
Self-Stabilization with r-operators revisited

Sylvie Delaët† Bertrand Ducourthial∗ Sébastien Tixeuil‡

†LRI – CNRS UMR 8623, Université Paris Sud, France
∗Heudiasyc – UMR CNRS 6599, UTC, Compiègne, France

‡LRI – CNRS & INRIA Grand Large, Université Paris Sud, France

Abstract

We present a generic distributed algorithm for solving silents tasks such as shortest
path calculus, depth-first-search tree construction, best reliable transmitters, in directed
networks where communication may be only unidirectional. Our solution is written for
the asynchronous message passing communication model, and tolerates multiple kinds
of failures (transient and intermittent).

First, our algorithm is self-stabilizing, so that it recovers correct behavior after finite
time starting from an arbitrary global state caused by a transient fault. Second, it tol-
erates fair message loss, finite message duplication, and arbitrary message reordering,
during both the stabilizing phase and the stabilized phase. This second property is most
interesting since, in the context of unidirectional networks, there exist no self-stabilizing
reliable data-link protocol. The correctness proof subsumes previous proofs for solutions
in the simpler reliable shared memory communication model.

1 Introduction

Historically, research in self-stabilization over general networks has mostly covered undi-
rected networks where bidirectional communication is feasible and carried out using shared
registers (see [6]). This model permits algorithm designers to write elegant algorithms and
proofs. To actually implement such self-stabilizing algorithms in real systems, where proces-
sors communicate by exchanging messages, transformers that preserve the self-stabilizing
property of the original algorithm are needed. Such transformers are presented in [2, 6],
and are based on variants of the alternating bit protocol or the sliding window protocol. A
common drawback to these transformers is that they require the receiver of a message to be
able to send acknowledgments to the emitter periodically, so that the underlying message
passing network must be bidirectional for the transformer to be correct.

Hence, in directed networks, acknowledgment-based transformers cannot be used to
run self-stabilizing algorithms in message passing networks, since it is possible that there
exist two neighbors in the network that are only connected through a unidirectional link.
Moreover, in directed message passing networks, it is generally easy to maintain the set of
input neighbors (by checking who has ”recently” sent a message), but it is very difficult

1

(if not impossible) to maintain the set of output neighbors. For instance, in a satellite or a
sensor network, a transmitter is generally not aware of who is listening to the information it
communicates. Note also that wireless networks can be directed message passing networks,
especially when power of emissions are not uniform: a node i can receive a message from j
while the converse is not possible.

So, self-stabilizing algorithms that use implicit neighborhood knowledge to compare
one node state with those of its neighbors and to check for consistency – a large subset of
self-stabilizing algorithms – cannot be used in directed networks.

The particular system hypothesis and the lack of transformers has led authors to design
specific self-stabilizing algorithms for directed networks [1, 4, 10, 5, 11, 8].

The solutions [1, 4, 5, 8] are “classical” in the sens that a self-stabilizing layer (or mech-
anism) is added to a well known (non-stabilizing) protocol to ensure stabilization. This
typically induces a potential overhead (extra knowledge, variables, processing are needed).
In contrast, [10, 11] are condition based: either the algorithm satisfies the condition (and is
then stabilizing) or not (and is not stabilizing). So, no overhead is induced by adding the
self-stabilizing property to the original algorithm (the original algorithm is not changed).
The two solutions of [10, 11] are generic (they can solve multiple problem instances with a
single parameterized algorithm), but perform in the unidirectional shared memory model.
In [11], the atomicity of communication is composite: in one atomic step, a processor is able
to read the actual state of all of its neighbors and update its state, while in [10], the atomicity
is read-write: in one atomic step, a processor is able to read the state of one neighbor, or
update its state, but not both. Both approaches cannot be transformed to perform in unidi-
rectional message passing networks using known self-stabilizing transformers (see above).
The two solutions of [4, 5, 8] are specific (a single problem is addressed, the routing problem
in [4], the census problem in [5], and the group communication problem in [8]), but perform
in directed message passing networks. While [4, 8] assume reliable communications (links
do not lose, duplicate or reorder messages), [5] tolerates message loss, duplication, and re-
ordering. [1] proposes a generic solution in the message passing model, but assumes that
communications are reliable (with FIFO links), that nodes have unique identifiers, and that
the network is strongly connected, three hypothesis that we do not make.

Our Contribution. In this paper, we concentrate on providing a generic algorithm (that
can be instantiated to solve silent tasks, see [7]), that performs on general directed mes-
sage passing networks. Our solution is not only self-stabilizing (it recovers in finite time
from any initial global state), it also tolerates fair message loss, finite duplication, and arbi-
trary reordering both in the stabilizing and in the stabilized phase. Nice properties of our
approach are that the network need not be strongly connected, and nodes need not know
whether the network contains cycles, and no upper bound on the network size, diameter,
or maximum degree. However, if such information is known, the stabilization time can be
significantly reduced.

We provide, in more details, a parameterized algorithm that can be instantiated with a
local function. Our parameterized algorithm enables a set of silent tasks to be solved self-
stabilizingly, provided that these tasks can be expressed through local calculus operations

2

Reference Overhead Atomicity Reliability Algorithm
[1] yes send/receive atomicity reliable generic (total order)
[4] yes send/receive atomicity reliable specific (routing)
[5] yes send/receive atomicity unreliable specific (census)
[8] yes send/receive atomicity reliable specific (group communication)

[11] no composite atomicity reliable generic (partial order on S)
[10] no read/write atomicity reliable generic (total order on S)

This paper no send/receive atomicity unreliable generic (total order on S)

Figure 1: A summary of related self-stabilizing algorithms in directed networks.

called r-operators that operate over a set S. The r-operators are general enough to permit
applications such as shortest path calculus and depth-first-search tree construction on arbi-
trary graphs while remaining self-stabilizing.

The main differences between this paper and the most closely related work [10] are
twofold. First, we consider an unreliable message passing communication network, instead
of a reliable shared memory system. As noted above, unidirectional read-write systems can-
not be emulated in message passing networks by means of a known self-stabilizing trans-
former. The key difference is that shared registers may hold only the latest written value,
while the communications links we consider may hold an unbounded number of (possi-
bly erroneous) messages that can appear again once the network appears to have stabilized
(due to the reordering assumption). Second, the proof technique that we use here is based
on a completely different idea than that of [10]. In [10], it is first proved that a terminal
configuration is eventually reached starting from any initial configuration, and then (using
a complicated induction argument) that this terminal configuration is in fact legitimate. In
contrast, in message passing networks, self-stabilizing systems cannot be terminating (oth-
erwise deadlock situations could occur, see [14]), so the proof argument here is to prove the
following two invariants: (i) the state of each processor is eventually lower than (or equal to)
its legitimate state (in the sense of the order defined on S), and (ii) the state of each processor
is eventually greater than (or equal to) its legitimate state, so that the state of each processor
is eventually legitimate. Not only is this new proof simpler and more elegant than that of
[10], it also permits algorithm designers to abstract the communication media that is used,
so that the same proof applies for shared memory and unreliable message passing systems.

In Figure 1, we capture the key differences between our protocol and the aforementioned
related solutions ([1, 4, 10, 5, 11]) in general directed networks regarding the following cri-
teria: communication, overhead, atomicity, reliability, and algorithm nature.

Outline. Section 2 presents a model for distributed systems we consider. Section 3 de-
scribes our self-stabilizing parameterized algorithm for general directed networks, along
with our system hypothesis. Our main result is presented, and is illustrated by an example.
The sketch of the proof of correctness is also given. Section 4 details the proof. An interesting
point is that this proof subsumes previous proofs for solutions in the simpler reliabl shared
memory model. In Section 5 we show how the very algebraic nature of our scheme makes
it suitable for ad hoc and sensor wireless networks, considering the unreliable communica-
tion mechanisms that are provided in those networks. Concluding remarks are proposed in

3

Section 6.

2 Model

Processors and links. Processors use unidirectional communication links to transmit mes-
sages from an origin processor o to a destination processor d. The link is interacting with
one input port of d and one output port of o. A link may hold an arbitrary number of mes-
sages (although our algorithm also works for bounded capacity links). Depending upon the
way messages are handled by a communication link, several properties can be defined on a
link. A complete formalization of these properties is proposed in [16]. We only enumerate
those that are related to our algorithm. There is a fair loss when, infinitely many messages
being emitted by o, infinitely many messages are received by d. There is finite duplication
when every message emitted by o may be received by d a finite (yet unbounded) number of
times. There is reordering when messages emitted by o may be received by d in a different
order than that they were emitted. There is eventual delivery if any message that is not lost is
eventually received (i.e. no message remains forever in a communication link).

Distributed system. A distributed system is a 2-tuple S = (P,L) where P is the set of pro-
cessors and L is the set of communication links. Such a system is modeled by a directed graph
(also called digraph) G = (V, E), defined by a set of vertices V and a set E of edges (v1, v2),
which are ordered pairs of vertices of V (v1, v2 ∈ V). Each vertex u in V represents a pro-
cessor Pu of system S . Each edge (u, v) in E represents a communication link from Pu to Pv

in S. In the remainder of the paper, we use interchangeably processors, nodes, and vertices
to denote processors, and links and edges to denote communication links. Also, we use the
standard notation A \B to denote the set of elements that are in set A but nor in set B.

Graph notations. The in-degree of a vertex v of G, denoted by δv is equal to the number
of vertices u such that the edge (u, v) is in E. The incoming edges of each vertex v of G
are indexed from 1 to δv. A directed path Pv0,vk

in a digraph G(V, E) is an ordered list of
vertices v0, v1, . . . , vk ∈ V such that, for any i ∈ {0, . . . , k − 1}, (vi, vi+1) is an edge of E
(i.e., (vi, vi+1) ∈ E). The length of this path is k. If each vi is unique in the path, the path is
elementary. The set of all elementary paths from a vertex u to another vertex v is denoted
by Xu,v. A cycle is a directed path Pv0,vk

where v0 = vk. The distance between two vertices
u, v of a digraph G (denoted by dG(u, v), or by d(u, v) when G is not ambiguous) is the
minimum of the lengths of all directed paths from u to v (assuming there exists at least one
such path). The diameter of a digraph G is the maximum of the distances between all couples
of vertices in G between which a distance is defined. Finally, we denote as Γ−v (resp. Γ+

v)
the set of predecessors (resp. successors) of a vertex v ∈ V , that is the set of all vertices
u ∈ V such that there exists a path starting at u (resp. v) and ending at v (resp. u). The
predecessors (resp. successors) u of v verifying dG(u, v) = 1 (resp. dG(v, u) = 1)) are called
direct-predecessors (resp. direct-successors) and their set is denoted Γ−1

v (resp. Γ+1
v).

4

Configurations and executions. The global system state, called a system configuration (or
simply configuration) and generally denoted c, is the union of (i) the states of memories of
processors of P and (ii) the contents of communication links of L. The set of configurations
is denoted by C. The part of information in a configuration c ∈ C related to the processors of
P is denoted by c |P ; the part related to a given processor P ∈ P is denoted by c |P .

Starting from an initial configuration c1, an execution ec1 = c1, a1, c2, a2, . . . is a maximal
alternating sequence of configurations and actions of such that, for any positive integer i, the
transition from configuration ci to configuration ci+1 is done through execution of action ai.
Maximal means that either the computation is infinite, or the computation is finite and no
action is enabled in the final configuration. The notations Ec, EC and E denote respectively
the set of all executions starting (i) from the initial configuration c, (ii) from any configuration
c ∈ C ⊂ C, or (iii) from any configuration of C (EC = E). The ordered list c1, c2, . . . ∈ C of the
configurations of an execution e = c1, a1, c2, a2 . . . is denoted by e |C . In the rest of this paper,
we adopt the following convention: if ci ∈ e |C appears before cj ∈ e |C , then i < j.

Distributed algorithms resolve either static tasks (e.g., distance computation) or dynamic
tasks (e.g., token circulation). The aim of static tasks is to compute a global result, which
means that after a running time, processors always produce the same output (e.g., the dis-
tance from a source). A static task is characterized by a final processor output oP for any
processor P ∈ P , called legitimate output. A legitimate configuration c for this task satisfies
c |P = oP for any processor P ∈ P . A distributed protocol designed for solving a given
static task is correct if the distributed system S running this protocol reaches in finite time a
legitimate configuration for this task.

Self-stabilization. A set of configurations C ⊂ C is closed if, for any c ∈ C, any possible
execution ec ∈ Ec of system S whose c is initial configuration only contains configurations
in C. A set of configurations C2 ⊂ C is an attractor for a set of configurations C1 ⊂ C if,
any execution ec ∈ EC1 contains a configuration of C2. Let C ⊂ C be a non-empty set of
configurations. A distributed system S is C-stabilizing if and only if C is a closed attractor
for C: any execution e of E contains a configuration c of C, and any further configurations
in e reached after c remains in C. Finally, consider a static task for the distributed system
S, and let L ⊂ C be the set of the legitimate configurations of S. A distributed protocol
designed for solving this static task is self-stabilizing if the distributed system S running this
protocol is L-stabilizing.

3 Parametric message passing PA-MP algorithm

In this section, we first describe the distributed system we consider before defining the
PA-MP parametrized algorithm. We then introduce the r-operators, that are used as pa-
rameters. These operators are derivated from the associative, commutative and idempotent
operators (such as the minimum on the integers).

5

3.1 System

Let S = (P,L) be the distributed system we consider in the following. The associated
graph composed of processors of P and communications links of L is fixed, directed and
unknown to the processors of P . Communications between processors are performed by
message passing (directed message passing network).

Each processor v of P is endowed with a local real-time clock mechanism. However,
those clocks are use for the sole purpose of being able to perform action based on some
timeout mechanism, so our clocks are neither synchronized nor have bounded drift. Each
processor v of P owns an incoming memory denoted as INv, which is supposed to be un-
alterable; this can be implemented by a ROM memory (e.g., EPROM), or a memory that is
regularly reloaded by any external process (human interface, captor, other independent al-
gorithm, etc.). The value of this memory (that will never change) is called initialization value.
For most provided applications, this initialization value is equal to the identity element of
the set S (except for a limited set of predecessors, see below). Moreover, for each link, start-
ing at processor u ∈ P and ending at processor v, there exists a corresponding incoming
memory INu

v in v, which is used by v to store incoming messages sent by u. Note that INu
v

contains only one message. A processor v only stores the latest received message from u.
In addition, processor v owns an output memory denoted by OUTv. All these memories are
private, and can only be read or written by v (note that v only reads INv, and only writes
OUTv). In the following, we identify the name of a memory with the value it contains. In the
same way, a message is considered as equivalent to its value.

Processor v performs a calculation by applying an operator / (see § 3.3) on all of its
incoming memories, and stores the result in its output memory OUTv.

3.2 Algorithm

In this paper, we design a parameterized distributed protocol for Message Passing systems
(denoted as PA-MP). This protocol is composed of one local parameterized algorithm per
processor v of P , denoted by PA-MP|/v , where /v is an operator used as a parameter (pa-
rameters could be slightly different on each processor, see Hypothesis 2).

This local algorithm calls three helper functions: Storev(m, u) stores in the local register
INu

v the contents of the message m; Evaluatev(/v) stores in the local register OUTv the result
of the local computation /v(INv, IN

u1
v , . . . , INuk

v) where u1, . . . , uk are direct predecessors of
v (∈ Γ−1

v); Forwardv sends OUTv to w for each processor w ∈ Γ+1
v .

The local algorithm PA-MP|/ on processor v is composed of two guarded actions, which
are atomic sets of instructions (actions) executed when a pre-condition (guard) is fulfilled
(see Figure 2).

The guard of Rule R1 is true when a message m from u is received, while the guard of
Rule R2 makes use of a timeout mechanism. So, our algorihtm is both message-driven (an
action is executed when a new message is received) and timeout-driven (an action is exe-
cuted when a timeout expires). In message passing systems, timeouts is required for stabi-
lization purposes since [14] proved that no self-stabilizing algorithm could exist in message
passing systems if no kind of timeout mechanism is available. The reason for this impossi-

6

R1 Upon receipt of a message m sent by u:
if m 6= INu

v , then
Storev(m, u)
Evaluatev(/v)
Forwardv

end if
R2 Upon timeout expiration:

Evaluatev(/v)
Forwardv

reset the timeout

Figure 2: Local algorithm PA-MP|/v on processor v.

bility result is that the system may start from an arbitrary global state where no messages
are in transit, so if no node has a sending action that is triggered by a spontaneous timeout
action, then the system is deadlocked.

RuleR2 is also used in case of message loss. In a typical implementation of our algorithm
in an actual system, the timeout mechanism should be tuned accordingly to the loss rate of
the communication links, in order that not too many spontaneous messages are emitted,
and that the stabilization time remains reasonable. Tuning this timeout is clearly beyond the
scope of this paper.

3.3 r-operators

An infimum (hereby called an s-operator) ⊕ over a set S is an associative, commutative and
idempotent binary operator. Such an operator defines a partial order relation ¹⊕ over the
set S by x ¹⊕ y if and only if x⊕y = x and then a strict order relation ≺⊕ by x ≺⊕ y if
and only if x ¹⊕ y and x 6= y.

It is generally assumed that there exists a greatest element on S, denoted by e⊕, and
verifying x ¹⊕ e⊕ for every x ∈ S. Hence, the (S,⊕) structure is an Abelian idempotent
semi-group with e⊕ as identity element. The prefix semi means that the structure cannot be
completed to obtain a group, because the law ⊕ is idempotent (see [3]).

When parameterized by such an s-operator ⊕, the PA-MP parametric local algorithm
converges. However, some counter examples show that it is not self-stabilizing [10]. Con-
sider a loop with a single node initialized with 1 and using the operator min. The output of
the node should always be 1. Now suppose that a fault introduces a 0 in the output register
of the node (which is sent to itself). Then the node will never produce the correct result.

In [9], a distorted algebra — the r-algebra — is proposed. This algebra generalizes the
Abelian idempotent semi-group, and still allows convergence of wave-like algorithms: the
three basic properties (associativity, commutativity, idempotency) defining the s-operators

7

are generalized using a mapping (usually denoted r). For instance, the binary operator ¦
defined on the integers by x¦y = x + 2y is not associative. However we have x¦(y¦z) =
(x¦y)¦2z = x¦y¦2z = x + 2y + 4z and ¦ is r-associative with the mapping x 7→ 2x.

The following definition summarizes the conditions of existence of the r-operators. The
first one (right identity element) is classical. Here, the structure is not necessarily commuta-
tive, and only a right identity element is required. The second one (weak left cancellation) is
very useful for allowing some simplifications in structures that do not admit inverses (such
as idempotent semi-groups). It can be interpreted as follows: if there exists no element x
in the definition set that does not agree with the fact that y = z, then y = z. Almost all
useful operators are weak left cancellative, including the laws of groups (eg. addition on the
integers) and of semi-groups (eg. minimum on the integers).

Definition 1 The binary operator / on S is an r-operator if there exists a surjective mapping r
called r-mapping, such that the following conditions are fulfilled:

(i) right identity element: ∃e/ ∈ S, x / e/ = x.
(ii) weak left cancellation: ∀y, z ∈ S, (∀x ∈ S, x / y = x / z) ⇔ (y = z)
(iii) r-associativity: ∀x, y, z ∈ S, x /(y / z) = (x / y) / r(z);
(iv) r-commutativity: ∀x, y ∈ S, r(x) / y = r(y) / x;
and (v) r-idempotency: ∀x ∈ S, r(x) / x = r(x)

For example, the operator minc(x, y) = min(x, y + 1) (for minimum and increment) is an
r-operator on Z ∪ {+∞}, with +∞ its right identity element.

Given an r-operator /, one can show that the r-mapping r is unique, and is an isomor-
phism of (S, /). Moreover, the r-operator induces an s-operator on S by x / y = x⊕r(y)
(for instance, the r-operator minc induces the s-operator min). We also have e⊕ = e/ and
r(e⊕) = e⊕.

If no fault appears in the distributed system S, ourPA-MP algorithm stabilizes when it is
parameterized by any idempotent r-operator / [9]. Idempotent r-operators verify x ¹⊕ r(x)
for any x ∈ S. This last property leads to the definition of strict idempotency, verified for
instance by the r-operator minc:

Definition 2 An r-operator / is strictly idempotent if, for any x ∈ S \ {e⊕}, we have x ≺⊕ r(x).

Note that, among others interesting properties, while it is not necessarily commutative,
an r-operator / satisfies ∀x, y, z ∈ S, x / y / z = x / z / y, which means that the result of the
PA-MP algorithm does not rely on any ordering of the neighborhood.

Finally, binary r-operators can be extended to accept any number of arguments. This
is useful for our algorithm because a processor computes a result with one value per di-
rect predecessor plus its own initialization value. An n-ary r-operator / consists in n − 1
binary r-operators based on the same s-operator, and we have, for any x0, . . . , xn−1 in S,
/(x0, . . . , xn−1) = x0⊕r1(x1)⊕ · · ·⊕rn−1(xn−1). If all of these binary r-operators are (strictly)
idempotent, the resulting n-ary r-operator is said (strictly) idempotent.

8

3.4 Hypotheses

In this section, we formalize some hypotheses, introduce some notations, and give basic
lemmas that are used throughout the proofs.

Hypothesis 1 In the distributed system S, links may (fairly) lose, (finitely) duplicate, and (arbitrar-
ily) reorder messages that are sent by neighboring processors. However, any message sent by u on the
link (u, v) that is not lost is eventually received by v (i.e. no message may remain in a communication
link forever).

This is a weak hypothesis on link’s reliability. However, the following lemma is imme-
diate.

Lemma 1 Let consider a communication link (u, v) ∈ L. If the origin node u keeps sending the
same message infinitely often, then this message is eventually received by the destination node v.

Hypothesis 2 In the distributed system S running the PA-MP algorithm, any processor v runs the
local algorithm defined in Figure 2 and parameterized by a strictly idempotent (δv+1)-ary r-operator.
Moreover, all these r-operators are defined on the same set S, and are based on the same s-operator⊕,
with e⊕ their common identity element.

In other words, this hypothesis ensures a form of homogeneity in the distributed system
we consider. The following lemma is a direct application of Hypothesis 2, Definition 1, and
Evaluate function:

Lemma 2 Let /v be the r-operator used by processor v. Then the computation of the Evalua-
tev(/v) function can be rewritten as:
/v (INv, IN

u1
v , . . . , INuk

v) = INv⊕ru1
v (INu1

v)⊕ · · ·⊕ruk
v (INuk

v).

Hence, there is one r-mapping per communication link. We now define the composition
of these mappings along a path (Xu,v denotes the set of all elementary paths from u to v).

Definition 3 Let Pu0,uk
∈ Xu0,uk

be a path from processor u0 to processor uk, composed of the edges
(ui, ui+1) (0 ≤ i < k). Let ri

i+1, 0 ≤ i < k, be the r-mapping associated to the link (ui, ui+1). The
r-path-mapping of Pu0,uk

, denoted by rPu0,uk
, is defined by the composition of the r-mappings ri

i+1,
for 0 ≤ i < k: rPu0,uk

= rk−1
k ◦ · · · ◦ r0

1.

Our proofs of correctness (Lemmas 7 and 12) assume that any result produced on a node
with the Evaluatev(/v) function (see Lemma 2) is either the initial value of the node (INv)
or one of its incoming value transformed by an r-mapping (rui

v (INu1
v)). For this purpose, we

admit that the order¹⊕ defines a total order. Note that with stronger nodes synchronization,
such hypothesis is not necessary (see [11], where a proof for composite atomicity in a shared
memory model is given).

Hypothesis 3 The order relation ¹⊕ is a total order relation: ∀x, y ∈ S, either x ¹⊕ y or y ¹⊕ x.

9

Since the order ¹⊕ is total, when it is clear from the context, in the remaining of the
paper, we use “x is smaller than y” (or “y is larger than x”) to denote x ¹⊕ y.

Hypothesis 4 The set S is either finite, or any strictly increasing infinite sequence of values of S is
unbounded (except by e⊕).

Assuming Hypothesis 3, Hypothesis 4 specifies that the values used in the distributed
system S can be, for instance, integers but not reals. Note that truncated reals (as in any com-
puter implementation) are also convenient. Hypotheses 2 and 4 give the following lemma:

Lemma 3 The set S is either finite or any r-mapping r used in S verifies: ∀x ∈ S\{e⊕}, r(x) ≺⊕ e⊕.

Hypothesis 5 Each processor v admits at least one predecessor u ∈ Γ−v such that INu 6= e⊕, u is
called a non-null processor.

In the following, we denote by ÔUTv the legitimate output of processor v. Moreover, for
any processor v, any predecessor u of v and any configuration c, we denote by OUTv(c) and
INu

v (c) the value of the memories OUTv and INu
v in the configuration c.

3.5 Our result

Our protocol is dedicated to static tasks. Such tasks (e.g., the distance computation from a
processor u) are defined by one output per processor v (e.g., the distance from u to v), which
is the legitimate output of v. With our PA-MP algorithm, this means that, after finite time,
each processor v ∈ P should contain this output (e.g., d(u, v)) in its outgoing memory OUTv.
To solve static tasks with the PA-MP distributed algorithm, one must use an operator as
parameter (e.g., minc for distance computation) such that the distributed system S reaches
the legitimate configurations and do not leave them thereafter (i.e., any processor reaches
and then conserves its legitimate output). In this paper, we prove that if the operator is used
to parameterize the PA-MP distributed algorithm, then it is self-stabilizing, according to the
hypotheses of § 3.4.

Let us define the legitimate outputs of the processor using the r-operators that param-
eterize the PA-MP algorithm. For instance, to solve the distance computation problem, we
state S = N ∪ {+∞}, and each local algorithm is parameterized by the minc r-operator (see
§ 3.3). All processors v verify INv = +∞ except a non null processor u verifying INu = 0
(0 is absorbing while +∞ is the identity element for minc). Each r-path-mapping adds its
length to its argument (i.e., rP (x) = x + length(P)), and we have:

d(u, v) = min

(
INv, min

w∈Γ−v ,Pw,v∈Xw,v

{
rPw,v (INw)

}
)

We now define the legitimate output of a processor v in the general case.

Definition 4 (Legitimate output) The legitimate output of processor v is:

ÔUTv = INv⊕
⊕

u∈Γ−v ,Pu,v∈Xu,v

rPu,v (INu)

10

The following lemma is given by Lemma 3, Hypothesis 5 and Definition 4; it is used for
proving Theorem 1.

Lemma 4 The set S is either finite or any processor v ∈ P verifies: ÔUTv ≺⊕ e⊕.

Now we defined ÔUTv, we define the set of legitimate configurations L ⊂ C of the proto-
col PA-MP (see Section 3 and Figure 2):

Definition 5 (Legitimate configuration) For any configuration c ∈ L, for any processor v ∈ P ,
OUTv(c) = ÔUTv.

Finally, after defining the distributed system S , the generic algorithm PA-MP, the r-
operators used as parameters and some Hypotheses, we can express the main result of this
paper as follows, which is proved in the following section:

Theorem 1 AlgorithmPA-MP parameterized by any strictly idempotent r-operator is self-stabilizing
in directed message passing networks, despite fair loss, finite duplication and reordering of messages.

The message passing model that we consider leads to hard difficulties (compared for in-
stance to shared memory model [10]). Indeed, with this model it is possible that an initially
wrong message remains in a link for quite a long (finite) time (e.g. after several new mes-
sages have been exchanged) and then is delivered to cause havoc in the system. Note that to
reuse [10] in unreliable message passing systems, a self-stabilizing data link protocol is re-
quired, yet no such data link protocol exists in unidirectional networks. So, our approach is
the first to date to support multiple metrics in (realistic) unreliable unidirectional networks.
We hereby give the main proof arguments. Details are provided in Section 4.

Scketch of proof: Despite weak hypotheses on the communication capabilities of every link
(u, v), and possible transient failures that could corrupt data in links or nodes communica-
tion buffers OUTu and INu

v , we have to prove that eventually any input value read by v in INu
v

has effectively been sent by u. Even though this is true, it does not imply that a value sent by
u will be received by v. Hence, a legitimate value sent by u could be lost in (u, v), while the
inputs of u that were used to produce it disappeared, either because of transient failures, or
simply because they were overwritten by other incoming values. This means that legitimate
values could completely be removed from S.

We actually have to prove that a value received by v on (u, v) has been sent by u after
a given configuration. This configuration is chosen such that the value of u fulfills some
predicates. One of those predicates is that this value has been built using incoming values
of u sent by its predecessors after a given configuration. This permits to use recursivity along
paths of the network.

By weak fairness, any processor v calls Evaluate for updating its output OUTv using its
inputs. By properties of the r-operators, and using the total order Hypothesis (Hyp. 3), this
output is either built with INv or with a received value, say INu

v . After the last transient fail-
ure, and since duplications are finite on the link (u, v), any value received by v has been sent
by u. Since every perturbation on the link is finite, there is a finite number of configurations
between the sending of the value by u and its receipt by v. Thus, if we consider a config-
uration that is far enough in the execution, v must have updated its output using a value

11

received by u after u has itself updated its output too. This way, we can prove that any out-
put is smaller or equal than the legitimate value, which means that every large unlegitimate
value eventually disappears from the network.

To complete the proof of correctness, we still have to prove that every processor v may
not remain with a smaller value than its legitimate one. Suppose this is the case, then
by reusing a recursive reasoning, we obtain an infinite path of processors, such that their
outputs are strictly increasing along the path (by the strict idempotency property of the r-
operators). Since such a path does not exists in the network (that is finite), it is a cycle. This
means that, successive outputs of v increase without ever reaching its legitimate value. That
contradicts Hypothesis 4. 2

3.6 Example

Some r-operators have been proposed to compute the minimum distance tree and forest,
the shortest path tree and forest, the best reliable paths from some transmitters, the depth
first search tree... More complex applications [12] have also been proposed by combining
several r-operators.

For instance, when the local algorithms are parameterized by the minc r-operator, the
system stabilizes to a minimum distance tree when all the node are initialized with eminc =
+∞ except one (the root) initialized with 0 (see Figure 3).

0

1

0

1

3

4

2

 +
 8
 +
 8

 +
 8

 +
 8

 +
 8

Figure 3: The minc r-operator on each node leads to a minimum distance tree computation
in a unreliable unidirectional network.

4 Proof of Correctness

This section is divided into six parts. First, we give basic results related to the operators.
Second, we prove that eventually the output of each processors is updated using its inputs.
Third, we show that eventually each received message was sent in the past. Fourth, we
prove that each processor’s output is upper bounded. Fifth, we prove that each processor

12

eventually reaches its legitimate value. Finally, we present complexity results regarding our
distributed protocol.

4.1 Properties of the operators

Any r-operator / defined on S induces an s-operator ⊕ on S by x⊕r(y) = x / y. Since the
s-operator defines an order relation ¹⊕ by x ¹⊕ y ≡ x⊕y = x, the Lemma 5 holds. Since r
is an homomorphism of (S,⊕), the Lemma 6 holds.

Lemma 5 For all x, y, z ∈ S, if x⊕y = z then z ¹⊕ x and z ¹⊕ y.

Lemma 6 For all x, y ∈ S, if x ¹⊕ y, then r(x) ¹⊕ r(y).

4.2 Outputs eventually result from computations

We begin by defining some predicates on configurations.

Definition 6 Let P0a, P0b and P0c be predicates on configurations c ∈ C:

P0a(c) ≡ ∀v ∈ P, OUTv(c) ¹⊕ INv

P0b(c) ≡ ∀v ∈ P, ∀u ∈ Γ−1
v , OUTv(c) ¹⊕ ru

v (INu
v (c))

P0c(c) ≡ ∀v ∈ P, ∀u ∈ Γ−1
v , OUTv(c) = INv

∨ OUTv(c) = ru
v (INu

v (c))

Now, the set Q0 ⊂ E includes executions where processors eventually update their out-
put. Every execution e of Q0 reaches a configuration ci0 such that any subsequent configu-
ration cj satisfies Predicates P0a, P0b and P0c.

Definition 7 Let Q0 ⊂ E be the set of executions such that:

∀e ∈ Q0, ∃ci0 ∈ e |C , ∀cj ∈ e |C with i0 ≤ j,

P0a(cj) ∧ P0b(cj) ∧ P0c(cj)

We now prove that, thanks to weak fairness hypothesis, any execution of E is in Q0.

Lemma 7 Every execution of the PA-MP algorithm in the distributed system S is in Q0.

Proof: Let e ∈ E be an execution. By weak fairness, every processor v ∈ P eventually
executes a rule. By definition of PA-MP (see Figure 2), any execution of either rule at some
node v processes Evaluatev(/v). Then, for any processor v ∈ P , there exists a configuration
civ ∈ e |C where processor v satisfies OUTv(civ) = /v (INv, IN

u1
v (civ), . . . , INuδv

v (civ)).
By Lemma 2, we have OUTv(civ) = INv⊕ru1

v (INu1
v (civ))⊕ · · ·⊕ruδv

v (INuδv
v (civ)). Then, by

Lemma 5, we have OUTv(civ) ¹⊕ INv and OUTv(civ) ¹⊕ ru
v (INu

v) for any direct-predecessor
u of v. Hence, both P0a(civ) and P0b(civ) hold. Now, since ¹⊕ defines a total order relation
(Hypothesis 3), either OUTv(civ) = INv or OUTv(civ) = ru

v (INu
v (civ)) for at least one predeces-

sor u of v. This gives P0c(ci0) with i0 = maxv∈P iv.
Since any action of v executed upon receipt of a message or upon timeout expiration

calls Evaluate, any subsequent configuration satisfies Predicates P0a to P0c. 2

13

4.3 Eventually, received messages were previously sent

We define the set Q1 as the subset of executions E for which any received value has actually
been sent in the past. All executions e of Q1 reach a configuration ci1 such that, for any
subsequent configuration cj and any communication link (u, v), there exists a configuration
cjuv in which v sent the value contained in INu

v in configuration cj .

Definition 8 Let Q1 ⊂ E be the set of executions that satisfy:

∀e ∈ Q1, ∃ci1 ∈ e |C{ ∀cj ∈ e |C with i1 ≤ j,∀(u, v) ∈ L,

∃cjuv ∈ e |C with juv ≤ j, OUTu(cj) = INu
v(cjuv)

We now prove that, thanks to Hypothesis 1 related to the properties of the communica-
tions links, any execution is in Q1.

Lemma 8 Every execution of the PA-MP algorithm in the distributed system S is in Q1.

Proof: Let e ∈ E be an execution, and consider two processors u and v such that (u, v) is a
communication link of L. By definition of PA-MP, processor v sends the value of its OUTv

variable infinitely often to each of its direct successors. By Hypothesis 1, every message that
is not lost is eventually delivered. Moreover, every message may be duplicated only a finite
number of times. It follows that, after a finite amount of time, only messages that were sent
by v are received by all of its direct successors. Hence, there exists a configuration cj ∈ e |C
where the incoming value in INu

v has actually been sent by u in a previous configuration cjuv :

INu
v (cj) = OUTu(cjuv) with juv ≤ j (1)

After all initial erroneous messages between u and v have been received (including du-
plicates), and after a configuration where the above property holds, this property remains
thereafter on this link. Since all links conform to the same hypotheses, there exists a configu-
ration ci1 ∈ e |C where the property holds (and remains so thereafter) for any communication
link. We conclude that e ∈ Q1. 2

Note that this lemma does not indicate that any sent value is eventually received. Indeed,
it may happen that a message is lost while traversing a link, and the variable it was built
with is erased by a new value. Then, any re-sending would not provide the original value,
that would not be received again. We now generalize the notation we introduced in the
previous proof.

Definition 9 Let us consider an incoming value INu
v (cj) on processor v in the configuration cj .

Then we denote by cjuv the configuration in which the value INu
v (cj) has been sent by u, provided

that this configuration exists.

The previous lemma indicates that, for any execution e ∈ E , there exists a configuration
ci1 from which cjuv exists for any subsequent configuration cj (i1 ≤ j), and any communica-
tion link (u, v). However, as captured in Figure 4, the definition of Q1 gives no guarantees
about cjuv appearing after configuration ci1 (that is i1 ≤ juv).

14

e
ci1 cj

part of the configuration where cjuv can be found

c1

Figure 4: According to Q1, configuration cjuv exists but could appear before ci1 .

We now introduce additional sets of executions. The following definition, illustrated in
Figure 5, indicates that, for any execution in Q1b, from a given configuration ci1b

, any given
configuration ci admits a configuration ci′ such that any configuration cjuv (with i′ ≤ j)
appeared after ci (i.e., i ≤ juv).

Definition 10 Let Q1b ⊂ E be the set of executions that satisfy:

∀e ∈ Q1b, ∃ci1b
∈ e |C



∀ci ∈ e |C with i1b ≤ i,∃ci′ ∈ e |C with i ≤ i′,
∀cj ∈ e |C with i′ ≤ j, ∀(u, v) ∈ L,

cjuv ∈ e |C ∧ i ≤ juv ≤ j

e
ci cj

part of the configuration where cjuv can be found

c1 ci1b ci’

Figure 5: According to Q1b, from a configuration ci1b
, configurations cjuv can be found later

than any given configuration ci.

We show now that, thanks to weak fairness, every execution is in Q1b.

Lemma 9 Every execution of the PA-MP algorithm in the distributed system S is in Q1b.

Proof: Let e ∈ E be an execution that is not in Q1b. From Lemma 8, e is in Q1 and, from
a configuration ci1 ∈ e |C , for every configuration cj and every link (u, v), the configuration
cjuv exists. Now, let us consider configurations ci, ci′ and cj in e |C such that i1 ≤ i ≤ i′ ≤ j.
If e 6∈ Q1b, then configuration cjuv always appears before ci, even if ci′ (and then cj) is as far
as possible from ci (see Figure 6). This means that the values produced by processor u after
cjuv were never received, that contradicts Lemma 1.

e
ci cjc1 cjUV ci’ci1

Figure 6: If e 6∈ Q1b, the configuration cjuv always appears before ci.

2

15

4.4 Outputs are eventually smaller than (or equal to) legitimate values

Let us begin by defining two predicates P2 and P2b on configurations. If P2(c) holds, then, in
configuration c, each processor is smaller than all initial values of its predecessors increased
by some r-mappings (more precisely, for any processor v and any of its direct-predecessors
u, the output of v is smaller than the initial value of u transformed by the r-path-mapping
rPu,v of the path Pu,v from u to v). If P2b(c) holds, then, in the configuration c, the output of
each processor v is smaller (in the sense of ⊕) than its legitimate output.

Definition 11 Let P2 and P2b be predicates on configurations c ∈ C:

P2(c) ≡ ∀v ∈ P, ∀u ∈ Γ−v , ∀Pu,v ∈ Xu,v,

OUTv(c) ¹⊕ rPu,v(INu)
P2b(c) ≡ ∀v ∈ P, OUTv(c) ¹⊕ ÔUTv

We now define two sets of executions Q2 and Q2b. If an execution e is in Q2 (resp· Q2b),
then there exists a configuration in e from which every configuration satisfies P2 (resp. P2b).

Definition 12 Let Q2 and Q2b be two subsets of E :

∀e ∈ Q2, ∃ci2 ∈ e |C , ∀cj ∈ e |C with i2 ≤ j, P2(cj)
∀e ∈ Q2b, ∃ci2b

∈ e |C , ∀cj ∈ e |C with i2b ≤ j, P2b(cj)

We now prove that, first every execution of E is in Q2, and then that every execution of
E is in Q2b. This means that, while the processor’s outputs can be larger than the legitimate
values in the beginning of an execution, each processor eventually produces some outputs
that are smaller than or equal to its legitimate value. In other terms, any erroneous values
that are larger than legitimate values eventually disappear from S.

Lemma 10 Every execution of the PA-MP algorithm in the distributed system S is in Q2.

Proof: Let e ∈ E be an execution, and let us consider a processor v0 ∈ P , and one of its
direct-predecessor v1 ∈ Γ−1

v0
. By Lemma 7, e is in Q0. Then, there exists a configuration

ci0 ∈ e |C such that, for any subsequent configuration cjv0
∈ e |C (i0 ≤ jv0), Predicate P0b(cjv0

)
is satisfied: OUTv0(cjv0

) ¹⊕ rv1
v0

(INv1
v0

(cjv0
)).

Since e ∈ Q1, the above configuration cjv0
can be chosen after ci1 in e (i.e., i0 ≤ jv0

and i1 ≤ jv0) so that there exists a configuration cjv1v0
∈ e |C that appears before cjv0

(i.e.,
jv1v0 ≤ jv0) satisfying: OUTv1(cjv1v0

) = INv1
v0

(cjv0
). This gives:

OUTv0(cjv0
) ¹⊕ rv1

v0

(
OUTv1(cjv1v0

)
)

(2)

Since e ∈ Q1b, it is possible to choose configuration cjv0
in e |C in order to ensure that

cjv1v0
appears after ci0 . Hence, without loss of generality, we can state i0 ≤ jv1v0 and thus

P0a(cjv1v0
) holds. This means that OUTv1(cjv1v0

) ¹⊕ INv1
, and, from Lemma 6, we have:

rv1
v0

(OUTv1(cjv1v0
)) ¹⊕ rv1

v0
(INv1

).

16

Finally, we obtain the following relation, that remains true for configurations that appear
after cjv0

:
OUTv0(cjv0

) ¹⊕ rv1
v0

(INv1
) (3)

and this result remains true hereafter.
To iterate the above reasoning from vertex v1 (instead of v0) at configuration cjv1v0

(in-
stead of cjv0

), we must ensure that cjv1v0
appears after ci0 (to use Q0) and after ci1 (to use

Q1). Yet using the fact that e ∈ Q1b, the configuration cjv0
can be chosen as far as necessary

in e in order to ensure that the related configuration cjv1v0
happens after the configurations

ci0 and ci1 (see Figure 5). Hence, for any path vk, . . . , v0, there exist some configurations
cjvkvk−1

, . . . , cjv1,v0
, cjv0

such that the following relations (obtained from Equations 2 and 3)
remain true for the rest of the execution:

OUTv0(cjv0
) ¹⊕ rv1

v0
(OUTv1(cjv1v0

))
∧ OUTv0(cjv0

) ¹⊕ rv1
v0

(INv1
)

OUTv1(cjv1v0
) ¹⊕ rv2

v1
(OUTv1(cjv2v1

))
∧ OUTv1(cjv1v0

) ¹⊕ rv2
v1

(INv2
)

... ¹⊕
...

OUTvk
(cjvkvk−1

) ¹⊕ r
vk−1
vk (OUTv0(cjv1v0

))
∧ OUTvk

(cjvkvk−1
) ¹⊕ r

vk−1
vk (INvk−1

)

(4)

Then, for any predecessor vk of v0 and any path Pvkv0 ∈ Xvk,v0 from vk to v0, there exists
a configuration cjv0

such that the following remains true in any subsequent configuration:
OUTv0(cjv0

) ¹ rPvkv0
(INvk

). Hence there exists a configuration ci2 reached after all configu-
rations cjv0

(for any processor v0 ∈ P) and such that, for any further configuration cj (i.e.,
i2b ≤ j), we have P2(cj). This gives the lemma. 2

Lemma 11 Every execution of the PA-MP algorithm in the distributed system S is in Q2b.

Proof: Let us consider an execution e ∈ E . Since e ∈ Q2, there exists a configuration ci2 ∈ e |C
such that, for any subsequent configuration cj ∈ e |C (i.e., i2 ≤ j), P2(cj) holds:

∀v ∈ P, ∀u ∈ Γ−v , ∀Pu,v ∈ Xu,v, OUTv(cj) ¹⊕ rPu,v(INu)

Then, we have:
∀v ∈ P, OUTv(cj) ¹⊕

⊕

u∈Γ−v ,Pu,v∈Xu,v

rPu,v(INu)

Since e ∈ Q1, some of these configurations cj also satisfy predicate P0a. Without loss of
generality, we assume that P0a(cj) holds: OUTv(cj) ¹⊕ INv. Hence, we have:

∀v ∈ P, OUTv(c) ¹⊕ INv⊕
⊕

u∈Γ−v ,Pu,v∈Xu,v

rPu,v(INu)

This ends the proof, by Definition 4. 2

17

4.5 Legitimate values are eventually reached

Let us begin by defining a predicate on system configurations.

Definition 13 Let P3 be a predicate on configurations c ∈ C:

P3(c) ≡ ∀v ∈ P, OUTv(c) = ÔUTv

We now define the set of executions Q3, that corresponds to executions of E for which
every processor eventually reach its legitimate value: all executions of Q3 reach a configu-
ration ci3 such that, for any subsequent configuration cj , the outputs of every processor v in
cj are equal to their legitimate values.

Definition 14 Let Q3 ⊂ E be the set of executions that satisfy:

∀e ∈ Q3, ∃ci3 ∈ e |C , ∀cj ∈ e |C , with i3 ≤ j, P3(c)

We now prove that any execution is in Q3.

Lemma 12 Every execution of the PA-MP algorithm in the distributed system S is in Q3.

Proof: Let e ∈ E be an execution, and suppose that e 6∈ Q3. Since ¹⊕ defines a total order
(Hypothesis 3), we have:

∀ci3 ∈ e |C , ∃cj ∈ e |C , with i3 ≤ j,

∃v ∈ P, ÔUTv ≺⊕ OUTv(cj) ∨ OUTv(cj) ≺⊕ ÔUTv
(5)

By Lemma 11, e is in Q2b and there exist some configurations cj that satisfy both i3 ≤ j and
i2b ≤ j, so that OUTv(cj) ¹⊕ ÔUTv. Hence, Equation 5 becomes:

∀ci3 ∈ e |C , ∃cj ∈ e |C , with i3 ≤ j,

∃v ∈ P, OUTv(cj) ≺⊕ ÔUTv
(6)

By Definition 4 and Lemma 5, we have ÔUTv ¹⊕ INv. This gives OUTv(cj) ≺⊕ INv. Since
e ∈ Q0, there exist some configurations cj ∈ e |C satisfying both Equation 6 and P0c(cj), that
is i0 ≤ j. Without loss of generality, we suppose that P0c(cj) holds: ∃u ∈ Γ−1

v , OUTv(cj) =
ru
v (INu

v (cj)).
As OUTv(cj) ≺⊕ ÔUTv, we have ru

v (INu
v (cj)) 6= e⊕. Since ru

v (e⊕) = e⊕ (see § 3.3), we
have INu

v (cj) 6= e⊕. Then, by Definition 2, we have INu
v (cj) ≺⊕ ru

v (INu
v (cj)) and finally

INu
v (cj) ≺⊕ OUTv(cj). Hence, the following holds: ∃u ∈ Γ−1

v , INu
v (cj) ≺⊕ OUTv(cj).

By Lemma 8, e ∈ Q1, and there exists some configuration cj that satisfy i1 ≤ j (as well
as i4 ≤ j, i2b ≤ j and i0 ≤ j) and for which configuration cjuv exists in e and verifies
OUTu(cjuv) = INu

v (cj). Then OUTu(cjuv) ≺⊕ OUTv(cj) ≺⊕ ÔUTv. This means that at least one of
the direct-predecessors u of v verifies OUTu(cjuv) ≺⊕ ÔUTu∨ÔUTu ≺⊕ OUTu(cjuv) (indeed, if all

18

predecessors of v reached and hold their legitimate value, then v would reach its legitimate
value too). Hence, Equation 6 becomes:

∀ci3 ∈ e |C , ∃cj ∈ e |C , with i3 ≤ j,

∃u, v ∈ P with u ∈ Γ−1
v , ∃cjuv ∈ e |C , with ju,v ≤ j(

OUTu(cjuv) ≺⊕ ÔUTu ∨ ÔUTu ≺⊕ OUTu(cjuv)
)

∧ OUTu(cjuv) ≺⊕ OUTv(cj) ≺⊕ ÔUTv

(7)

To iterate the above argument from processor u instead of v, and from configuration
cjuv instead of cj , we argue that i0 ≤ juv, i1 ≤ juv, and i2b ≤ juv. By Lemma 9, e is in
Q1b. This means that configurations ci3 in the above equation can be chosen so that every
configurations cjuv appear after configurations ci0 , ci1 and ci2b

(see Figure 5). This allows to
re-use the above reasoning with configuration cjuv instead of cj .

By iterating the above arguments, and since the network is finite, we exhibit a cycle of
nodes and a set of configurations cj0 , cj1 . . . appearing after ci4 in e such that, for a node w in
the cycle, we have:

OUTw(cj0) ≺⊕ OUTw(cj1) ≺⊕ . . . ≺⊕ ÔUTw (8)

Using the fact that e ∈ Q1b, this can be found after any configuration ci4 in the execution
e. This means that, regardless of configuration ci4 , there exist subsequent configurations
cj0 , . . . cj1 , such that ÔUTw increases strictly without reaching its legitimate value. We then
exhibit a strictly increasing sequence of values of S that never reach ÔUTw. This is impossible
if S is finite. If S is infinite, then Lemma 4 gives ÔUTw ≺⊕ e⊕. The sequence of values is then
upper bounded, that contradicts Hypothesis 4. Hence, e ∈ Q3. 2

4.6 Complexity

In the convergence part of the proof, we only assumed that computations were maximal,
and that message loss, duplication and desequencing could occur. In order to provide an
upper bound on the stabilization time for our algorithm, we assume strong synchrony be-
tween processors and a reliable communication medium between nodes. Note that these
assumptions are used for complexity results only, since our algorithm was proved correct
even in the case of asynchronous unfair computations with link intermittent failures. In the
following, D denotes the network diameter.

In order to give an upper bound on the space and time requirements, we assume that
the set S is finite, and that |S| denotes its number of elements. This assumption is used for
complexity results only, since our algorithm was proved to be correct even in the case when
S is infinite. Note that in any implementation the set of possible values is finite, and if the
memories INv and OUTv of each node v contains n bits, then |S| = 2n.

The space complexity result is immediately given by the assumptions made when writ-
ing Algorithm PA-MP.

Lemma 13 (Space Complexity) Each processor v ∈ S holds (δv + 1)× log2(|S|) bits.

Proof: Each processor v has δv local variables that hold the value of the last message sent by
the corresponding direct predecessor, and one register used to communicate with its direct

19

descendants. Each of these local variables may hold a value in a finite set S, then need
log2(|S|) bits. Note that the constant stored in ROM is not taken into account in this result.
2

Lemma 14 (Time Complexity) Assuming a synchronous system S, the stabilization time is O(D+
|S|).

Proof: We define φ as the function that returns the index of a given element of S. This index
always exists since S is ordered by a total order relation. The signature of φ is as follows:

φ : S → N
s 7→ φ(s)

Also, we have
s1 ≺⊕ s2 ⇒ φ(s1) < φ(s2)

After O(D) steps, every node in the network has received values from all of their predeces-
sors. If those values were badly initialized, then the received values are also possibly badly
valued.

For each node u, we consider the difference between the index of its final value (since
the algorithm converges to a legitimate configuration where OUTu = ÔUTu) and the index
of the smallest received value which is badly initialized. The biggest possible difference is
M −m, where M is the maximum index value of S and m the minimum index value of S.
This difference is called d and is O(|S|).

For each node u, we also consider the smallest and the greatest (in the sense of increasing)
r-path mapping from u to u. Let l be the length of the smallest such r-path mapping. It
increases a value index by at least l. The greatest such r-path mapping increases a value
index by at most d, and is of length at most d.

In the worst case, there exists a node that has an incorrect input value indexed with
m, a correct input value indexed with M , so it has to wait until the incorrect value index is
increased by M−m before the incorrect value effect is canceled. Each l time units at least, this
incorrect value index is increased by l. Again, in the worst case, if bd

l c < d
l , another incorrect

value may still be lower than the correct value, and the greatest cycle may be followed,
inducing an extra d time delay. Overall, after the first O(D) time units,

(bd
l c × l

)
+ d = O(d)

time units are needed. 2

5 Application to ad hoc and Sensor Wireless Networks

In this section, we describe how the loose requirements of our scheme make it suitable for
wireless networks such as ad hoc and sensor networks.

In such networks, communications are typically not bidirectionnal due to the various
possible ranges of antennas, and the fact that nodes could be deployed in various geograph-
ical settings. Moreover, due to the possible collisions that can occur when neighboring nodes
try to communicate at the same time, it is quite possible that messages are lost or duplicated.
Also, since for example sensor networks are composed of nodes with low processing power,
some desequencing is expected for message delivery when nodes are overloaded.

20

While some previous works on self-stabilizing sensor networks expect nodes to be aware
of their location [15] or the identity of the nodes in their vicinity, the bootstrapping process
that is needed to collect this information can be costly. Also, the hypothesis that nodes have
unique IDs (that is mandatory to properly construct the set of identifiers in one vicinity, e.g.
in [13]) could be falsified if such a property can not be guaranteed in practise (and larger
scale construction of sensor networks would probably lead to such possibilities). Previous
approaches mentioned in the introduction [1, 4, 5, 8, 11, 10] rely heavily on some kind of
local knowledge about the topology: number of distinct input links, number of distinct
output links, diameter of the network (for some).

In contrast, the correctness of the scheme presented in this paper does not rely necessar-
ily on e.g. disctinct neighbors, but rather on the number of distinct input values. As such, our
algorithm for unreliable message passing networks can be derived into a scheme for wire-
less networks where nodes use a local broadcast primitive to communicate with neighbors.
However, only strictly idempotent r-operators that share a unique r-function are solely in-
put value based. One such qualifying r-operator is the minc operator.

Our algorithm can be modified as follows for input value based r-operators:

1. The IN fixed table is replaced by an associative memory of tuples (v, a) where v ∈ S
and a is time stamp. In this associative memory, v is supposed to have been received
by some (possibly anonymous) neighbor node at time a. Each time a value is received
through a delivered message, the entry in the associative memory is either inserted (if
the value is new) or updated with a new timestamp. To prevent from bad initialization,
each time the associative memory is updated, old entries are removed (following e.g.
the technique provided in [13]).

2. Instead of computing using the IN table, the r-operator operates on the associative
memory values.

3. Instead of sending a message to each outgoing link, nodes simply perform a local
broadcast of their value.

Of course, this scheme assumes that nodes are endowed with a local real time clock (with
no assumptions made about clock synchronization or possible drift), and that the timeouts
are properly set so that an actual value at some node is regularly sent to the outgoing neigh-
bors (by a local broadcast), so that those nodes in turn do not remove this value from their
associative memory. Most schemes envisioned today for wireless communication between
neighboring nodes are probabilistic and guarantee that between any two successful send-
ings, a constant amount of time is expected, provided that the density in each vicinity is
upper bounded by a constant, so our hypothesis remains reasonable. Actualy tuning the
timeout so that incorrect entries are quickly removed yet correct entries remain in the sys-
tem is beyond the scope of this paper.

21

6 Concluding remarks

We presented a generic distributed algorithm for message passing networks applicable to
any directed graph topology. This algorithm tolerates transient faults that corrupt the pro-
cessors and communication links memory as well as intermittent faults (fair loss, reorder,
finite duplication of messages) on communication media. Our contribution allows to envis-
age new applications for wireless networks (such as sensor networks), where nodes are not
aware of their neighbors, and communications could be unidirectional (e.g., non uniform
power) and unreliable.

We provided evidence that our scheme is also suitable (for a restricted set of operators)
to wireless networks, sur as ad hoc and sensor networks. Because our approach is essentially
value based, computations can be carried out in potentially anonymous networks without
the need of a bootstrapping process.

As an illustration, we quickly presented a simple application of the minc r-operator for
solving the shortest path tree problem. Thanks to our generic approach, many others ap-
plications can be solved in the same way, by simply changing the operator. Moreover only
local conditions have to be checked to insure the self-stabilization of our algorithm. Some
r-operators have already been proposed for solving both fundamental and high level ap-
plications (see [10, 11]) such as: shortest paths spanning tree and related problems, best
reliable paths from some transmitters, depth first search tree... More complex applications
can be solved with specific r-operators, though the completeness of r-operators is an open
problem.

Acknowledgements This work was supported in part by the FRAGILE and SR2I projects
of the ACI “Sécurité et Informatique”.

References

[1] Y. Afek and A. Bremler. Self-stabilizing unidirectional network algorithms by power
supply. Chicago Journal of Theoretical Computer Science, 4(3):1–48, 1998.

[2] Y. Afek and G.M. Brown. Self-stabilization over unreliable communication media. Dis-
tributed Computing, 7:27–34, 1993.

[3] F. Baccelli, G. Cohen, G. Olsder, and J.-P. Quadrat. Synchronization and Linearity, an
algebra for discrete event systems. Wiley, Chichester, UK, 1992.

[4] J.A. Cobb and M.G. Gouda. Stabilization of routing in directed networks. In Proceedings
of the Fifth Internationa Workshop on Self-stabilizing Systems (WSS’01), Lisbon, Portugal,
pages 51–66, 2001.

[5] S. Delaët and S. Tixeuil. Tolerating transient and intermittent failures. Journal of Parallel
and Distributed Computing, 62(5):961–981, 2002.

[6] S. Dolev. Self-stabilization. The MIT Press, 2000.

22

[7] S. Dolev, M.G. Gouda, and M. Schneider. Memory requirements for silent stabilization.
Acta Informatica, 36(6):447–462, 1999.

[8] S. Dolev and E. Schiller. Self-stabilizing group communication in directed networks.
Acta Inf., 40(9):609–636, 2004.

[9] B. Ducourthial. New operators for computing with associative nets. In Proceedings of
SIROCCO’98, Amalfi, Italia, 1998.

[10] B. Ducourthial and S. Tixeuil. Self-stabilization with r-operators. Distributed Computing,
14(3):147–162, 2001.

[11] B. Ducourthial and S. Tixeuil. Self-stabilization with path algebra. Theoretical Computer
Science, 293(1):219–236, 2003.

[12] Bertrand Ducourthial and Sébastien Tixeuil. Adaptive multi-sourced multicast. In Ren-
contres Francophones sur les aspects Algorithmiques des Télécommunications (AlgoTel’2001),
pages 135–142, St-Jean de Luz, France, May 2001. in French.

[13] Ted Herman and Sébastien Tixeuil. A distributed tdma slot assignment algorithm for
wireless sensor networks. In Proceedings of the First Workshop on Algorithmic Aspects of
Wireless Sensor Networks (AlgoSensors’2004), number 3121 in Lecture Notes in Computer
Science, pages 45–58, Turku, Finland, July 2004. Springer-Verlag.

[14] S. Katz and K.J. Perry. Message passing extensions for self-stabilizing systems. Dis-
tributed Computing, 7(1):17–26, 1993.

[15] Sandeep S. Kulkarni and Umamaheswaran Arumugam. Collision-free communication
in sensor networks. In Shing-Tsaan Huang and Ted Herman, editors, Self-Stabilizing
Systems, 6th International Symposium, SSS 2003, San Francisco, CA, USA, June 24-25, 2003,
Proceedings, volume 2704 of Lecture Notes in Computer Science, pages 17–31. Springer,
2003.

[16] N.A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

23

