithms, a token has to be able to pass through
every node infinitely often. However, there exists several silent tasks for which global com-
munication is not required. For example, the single source shortest path task only requires
that a directed path exists from a node called the source to any other node, but not the con-
verse. [4] used the formalism of Iteration Systems to give sufficient conditions for conver-
gence of systems solving related tasks. Silent tasks have been solved in a self-stabilizing
way on directed graphs that are not strongly connected in [10], but the underlying network
was assumed having no cycle (DAG). The absence of cycles permits to avoid cases where
corrupted data moves forever in the system, preventing it from stabilizing.

Our Contribution In this paper, we concentrate on solving silent tasks in a self-stabilizing
way on a truly general network, where no hypothesis are made about the strong connectiv-
ity or the presence of cycles. As in [4], our solution is by giving a condition on the distributed
algorithm. However, in [4], the condition is given in terms of global system property, while
our condition is independent of the task to be solved, and is only determined by the alge-
braic properties of the function computed locally by the algorithm.

The contribution of this paper is twofold. First we provide a way of modeling a class
of silent self-stabilizing distributed algorithm through the formalism of max-plus algebra,
using a matrix representation of the system. Then we extend a result presented in [19] using
this formalism. To this purpose, we provide a parametrized algorithm that can be instanti-
ated with a local function. Our parameterized algorithm enables a set of silent tasks to be
solved self-stabilizingly provided that these tasks can be expressed through local calculus
operations called r-operators. The r-operators are general enough to permit applications
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such as shortest path calculus, depth-first-search tree construction, and ancestor list con-
struction to be solved on arbitrary graphs while remaining self-stabilizing.

In addition, since our approach is condition based, there is no additional layer used to
make an algorithm that satisfies this condition tolerant to transient failures. In fact, when
no transient faults appear in the system, the performance suffers no overhead. Our system
performs under the general fully distributed demon (see [28]).

Outline of the paper The rest of the paper is organized as follows. In Section 2, we give
some definitions pertinent to the protocols and proofs. The self-stabilizing parameterized
protocol is presented in Section 3 along with the r-operators used for local computations and
the matrix modeling based on path-algebra and asynchronous iterations. The correctness
reasoning for the parameterized protocol is given in Section 4. Applications to fundamental
problems in distributed computing area are presented in Section 5. We discuss the extension
of our ideas and make some concluding remarks in Section 6.

2 Self-stabilizing Distributed Systems

2.1 Underlying Graph

A distributed system S is a collection of N processors linked with communication media
allowing them to exchange information. Such a system is modeled by a directed graph (also
called digraph) G(V, E), defined by a set of vertices V and a set E of edges (v1, v2), which are
ordered1 pairs of vertices of V (v1, v2 ∈ V ). Each vertex u in V represents a processor Pu of
the system S. Each edge (u, v) in E, represents a communication link from Pu to Pv in S. We
give now some graph definitions.

The in-degree of a vertex v of G denoted by δ−(v) is equal to the number of vertices u
such that the edge (u, v) is in E. The incoming edges of each vertex v of G are numbered
from 1 to δ−(v).

A directed path from a vertex v0 to a vertex vk in a digraph G(V,E) is a list of consecutive
edges of E, (v0, v1), (v1, v2), . . . , (vk−1, vk). The length of this path is k. If each vi is unique in
the path, the path is elementary. A cycle is a directed path where v0 = vk. A digraph without
any cycle is called a directed acyclic graph (DAG).

The distance between two vertices u, v of a digraph G, denoted by dG(u, v), is the mini-
mum of the lengths of all directed paths from u to v. The diameter of a digraph G, denoted by
Diam(G), is the maximum of the distances between all couples of vertices in G. The strongly
connected component of a vertex v in a digraph G(V, E) is the set of all vertices w of V such
that there exists a directed path from v to w and a directed path from w to v. G is strongly
connected if it has exactly one strongly connected component.

The direct descendants of a vertex v of a digraph G(V,E) are all the vertices w of G such
that the edge (v, w) is in E. Their set is denoted by Γ+1

G (v). Similarly, the direct ancestors of a
vertex v of G are all the vertices u of G such that the edge (u, v) is in E. Their set is denoted

1(v1, v2) 6= (v2, v1).
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by Γ−1
G (v). We denote by Γ−1

G (v) the set Γ−1
G (v) ∪ {v}. The ancestors of v are all the vertices u

such that there exists a path from u to v. Their set is denoted by Γ−G(v).

2.2 Communications and Processors

A communication from processor Pu to processor Pv is only feasible if the vertex u is a direct
ancestor of the vertex v in G (i.e. (u, v) is an edge of G). Such a communication is performed
as follows. Processor Pu writes the datum to be sent to Pv into a dedicated shared register.
Then Pv is able to read the datum into this register and to use it. A processor may only write
into its own shared register and can only read shared registers owned by its direct ancestor
processors or itself.

Although we assume that any communication in the distributed systemS is done through
shared registers, [15] presented a transformation for simulating shared registers over unre-
liable bidirectionnal message passing communication channels in a self-stabilizing way.

In addition to those shared registers, processors may maintain local variables when exe-
cuting their code. Such local variables are private to the processor and can not be accessed
by any of its neighbors.

A processor is a deterministic sequential machine that runs a single2 process. The state
of a processor is defined by the values of its local variables. The state of a link (u, v) of E is
defined by the value of the associated shared register. A processor action (or step) consists
of a read action, then an internal computation followed by a write action. Internal action
of processors are not significant to its neighbors because they have no access to the variables
that are manipulated by those actions. read and write actions are the only way for two
processors to communicate.

2.3 Configurations and Executions

Classical definitions for configurations and executions of distributed systems can be found
in [27]. A configuration of a distributed system S is an instance of the states of its processors
and links. The set of configurations of S is denoted as C. Processor actions change the global
system configuration. An execution e (also called a computation) is a sequence of configura-
tions c1, c2, . . . such that for i = 1, 2, . . ., the configuration ci+1 is reached from ci by a single
step of at least one processor. Configuration c1 is the initial configuration of execution e.

The set of executions in the distributed system S starting with a particular initial con-
figuration c1 ∈ C is denoted by Ec1 . Every execution e ∈ Ec1 is of the form c1, c2, . . .. The
set of execution in the system S whose initial configurations are all elements of C1 ⊂ C is
denoted as EC1 . The set E = EC contains all possible executions of system S. All executions
considered in this paper are assumed to be maximal meaning that the sequence is either infi-
nite, or it is finite and no action is enabled in the final configuration. An algorithm is silent if
for each possible execution, either of the two following conditions is verified : (i) the execu-
tion is finite or (ii) the execution is infinite and there exists a configuration ct such that any
subsequent execution (in Ect) contains only ct configurations.

2the case of a processor sheduling several communicating processes is handled by considering those as virtual
processors, each running a single process
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To model the non-deterministic behavior of a distributed system, we assume processor
activity is managed by a global scheduler. To ensure correctness of the system, we regard the
scheduler as an adversary. Each processor that is chosen by the adversary executes exactly
one atomic step. The adversary may be more or less powerful depending on (i) the freedom
it has in choosing the activated processors and (ii) the grain of the atomicity. More freedom
and finer atomicity grain gives the adversary more power. We refer to the most common
types of adversaries used in the literature and more specifically in [14, 22, 28]:

1. The synchronous demon activates simultaneously all of the system’s processors. Then,
all processors read their input registers, perform local computations and write their
output register.

2. The distributed demon can activate simultaneously any subset of the system’s proces-
sors. When such a subset is activated, all processors in the subset read their input
registers, perform local computations and write their output register.

3. The fully distributed demon can activate simultaneously any subset of the system’s pro-
cessor. When such a subset is activated, all processors in the subset read their input
registers, perform local computations, but may delay writing their output register af-
ter the following demon activation occured. However, a processor may not be chosen
again by the demon until it has written its output registers.

4. The read/write demon activates a single processor at a time. When a processor is acti-
vated, it may either read exactly one input register or (not both) write its output reg-
ister. Contrary to the preceeding demons that use composite atomicity (any processor
read all its input registers atomically, and write all its output registers atomically), the
Read/Write demon uses register atomicity.

The strongest adversary is the Read/Write demon, while the weakest adversary is the
Synchronous demon. As an immediate corollary, if a distributed system works correctly
under the scheduling of the strongest demon, it will also perform correctly under a weaker
adversary.

Hypothesis 1 We assume an intermediate adversary, the fully distributed demon.

2.4 Self-stabilization

A specification is a predicate on executions that are admissible for a distributed system. A
system matches its specification if all its possible executions match the specification. If we
consider only static problems (i.e., problems whose solutions consist of computing some
global result), the specification can be given in terms of a set of configurations. Every ex-
ecution matching the specification would be a sequence of such configurations. The set of
configurations that matches the specification of static problems is called the set of legitimate
configurations (denoted as L), while the remainder C \ L denotes the set of illegitimate con-
figurations. Self-stabilization is defined through the concept of closed attractor.
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Definition 1 (Closed Attractor) Let Ca and Cb be subsets of C. Ca is an attractor for Cb if and only
if for any initial configuration c1 in Cb, for any execution e in Ec1 , (e = c1, c2, . . .), there exists i ≥ 1
such that for any j ≥ i, cj ∈ Ca.

In the usual (i.e. non-stabilizing) distributed systems, possible executions can be re-
stricted by allowing the system to start only from some well-defined initial configurations.
On the other hand, in stabilizing systems, problems can not be solved using this conve-
nience, since all possible system configurations are admissible initial configurations.

Definition 2 (Self-stabilization) A system S is called self-stabilizing if and only if there exists a
non-empty subset L ⊂ C of legitimate configurations such that L is a closed attractor for C.

3 Self-stabilizing Global Computations with Path Algebra

The purpose of this section is twofold. First we recall previous results concerning relations
between distributed systems and operator-based algorithms on the one hand, and between
function-weighted graphs and path algebra for the other hand. Then we extend previous
results to model silent distributed systems using the matrix representation used in asyn-
chronous iterations.

3.1 Silent Distributed Systems as Operator-based Algorithms

In this section, we describe distributed systems that perform a global calculus using a para-
metric algorithm that simply gets input data from its incoming neighbors, computes a local
function Fv and finally makes the result of this function available to its outgoing neighbors.
Since silent distributed algorithms have their communication fixed from some point in each
execution, we can consider this point as the global result computed by the algorithm.

The program for each protocol consists of a rule of the form: < guard >−→ statement. A
guard is a boolean expression over the local variables of a processor and the communication
registers of its immediate ancestors. A statement is allowed to update the communication
register of the processor only. Any rule whose guard is true is enabled.

Hypothesis 2 We assume a fair adversary, i.e. in any infinite execution, if a processor has a rule
that is enabled infinitely often, then this processor is chosen by the adversary infinitely often.

Each processor Pv has two local constants stored in Read Only Memory: the initial datum,
ROM[v], and the set of its direct ancestors Γ−1

G (v). To store the result of the local computa-
tion, a single register is used at Pv: RES[v], the outgoing variable. Such a register is used for
the communications between Pv and all its direct descendants (one-to-many communication
scheme). Each processor Pv also has access to the communication register RES[w] of any of
its direct ancestors w ∈ Γ−1

G (v), the incoming variables. In addition to the above, the protocol
maintains on each processor Pv a function Fv which is defined as:

Fv : Aδ−(v)+1 → A
ROM[v], RES[u1], . . . , RES[uδ−(v)] 7→ F(ROM[v], RES[u1], . . . , RES[uδ−(v)])
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where nodes u1 through uδ−(v) are the direct ancestors of v. Then each processors v runs
as follows : v performs a local computation using function Fv, its initial datum ROM[v]
and the incoming data RES[u1], . . . RES[uδ−(v)], and then stores the result into its outgoing
variable RES[v]. This guarded rule is parametrized at each node v by Fv and is shown in
Algorithm 3.1.

Algorithm PA at node v consists in one rule R parametrized by Fv :

R|Fv: 〈true〉
−→ RES[v] ← Fv(ROM[v], RESu∈Γ−1

G (v)[u])

where RESu∈Γ−1
G (v)[u] stands for the sequence RES[u1], . . . RES[uδ−(v)] with u1 through uδ−(v)

being the direct ancestors of v.

Note: Having each node v disposing of the Γ−1
G (v) is only convenient when writing the

algorithm. In an actual implementation, this set can be efficiently replaced by the list of v
in-port hardware addresses.

3.2 r-operators

Our distributed algorithm is parametrized at each node v in system S with function Fv. The
Fv function computes a result from v direct ancestors’ values. In Section 5, we only define
functions Fv for each v ∈ S to describe the whole system. In the following, we investigate
sufficient conditions on the Fv functions so that the system is self-stabilizing for a given
specification.

3.2.1 Infimum Functions

In [26], Tel proves infimum computations terminate when the Fv function is an infimum
over the set of inputs. An infimum (hereby called a s-operator) ⊕ over the set S is an associa-
tive, commutative and idempotent binary operator. Such an operator defines a partial order
relation ¹⊕ over the set S by: x ¹⊕ y if and only if x ⊕ y = x. Moreover, [26] assumes that
there exists a greatest element on S, denoted by >, and verifying x ¹s > for every x ∈ S. If
necessary, this element can be added to S.

Hence, the (S,⊕) structure is an abelian idempotent semigroup3. Using ⊕ as Fv in our
parametrized algorithm yields a silent distributed system, yet [19] proved that the resulting
protocol is not self-stabilizing.

3.2.2 Binary r-operators

Starting from Tel results, [18] introduced a distorted algebra – the r-algebra – by general-
izing properties of the abelian idempotent semigroup with a mapping r. An r-operator is a
dissymmetric s-operator, that we usually denote by / :

3The prefix semi means that the structure cannot be completed to obtain a group, since the law ⊕ is idempo-
tent.
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Definition 3 (r-operator) The operator / is an r-operator on S if there exists a bijective mapping r
from S to S such that / verifies the following properties : a. r-associativity: (x/y)/r(z) = x/(y/z);
b. r-commutativity: r(x) / y = r(y) / x; c. r-idempotency: r(x) / x = r(x).

For example, the operator minc(x, y) = min(x, y + 1) is an idempotent r-operator on
Z∪{+∞}. The mapping r (which is x 7→ x+1 for minc) is called r-mapping of the r-operator.
This mapping is unique and when it is equal to the identity (x 7→ x), the corresponding r-
operator is an s-operator. The r-operators have many applications in parallel and distributed
computing (see [18, 17] for further details). We recall some of their algebraic properties. For
any r-operator, there exists an s-operator⊕ such that for any x and y in S, x⊕ y = x/ r−1(y).
The identity element > of ⊕ is the right identity element of /. Moreover the r-mapping of
any r-operator is an isomorphism of (S, /) and (S,⊕). There are as many r-operators on S
as couples of s-operators ⊕ and isomorphisms r of (S,⊕). When the r-operator / verifies
x / x = x for any x in S, it is idempotent. Constructing an idempotent r-operator / from
an s-operator ⊕ and an isomorphism r of (S,⊕) is done by assuming that ⊕ and r verify,
for any x in S, x ¹⊕ r(x). When for each x in S, x ≺⊕ r(x) (i.e. x ¹s y and x 6= y), the
r-operator / is strictly idempotent. For some proofs, we suppose that the r-operator / verifies:
∀y, z ∈ S, (∀x ∈ S, x / y = x / z) ⇔ (y = z). In practice, this hypothesis is verified by
many operators.

3.2.3 n-ary r-operators

Binary r-operators can be extended to accept an arbitrary number of arguments. A map-
ping / from Sn into S is an n-ary r-operator if there exists an s-operator ⊕ on S and n − 1
isomorphisms r1, . . . , rn−1 of (S,⊕) such that

/(x0, . . . , xn−1) = x0 ⊕ r1(x1)⊕ · · · ⊕ rn−1(xn−1)

for any x0, . . . , xn−1 in S. In other words, an n-ary r-operator consists in n − 1 binary r-
operators based on the same s-operator. If all of these binary r-operators are (strictly) idem-
potent, the resulting n-ary r-operator is (strictly) idempotent.

Hypothesis 3 (r-operator) An n-ary r-operator / is defined on S from an s-operator ⊕ on S, and
n− 1 endomorphisms r1, . . . , rn−1 of (S,⊕) as follows: for all x0, . . . , xn−1 ∈ S, /(x0, . . . , xn−1) =
x0 ⊕ r1(x1)⊕ · · · ⊕ rn−1(xn−1).

In addition, we suppose that the following properties on the r-mappings hold:

Hypothesis 4 (Strict Idempotency) For any r-mapping ri, for any i ∈ {1, . . . , |E|} and for any
x ∈ S, x ≺⊕ ri(x).

Hypothesis 5 (r⊥) Let r⊥ be the endomorphism built using all of the r-mappings r1, . . . , r|E| used
in the distributed system S as follows: ∀x ∈ S, r⊥(x) =

⊕
i∈{1,...,|E|} r⊥(x) Then limk→+∞ rk⊥(x) =

e⊕.
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3.2.4 Self-stabilization with r-operators

When our distributed algorithm is instantiated with an r-operator / as function Fv, each
node v ∈ S performs :

RES[v] = ROM[v]⊕ r(RES[u1])⊕ · · · ⊕ r(RES[uδ−(v)]) binary r-operator
RES[v] = ROM[v]⊕ r1 (RES[u1])⊕ · · · ⊕ rδ−(v)(RES[uδ−(v)]) n-ary r-operator

where u1, . . . , uδ−(v) denote node v direct ancestors, r1, . . . , rδ−(v) denote the corresponding
r-mappings, and ⊕ denotes the s-operator / is based upon.

[17] showed that when the r-operator is idempotent, the algorithm is silent, and [19]
proved that when it is strictly idempotent and ⊕ induces a total order on S, it is also self-
stabilizing for the following specifications :

RES[v] =
⊕{

rdG(u,v) (RES[u]) , u ∈ Γ−G(v)
}

binary

RES[v] =
⊕{

rP (RES[u]) , u ∈ Γ−G(v), P elementary path from u to v
}

n-ary

where rP is the composition of the r-mappings corresponding to the edges of the path P .
The proof of stabilization in [19] has been established for a read/write demon, assuming the
s-operator ⊕ defined a total order relation. In this paper, we extend this result and prove
– using path algebra – that even if the s-operator / is based upon defines a partial order
relation on S, our parametric algorithm instantiated with / is self-stabilizing. This extension
leads to new applications, that we present in Section 5. However, we restrict executions by
assuming a fully distributed demon.

3.3 Path algebra

Semi-algebra In [7, 20, 21], definitions related to max-plus algebra can be found. A semir-
ing (S,⊕,⊗) is defined by the four following conditions : a. (S,⊕) is an abelian semigroup
which identity element is e⊕, b. ⊗ is associative and admits an identity element e⊗, c. ⊗
is distributive over ⊕ and d. e⊕ is absorbing for ⊗. The structure is idempotent when ⊕ is
idempotent.

A semimodule (M,⊕, ·) over the semiring (S,⊕,⊗) is a set of matrices A such that the
following conditions hold : a. (M,⊕) is an abelian semigroup which ⊕ is defined by
(A⊕B) [i][j] = A[i][j] ⊕ B[i][j] and which identity element is denoted as E⊕, b. · is an
external composition law defined by (λ ·A) [i][j] = λ ·A[i][j] with λ ∈ S and A ∈ M, c. ⊕
and · are distributive and · verifies α(βA) = β(αA) for all α and β in S and d. e⊕A = E⊕
and e⊗A = A.

Let ⊗ define a matrix multiplication: (A⊗B) [i][j] =
⊕k=N

k=1 A[i][k] ⊗ B[k][j]. When
endowed with a third law such that (M,⊕,⊗) is a semiring, (M,⊕,⊗, ·) is a semi-algebra. The
identity element of⊗ is denoted by E⊗. When the semifield S is idempotent, the semialgebra
is also idempotent.
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Graph Interpretation There exists a duality between matrix operations and graph theory.
The part of Max-plus algebra that studies graph theory is known in the literature as path
algebra.

The precedence graph G[A] associated to an N×N matrix A of the semi-algebra (M,⊕,⊗, ·)
is a directed graph with N vertices numbered from 1 to N , such that there exists an arc from
j to i if and only if A[i][j] 6= e⊕. When different from e⊕, A[i][j] is called weight of the arc
(j, i). The weight w(P ) of a directed path P = (v0, v1) . . . (vk−1, vk) in G[A] is equal to the
product by ⊗ of the weights of the edges of P : w(P ) = A[v0][v1]⊗ · · · ⊗A[vk−1][vk]. We use
the following standard notations: A(k) = E⊗ ⊕ A ⊕ · · · ⊕ Ak and A∗ = limk→+∞A(k). A
circuit C is absorbing if its weight w(C) verifies e⊗ ⊕ w(C) 6= e⊗.

In [20], Gondran showed that if A is an N × N matrix in a semi-algebra, the following
properties hold:

1. (Ak)[i][j] is the sum (in sense of ⊕) of the weights of the paths from j to i having
exactly k edges,

2. (A(k))[i][j] is the sum of the weights of the paths from j to i having at most k edges.

3. if G[A] has no absorbing circuit, then there exists an integer p < N such that A∗ = A(p).

Generalized Path Algebra In [21, 24], an extension was provided, allowing to label edges
with a function instead of a scalar. Let (S,⊕) be an abelian idempotent semi-group, with e⊕
as its neutral element, and let H be the set of the endomorphisms over (S,⊕). Let the ⊕ law
of S be extended toH by (h1 ⊕ h2) (x) = h1(x)⊕h2(x) and let e⊕ ∈ H (defined by e⊕(x) = e⊕
for all x ∈ S) be its neutral element. Let ⊗ be the composition law of two morphisms of H:
(h1 ⊗ h2) (x) = h2 (h1(x)) and let e⊗ : x 7→ x be its neutral element. Then (H,⊕,⊗) is an
idempotent semiring.

In particular, given these notations, if for each edge (i, j) in the graph G[A], its label
hij ∈ H verifies e⊗ ⊕ hij = e⊗, the graph has no absorbing circuit, and A∗ exists.

3.4 Silent Distributed Systems as Asynchronous Iterations

3.4.1 System Configurations as Vectors

The distributed systems we consider have processors communicating through shared regis-
ters. Since we consider executions under the synchronous, distributed and fully distributed
demons, which use composite atomicity, processors read all their incoming registers in a
single atomic step. Since processors hold a single output register, a given configuration of
the system is modelled by a vector of register values (one entry per processor). During an
execution, we have a sequence of such vectors, where Xn denotes the nth vector describing
the system configuration. The successive evolutions of the system during each executions
are properly described through the corresponding evolutions of the configuration vector.

We now review the synchronous, distributed and fully distributed demons, and their
relationship with asynchronous iterations.
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3.4.2 The Synchronous Demon

As detailed in Section 3.2, when parametrized by an n-ary r-operator / based on an s-
operator ⊕, our distributed algorithm leads to the following local computations:

RES[v] = ROM[v]⊕ r1 (RES[u1])⊕ · · · ⊕ rδ−(v)(RES[uδ−(v)]) (1)

Under the synchronous demon, all nodes perform this local computation simultaneously.
Thus, the system computations can be written using a matrix notation. Let (S,⊕) be the
idempotent abelian semigroup corresponding to the s-operator associated to the n-ary r-
operator /. Let (H,⊕,⊗) be the idempotent semiring of the endomorphisms of S, let e⊕
and e⊗ be its zero (neutral element for ⊕) and unity (neutral element for ⊗), respectively.
Let (M,⊕,⊗, ·) be the idempotent semi-algebra over (H,⊕,⊗) of the N × N matrices (see
Section 3.3). Now consider the N × N precedence matrix A ∈ M, associated to system S
(composed of N nodes): A[i][j] = e⊕ if the edge (i, j) does not exist, and A[i][j] = rij if the
edge (i, j) exists and rij is its r-mapping.

Let Xn be the vector composed of the values stored in the outgoing registers of each of
the N nodes of system S at step n. Let B be the vector composed of the values stored in the
ROMs of those nodes in the same order. Then, we have:

Xn+1 = A⊗ Xn ⊕ B (2)

In the following, F denotes the vector operator: X 7→ X = A⊗ X ⊕ B.

3.4.3 The Distributed Demon

The distributed demon does not necessarily activate all processors at the same time. Thus,
Equation 2 does not hold in this case. Still it is possible to consider global computations
steps, but we must take into account that all processors may not participate in building a
new value at each step. Let Jn be the set of processors activated at step n by the distributed
demon. From equation 2, we obtain:

Xn+1[i] =
{

Xn[i] if i /∈ Jn

F (Xn) = A⊗ Xn ⊕ B if i ∈ Jn
(3)

Informally, Equation 3 reads as only selected processors (those of Jn) compute a new value
using the last produced result of their direct ancestors. Such equations are known in the
literature as asynchronous iterations (see [8, 30]).

3.4.4 The Fully Distributed Demon

Under control of the fully distributed demon, activated processors do not necessaryly write
their output registers within the same round. Thus Equation 3 does not hold in this con-
text. Hence, a processor may compute its output value using its last read input values,
while those input values have changed in between. This enforces the asynchronism be-
tween processors because they do not have to perform similar operations (computing their
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local algorithm) within the same time (as it is the case under the synchronous or distributed
demon).

We introduce a delay in Equation 3 to model this time lap between read and write
actions. At step n, supposing i ∈ Jn, processor Pi uses the data of its direct ancestor Pj

produced at step Dn[j] (instead of n − 1). Delaying leads to the following asynchronous
iteration with delay (see [30]):

Xn+1[i] =





Xn[i] if i /∈ Jn

F
(
(XDn[1][1], . . . , XDn[N ][N ])t) =

A⊗ (XDn[1][1], . . . , XDn[N ][N ])t ⊕ B if i ∈ Jn

(4)

3.4.5 Conditions for Convergence of Asynchronous Iterations

Asynchronous iterations have been extensively studied for optimization purpose on paral-
lel computers (see [8, 29, 30]). Under particular conditions, asynchronous iterations (Equa-
tions 3 and 4) converge to the same result as synchronous iterations (Equation 2), while reduc-
ing data dependency.

In [30], Üresin and Dubois give several sufficient conditions ensuring the convergence of
asynchronous iterations. They also point out that their work can be applied to path algebra.
Since the vector operator F is defined on a Cartesian product of (possibly infinite) sets S
ordered by the relation¹⊕ (which is extended to SN ), any asynchronous iteration converges
for any initial guess X0 ∈ SN if the following conditions are verified (see Proposition 3 page
599 in [30] concerning finite or infinite sets): a. F is closed on SN ; b. the synchronous
iterations converge, and Xn+1 ¹ Xn for each n ∈ N; c. F is monotonous on SN , that is, for all
X and Y in SN , X ¹⊕ Y implies F(X) ¹⊕ F(Y).

When these conditions are fulfilled, F has a fixed-point in SN such that every asyn-
chronous iteration corresponding to Equation 3 converges.

In order to prove that our algorithm is self-stabilizing, we need to prove that for any
underlying topology, for any initial vector configuration (the initial values in the RES reg-
isters), and for any successive choices of the fully distributed demon, its convergence is
assured. Note that Equation 4 is more general than Equation 3 (Dn[i] = n− 1 for any index
i and any step n). In turn, Equation 3 is more general than Equation 2 (Jn = {1, . . . , N} for
any step n). This order on equations mimics the total order on demons we mentioned in
Section 2.3. Consequently, the proof of stabilization given in the following section is only
established for the fully distributed demon.

4 Proving Self-stabilization using Path Algebra

In this section we prove the self-stabilization property of the parametric algorithm instan-
ciated by a strictly idempotent r-operator, using path algebra and asynchronous iterations,
under the fully distributed demon.

Theorem 1 When the parametric algorithm PA is instanciated with a strictly idempotent n-ary
r-operator, it is self-stabilizing on any topology.
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Proof: An n-ary r-operator / defined on the set S is built from an s-operator ⊕ and n − 1
r-mappings ri which are endomorphisms of S (see Hypothesis 3):

/(x0, . . . , xn−1) = x0 ⊕ r1(x1)⊕ · · · ⊕ rn−1(xn−1)

Such an operator leads to the following local computations on nodes of the distributed sys-
tem (see § 3.2.4):

RES[v] = ROM[v]⊕ r1 (RES[u1])⊕ · · · ⊕ rδ−(v)(RES[uδ−(v)])

Let (H,⊕,⊗) be the idempotent semiring of the endomorphisms over the semigroup
(S,⊕), and (M,⊕,⊗, ·) be the semi-algebra of the N × N matrices composed of elements
of H (see § 3.3). Let A ∈ M be the N × N precedence matrix associated to the distributed
system, where each entry A[i][j] is the r-mapping corresponding to the edge (j, i) if it exists,
and e⊕ else (see § 3.3 and § 3.3).

Assuming the fully distributed demon, and using asynchronous iterations (see § 3.4.4),
the global computations performed by the whole distributed system can be modelled as
follows:

Xn+1[i] =





Xn[i] if i /∈ Jn

F
(
(XDn[1][1], . . . , XDn[N ][N ])t) =

A⊗ (XDn[1][1], . . . , XDn[N ][N ])t ⊕ B if i ∈ Jn

(5)

Proving the self-stabilization of Algorithm 3.1 on any topology is equivalent to proving
the convergence of these asynchronous iterations with delay for any initial vector V0 and any
precedence matrix A. The vector operator F is defined on SN , which is a cartesian product.
We then have to verify that the Üresin and Dubois following conditions hold (see § 3.4.5):

1. the vector operator F is closed on SN ;

2. F is monotonous on SN ;

3. the synchronous iterations converge.

We successively prove that these conditions are verified.
1. From definition of F, the first condition is straightforward.
2. Let X1 and X2 be two vectors of SN such that X1 ¹⊕ X2. We then have X1⊕ X2 = X1 and

X1 ⊗A ⊕ X2 ⊗A = X1 ⊗A and (X1 ⊗A ⊕ B) ⊕ (X2 ⊗A ⊕ B) = X1 ⊗A ⊕ B. The
second condition is thus fullfilled.

3. There remains to prove that synchronous iterations Xk+1 = A⊗ Xk ⊕ B converge for
any initial guess X0.

We have X1 = A⊗ X0 ⊕ B
X2 = A⊗ X1 ⊕ B = A2 ⊗ X0 ⊕ A⊗ B ⊕ B

. . .
which leads to Xk = Ak ⊗ X0 ⊕ Ak−1 ⊗ B ⊕ · · · ⊕ A⊗ B ⊕ B

= Ak ⊗ X0 ⊕ (
Ak−1 ⊕ · · · ⊕A⊕E⊗

)⊗ B
= Ak ⊗ X0 ⊕ A(k−1) ⊗ B (see § 3.3) (6)
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Let r⊥ be the largest element of H which is smaller than all the component of the matrix

A (in sense of ¹⊕): r⊥
def.=

⊕
1≤ i,j ≤n A[i][j] Let R⊥ be the matrix ofM defined by R⊥[i][j] =

r⊥, for all indices i and j. We have: R⊥ ¹⊕ A which leads to Rk
⊥ ¹⊕ Ak. Thanks to

hypothesis 5, we have limk→+∞ rk⊥ = e⊕. Hence limk→+∞Rk
⊥ = E⊕. Thus limk→+∞Ak =

E⊕.
Since the r-operator is strictly idempotent (Hypothesis 4), h⊗ ⊕ ri = h⊗ for all i ∈

{1, . . . , |E|} and there is no absorbing circuit in the network. Thus limk→+∞A(k−1) = A∗

(see § 3.3). We then have from Equation 6:

∀ X0 ∈ Sn, ∃k0 ∈ N such that, for k ≥ k0,

Xk = Ak ⊗ X0 ⊕ A(k−1) ⊗ B = A∗ ⊗ B

and the synchronous iteration Xk+1 = A⊗Xk ⊕ B converge for any initial guess X0. The third
condition is then verified.

From results of [30], the theorem is proved. 2 2

5 Applications

In this section, we briefly give some examples of r-operators designed to solve particular
problems. In [19], several applications that use r-operators based on s-operators that define
total order relations are given. These results remain valid here because we have a weaker
requirement on the s-operator (defining a partial ordering relation is sufficient). Among the
operators presented in [19], minc is defined as minc(x, y)=min(x, y+1), and is used to solve
distance computation, shortest dipath spanning tree and forest. Others problems such as
single and multiple source shortest paths, depth-first-search tree are solved using operators
mincw and lexicat, respectively. In the following, we give other examples of r-operators
that solve different problems: the best reliable path from some transmitters is a variant of
the shortest paths problem that uses a different “metric” , while the ordered ancestor list is
an application that was not possible in the framework of [19] (since the s-operator it is based
on induces only a partial ordering relation).

5.1 Best reliable path from some transmitters

Assume that τ i
v is the failure rate on the ih incoming edge of the node v and 0 < τ i

v ≤ 1. We
then denote by τ i

v the reliable rate of this edge: τ i
v = 1 − τ i

v. The reliable rate of a path is
the product of the reliable rate of all its edges. We define the n-ary r-operator Maxtimesτ on
S = [0, 1] ∩ R by (n = δ−(v) + 1):

Maxtimesτ (x0, . . . , xδ−(v)) = Max

(
x0, x1 × τ1

v , . . . , xδ−(v) × τ
δ−(v)
v

)

The n-ary r-operator Maxtimesτ is based on the s-operator Max that defines on S a total
ordering relation ¹Max which is, in fact, the usual order ≥. Moreover, each r-mapping
ri
v(x) = x× τ i

v verifies x ≺Max ri
v(x) (which means that x > r(x)). Thus the n-ary r-operator
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is strictly idempotent. In addition, Hypothesis 5 holds. When ROM[v] = 1 if v is a trans-
mitter and ROM[v] = 0 else, the best reliable path problem is solved after stabilization of
Algorithm 3.1. Indeed, the best path is maintained by the knowledge, on each node, of one
incoming variable containing the smallest datum of all those in the incoming variables.

5.2 Ordered Ancestor List

We provide in this section an operator that maintains an ordered list of ancestors for any
node v in the network. Assuming that nodes have unique indices over the network, let S be
the set of lists of sets of indices. For example, if a, b and c are processor indices, then the list
({b}, {a, c}) is an element of S. If a node v in the network G obtains this element, it should
be interpreted as follows: dG(b, v) = 1, dG(a, v) = dG(c, v) = 2 and v has no more ancestors
in G. The aim of an ordered ancestor list algorithm is to build such a list for all the nodes
of the network. During the execution, all lists received by a node should be merged with its
current list after they have been shifted by one. We will now exhibit an r-operator allowing
to design a self-stabilizing protocole for this problem.

In order to only consider potentially usefull lists, we define an equivalence relation
≡ such that there is no repeated term nor empty set in lists of S : (S1, . . ., Sk) ≡ (S1,
S2 \ S1, . . ., Sk\ (S1 ∪ · · · ∪ Sk−1)) and (S1, . . ., Sk, ∅, Sl, . . ., Sm) ≡ (S1, . . ., Sk) for
k ≥ 1 (note that lists begining by an emptyset are allowed). Next we consider the s-
operator ⊕ on S/≡ which merges term to term elements of lists of S/≡. For example:
({d}, {b}, {a, c}) ⊕ ({c}, {a, e}, {b}) = ({d, c}, {b, a, e}, {a, c, b}) ≡ ({d, c}, {b, a, e}). More-
over, we consider the endomorphism r from S/≡ to S/≡ which maps list l = (S1, . . . , Sk) to
list r(l) = {∅, S1, . . . , Sk}. For example: r ( ({d}, {b}, {a, c}) ) = ( {∅, {d}, {b}, {a, c}} ).

Let Ant be the binary r-operator defined with the s-operator ⊕ and the r-mapping as
Ant(l1, l2) = l1⊕r(l2). Operator Ant is strictly idempotent because (i) (S1, . . . , Sk)⊕(∅, S1, . . . , Sk) =
(S1, . . . , Sk) and (ii) (S1, . . . , Sk) 6= (∅, S1, . . . , Sk) leads to (iii) (S1, . . . , Sk) ¹⊕ r(S1, . . . , Sk).
From our theorem and Hypothesis 5, we can conclude that any execution satisfies the spec-
ification. Indeed, when the ROM of each node v contains list ({v}), the result in RES[v]
after stabilization is RES[v] =

⊕{
rdG(u,v)({u}), u ∈ Γ−G(v)

}
This expression is a complete

representation of v’s ancestors ordered through distance to v.

6 Conclusion

Describing distributed systems using r-operators is convenient due to the local expression
of computations occuring in the global system. When actually implementing scalable dis-
tributed algorithms, each processor local code has no knowledge of the global topology or
configuration. In addition, in strongly connected networks, the ordered ancestor list con-
struction presented in Section 5.2 builds at each node the list of all nodes in the network.
Using the scheme presented in [13] on top of our algorithm, we are then able to solve any
global computation task in a self-stabilizing way.

Max-plus algebra and the matrix representation take the orthogonal approach, using
global entities to model the whole system configuration. This permits proving very fine
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conditions on both circuits and associated operators in order that the distributed system
converges to a desirable configuration. While having a condition on each local operator
(being a strictly idempotent r-operator) is stronger than having a condition on each circuit
and associated operators (no absorbing circuit), it is easier using our approach (i) to write
generic proofs that work on any topology directed graphs, and (ii) to verify that a given
algorithm satisfies the conditions.

The main contribution of this paper is the connection between asynchronous iterations
and their matrix representation for the one hand, distributed systems and their different
scheduling policies for the other hand. This connection was done thanks to max-plus al-
gebra, which permitted to enhance significantly previous results in distributed computing,
such as [4, 19].
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