
Parallel Processing Lettersfc World Scienti�c Publishing Company
OPTIMAL SNAP-STABILIZING NEIGHBOROOD SYNCHRONIZERIN TREE NETWORKS�COLETTE JOHNENLRI - CNRS UMR 8623, Universit�e Paris-SudFranceLUC O. ALIMAUnit�e d'Informatique, Universit�e Catholique de LouvainBelgiumAJOY K. DATTADepartment of Computer Science, University of Nevada Las VegasUSAandS�EBASTIEN TIXEUILLRI - CNRS UMR 8623, Universit�e Paris-SudFranceReceived (received date)Revised (revised date)Communicated by (Name of Editor)ABSTRACTWe propose a snap-stabilizing synchronization technique, called the NeighborhoodSynchronizer (NS) that synchronizes nodes with their neighbors in a tree network. TheNS scheme has optimal memory requirement | only one bit per processor. NS issnap-stabilizing [11], meaning that it always behaves according to its speci�cation. Theproposed synchronizer being snap-stabilizing is optimal in terms of stabilization time.We show an application of the synchronizer by designing an eÆcient broadcast algorithm(BA) in tree networks. BA is also snap-stabilizing and needs only 2h + 2m � 1 roundsto broadcast m messages, where h is the height of the tree.Keywords: Broadcasting, distributed algorithms, self-stabilization, synchronizer.1. IntroductionSelf-stabilization was introduced in distributed systems by Dijkstra in 1974 [14,15].The paradigm of self-stabilization is considered to be the most general techniqueto design a system to tolerate arbitrary transient faults. A self-stabilizing system,regardless of the initial states of the processors and initial messages in the links, is�A preliminary abstract of this paper was presented in [20].

C. Johnen, L. O. Alima, A. K. Datta & S. Tixeuilguaranteed to converge to the intended behavior in �nite time. The concept of Snap-stabilization was introduced in [10]. A snap-stabilizing algorithm guarantees thatit always behaves according to its speci�cation. In other words, a snap-stabilizingalgorithm is also a self-stabilizing algorithm which stabilizes in 0 steps.Designing synchronous protocols is simpler than designing asynchronous proto-cols. However it is more diÆcult to implement synchronous systems. A synchro-nizer [5] is a protocol which allows a synchronous protocol to run in an asynchronoussystem. Various types of synchronizers were developed in recent years. See [22],[25], and [26] for details.Related Work. The research in the area of synchronizers started from the sem-inal work of Awerbuch [5]. However, the algorithms in [5] are not self-stabilizing.One approach to designing a self-stabilizing synchronizer is to combine the protocolof [5] with any self-stabilizing reset protocol [4,1,7]. Self-stabilizing synchronizerswere proposed in [16,28,2] for tree networks, and [27,6,8] for general networks. PIF-based self-stabilizing synchronizers were proposed in [10,11,21] for tree networks,and [13,28] for general graphs. The algorithms in [10,11,13] are snap-stabilizing.In [17], Gouda and Haddix proposed a self-stabilizing neighborhood synchro-nizer (which they referred to as alternator) for linear networks [17] and arbitrarynetworks [18]. Research on local mutual exclusion has been active in the recentyears [9,24,23,3,19]. The solution to the local mutual exclusion problem can beused to design neighborhood synchronizers.Our Contribution. We propose a snap-stabilizing synchronization technique,called the Neighborhood Synchronizer (NS) that synchronizes nodes with theirneighbors in a tree network. This scheme is optimal both in space and time. NSuses only one bit of memory per processor and is instantaneously stabilizing.We then use theNS as a tool to design a very eÆcient snap-stabilizing broadcastalgorithm in tree networks. The local synchronizer of [16] synchronizes only twoneighboring processors, whereas NS synchronizes a processor with all its neighbors(parent and children in the tree network). The proposed broadcast algorithm needsonly 2h+ 2m� 1 rounds to broadcast m messages. Any (non-self-stabilizing, self-stabilizing, or snap-stabilizing) PIF algorithm will take at least
(h �m) rounds,to broadcast m messages,Algorithm NS is also a solution to the local mutual exclusion problem [17].Outline of the Paper. In Section 2, we describe the distributed systems and themodel we consider in this paper. The synchronization scheme, called neighborhoodsynchronizer and its correctness proof are presented in Section 3. We present aself-stabilizing broadcast algorithm as an application of the local synchronizer inSection 4. Finally, we give the concluding remarks in Section 5.2. Preliminaries

OPTIMAL SNAP-STABILIZING NEIGHBOROOD SYNCHRONIZERSystem. A distributed system is an undirected connected graph, D = (V;E),where V is the set of nodes (jV j = n) and E is the set of edges. Nodes representprocessors and edges represent bidirectional communication links. We consider net-works which are asynchronous and tree structured. We denote the root processorby r, the set of leaf processors by L, and the set of internal processors by I . So,the set of all processors, V = frg [I [L.We denote the processors by p (p 2 f1::ng) and the root processor by r. Thenumbers 1::n are used for notation only, since no processor, except the root, uses itsidentity. A communication link (p; q) exists i� p and q are neighbors. Each processorp maintains its set of neighbors, denoted as Np. The degree of p is the number ofneighbors of p, i.e., equal to jNpj. We assume that each processor p (p 6= r) knows itsparent, denoted by Pp. We assume that an underlying local topology maintenanceprotocol computes Np. We also assume the existence of a spanning tree algorithmwhich maintains Pp. So, we consider Np and Pp as constants in our algorithm. Theheight of a tree is denoted by h. hp denotes the height of the subtree rooted at p.The distance of a processor p from the root r is denoted by Æp.Programs. The program consists of a set of shared variables (henceforth referredto as variables) and a �nite set of actions. A processor can only write to its ownvariables and can only read its own variables and variables owned by the neighboringprocessors. So, the variables of p can be accessed by p and its neighbors.Each action is uniquely identi�ed by a label and is of the following form:< label >:: < guard > �! < statement >The guard of an action in the program of p is a boolean expression involving thevariables of p and its neighbors. The statement of an action of p updates one ormore variables of p. An action can be executed only if its guard evaluates to true.We assume that the actions are atomically executed: the evaluation of a guard andthe execution of the corresponding statement of an action, if executed, are done inone atomic step. The atomic execution of an action of p is called a step of p.The state of a processor is de�ned by the values of its variables. The stateof a system is a product of the states of all processors. We refer to the state ofa processor and system as a (local) state and con�guration, respectively. Let adistributed protocol P be a collection of binary transition relations denoted by7!, on C, the set of all possible con�gurations of the system. A computation ofa protocol P is a maximal sequence of con�gurations e = (
0;
1; :::;
i;
i+1; :::),such that for i � 0;
i 7!
i+1 (a single computation step) if
i+1 exists, or
i is aterminal con�guration. Maximality means that the sequence is either in�nite, or itis �nite and no action of P is enabled in the �nal con�guration. All computationsconsidered in this paper are assumed to be maximal.During a computation step, one or more processors execute a step and a pro-cessor may take at most one step. This execution model is known as the distributeddaemon [12]. The predicate Enable (A; p;
) is true if the guard of the action A is

C. Johnen, L. O. Alima, A. K. Datta & S. Tixeuiltrue at processor p in the con�guration
. Similarly, the predicate Enable(p;
) istrue if the guard of at least one action is true at p in
. We assume a weakly fairdaemon, meaning that if processor p is continuously enabled, p will be eventuallychosen by the daemon to execute an action.The set of computations of a protocol P in system S starting with a particularcon�guration � 2 C is denoted by E�. The set of all possible computations of P insystem S is denoted as E .In order to compute the time complexity measure, we use the de�nition of round[16]. This de�nition captures the execution rate of the slowest processor in anycomputation. Given a computation e (e 2 E), the �rst round of e (let us call ite0) is the minimal pre�x of e containing the execution of one action (an action ofthe protocol or the disable action) of every continuously enabled processor from the�rst con�guration. Let e00 be the suÆx of e, i.e., e = e0e00. Then second round of eis the �rst round of e00, and so on.Predicates. Let X be a set. x ` P means that an element x 2 X satis�es thepredicate P de�ned on the set X . A predicate is non-empty if there exists at leastone element that satis�es the predicate. We de�ne a special predicate true as follows:for any x 2 X , x ` true.Self-Stabilization. We use the following term, attractor in the de�nition of self-stabilization.De�nition 1 (Attractor) Let X and Y be two predicates de�ned on C of systemS. Y is an attractor for X if and only if the following condition is true:8� ` X : 8e 2 E� : e = (
0;
1; :::) :: 9i � 0;8j � i;
j ` Y . We denote thisrelation as X . Y .Informally,X.Y means that in any computation 2 E�, starting from an arbitrarycon�guration satisfying X , the system is guaranteed to reach a con�guration whichsatis�es Y , and also, Y is closed.De�nition 2 (Self-stabilization) A protocol P is self-stabilizing for a speci�ca-tion SPP on E if and only if there exists a predicate LP (called the legitimacypredicate) de�ned on C such that the following conditions hold:1. 8� ` LP : 8e 2 E� :: e ` SPP (correctness).2. true . LP (closure and convergence).3. Neighborhood Synchronizer (NS)In this section, we �rst give the speci�cation of the NS problem. Then wedescribe the scheme informally, followed by Algorithm NS . Finally, we prove thecorrectness of Algorithm NS .

OPTIMAL SNAP-STABILIZING NEIGHBOROOD SYNCHRONIZERProblem Speci�cation. We consider a computation e to satisfy the speci�cationSPNS of Algorithm NS if between every two successive actions executed by a pro-cessor in e, all its neighbors execute exactly one action. We also require AlgorithmNS to be self-stabilizing.3.1. Algorithm NSInformal Description. The main idea about the neighborhood synchronizationis as follows: Every processor p uses a binary color variable, cp to indicate thechange of its state to its neighbors, an internal processor p changes cp only when it�nds that all its children have the same value as cp and its parent has a di�erentvalue than cp. The protocol of the root and a leaf processor are similar except thatthe root (resp., a leaf processor) does not have to check the color of its (non-existent)parent (resp., children).The Neighborhood synchronization can be used to simulate a reliable messagepassing mechanism using a register-based communication model as follows: Theroot sends a new message to its children and then waits until they read that newmessage. At that point, the root can send another message. An internal processorreads a new message from its parent only when it �nds that all its children have readthe previous message. The leaves read a new message from their parent wheneverthe parent sends a new message. The root changes cp to signal to its children that ithas sent a new message. Similarly, the internal and leaf processors change their c toinform their parent (resp., children) that they have read (resp., hold) the previous(resp., new) message.The Neighborhood Synchronizer algorithm NS is shown in Algorithm 1. Everyprocessor i maintains a variable ci, the state of i. We denote the set of children ofi by Cldi, i.e., Cldi = Ni n fPig.Algorithm 1 (NS) Neighborhood Synchronizer Algorithm for processor i.Variable:ci: The color variable.Constants:Cldi: The set of children.Pi: The parent processor.Actions:fFor the rootgS1 :: 8j 2 Cldi :: cj = ci �! ci := :cifFor the internal processorsgS2 :: cPi 6= ci ^ (8j 2 Cldi :: cj = ci) �! ci := cPifFor the leaf processorsgS3 :: cPi 6= ci �! ci := cPi

C. Johnen, L. O. Alima, A. K. Datta & S. Tixeuil3.2. Correctness of Algorithm NSWe �rst prove the liveness of the algorithm. Then, we prove the correct behaviorof the algorithm using the liveness result. The following properties follows directlyfrom Algorithm NS .Property 1 8
 2 C : 8i 2 V :: Enable(i;
)) (8j 2 Ni :: :Enable(j;
)).Informally, Property 1 states that if one particular processor is enabled in acon�guration, then none of its neighbors is enabled in the same con�guration (thussolving the local mutual exclusion problem).Lemma 1 8i 2 (frg [I) : 8e 2 E : e =
1;
2; : : : : 9k � 1 : 8j 2 Cldi :: cj =ci in
k.Proof. Assume that i executes an action (S1 or S2) during a computation e.Then, all the children of i must had the color of i before i executed the action (seethe guard of S1 and S2).Now consider the case where i never executes an action during a computatione (i.e., i never changes its color). If a child j of i has the color of i, then j cannotexecute any action until i changes its color. We will prove this case by inductionon the height of the subtree rooted at i.� Base Case: hi = 1, i.e., i is a parent of some leaf processors.Assume that there exists a processor j 2 Cldi such that cj never becomes equalto ci during a computation e. Then, in all con�gurations in e, Enable(S3; j;
)will hold until j executes S3. By fairness, j will eventually execute S3 andcj = ci becomes true. Following the same reasoning, all other children of iwill eventually get the color of i.� Hypothesis: Assume that the lemma is true for 0 < hi � m;m � h� 1.Assume that there exist two processors i and j such that hi = m+1; j 2 Cldi,and j never gets the color of i during e. j cannot execute S2 because thatwould make cj = ci. By the induction hypothesis, the system will reach a con-�guration
 where the children of j gets the color of j. Then Enable(S2; j;
)will be true and will remain true until j executes S2 (by Property 1). Byfairness, j will eventually execute S2 and cj = ci becomes true. If cj = ci, jcannot change its color. Similarly, all other children of i will get the color ofi.2.Lemma 2 (Liveness) 8e 2 E ;8i 2 V; i executes an action in�nitely often.Proof. We will prove this by contradiction. Assume that there exists at leastone processor that stops executing any action from a con�guration
 during acomputation e. Let i be one of the processors nearest to the root among theseprocessors. By Lemma 1, in some con�guration
0,
 ;
0, all children of i willhave the same color as i. As i cannot change its color, no child of i can also changeits color in any con�guration from
0 onwards in e.

OPTIMAL SNAP-STABILIZING NEIGHBOROOD SYNCHRONIZER1. Assume that i = r.Then Enable(S1; i;
0) is true. By fairness, i will eventually execute S1.2. Assume that i 6= r and ci 6= cPi .Then either Enable(S2; i;
0) (if i 2 I) or Enable(S3; i;
0) (if i 2 L) will betrue. By fairness, i will eventually execute S2 or S3.3. Assume that i 6= r and ci = cPi .Pi will eventually execute an action and change its color because accordingto the hypothesis, all ancestors of i in�nitely change their color. After Piexecutes its action, ci 6= cPi will be true. Now, Pi cannot change its coloragain since i does not change its color. Thus, by fairness, i will eventuallyexecute S2 or S3. (See Case 2.)2.Lemma 3 (Synchronization) Let Si denote an action executed by processor i.8e 2 E ;8i 2 (frg [I);8j 2 Cldi; the projection of e on the actions of i and j canbe represented by the following expression:(SiSj)! [(SjSi)!i.e., between any two actions executed by a processor, all of its neighbors executeexactly one action.Proof. By Lemma 2, Processor i executes an in�nite sequence of actions. Also,to be able to perform an action, i must be enabled, and when i executes an action,i becomes disabled. We consider two con�gurations
� and
� such that i executesan action between
� and
�+1, and
� is the �rst con�guration after
�+1 wherei is enabled again. Formally:8i 2 V : 8e 2 E : e =
1;
2; : : : : 9� � 1; 9� > �+ 1 ::Enable(p;
�) ^ Enable(p;
�) ^ (8� 2]�; �[: :Enable(p;
�))What we need to prove is that between con�gurations
�+1 and
� , every child ofi executes exactly one action. Since i is disabled in
�+1 : : :
��1, any child of ican execute at most one action. i is enabled both in
� and
� , so every child ofi executes at least one action between con�gurations
�+1 and
� . By Property 1,the lemma follows. 2.Theorem 1 (Self-Stabilization) Algorithm NS is a self-stabilizing neighbor-hood synchronizer algorithm.Proof. The theorem follows from Lemma 3 and the fact that we did not makeany assumption on the initial con�guration to prove Lemma 3. 2.Theorem 2 (Optimal Snap-Stabilization) Algorithm NS is an optimal snap-stabilizing neighborhood synchronizer algorithm.

C. Johnen, L. O. Alima, A. K. Datta & S. TixeuilProof. Algorithm NS uses only one binary variable c. Thus, it requires onlyone bit. Since any computation starting from any initial con�guration satis�es thespeci�cation, Algorithm NS has a zero stabilization time, meaning that it alwayssatis�es its speci�cation. 2.4. Broadcasting Algorithm (BA): An Application of NSThe root of a tree has an in�nite sequence of messages to be broadcast to allprocessors of the tree. The root waits for its children to acknowledge the receiptof the message before the root sends another message. The root does not need towait until the previous message has reached all processors of the tree. Thus, severalmessages may simultaneously be propagated down the tree, that is, e�ectively im-plementing a pipelining mechanism. We will show then the positive impact of theconcurrent propagation of messages on the performance of Algorithm BA.Problem Speci�cation. We consider a computation e to satisfy the speci�cationSPBA of Algorithm BA if the following conditions are true:1. Every message sent by the root is eventually received by all processors in thetree in the same order they were sent. We refer to this property as CorrectDelivery.2. All messages, except (possibly) the �rst Æi messages, received by i were sentby the root. We call this property Message Validity.We also require Algorithm BA to be self-stabilizing.Informal Description. We make a few simple modi�cations in Algorithm NSto design Algorithm BA (shown in Algorithm 2). At node i, we use an extra variablemi to hold the current message received from the parent. The root r reads a newmessage from some application program and writes in mr. The internal processorsand leaf processors copy their parent's message from mPi into their own messagevariable, mi.4.1. Correctness of Algorithm BALemma 4 8i 2 (frg [I);8j 2 Cldi, the messages sent by i are eventually receivedby j in the same order as they were sent with no loss or duplication.Proof. By Lemma 3 and Algorithm 2, after i receives a message, it cannotexecute its action until all its children execute their action (i.e., read the messagefrom mi). 2.Lemma 5 (Correct Delivery) Every message sent by the root is eventually re-ceived by all processors in the tree in the same order it was sent.Proof. The proof follows from Lemma 4 and by using induction on the heightof the tree. 2.

OPTIMAL SNAP-STABILIZING NEIGHBOROOD SYNCHRONIZERAlgorithm 2 (BA) Broadcasting Algorithm for processor i.Variable:ci: colormi: messageConstants:Cldi: set of childrenPi: parentActions:fFor the rootgB1 :: 8j 2 Cldi :: cj = ci �! mi :=<next message>; ci := :cifFor the internal processorsgB2 :: cPi 6= ci ^ (8j 2 Cldi :: cj = ci) �! mi := mPi ; ci := cPifFor the leaf processorsgB3 :: cPi 6= ci �! mi := mPi ; ci := cPiLemma 6 8i 2 (I [L), all messages, except (possibly) the �rst one, received by iwere sent by Pi.Proof. The �rst message received by i may not have been sent or received byPi because the message may have been in transit due to some transient faults. 2.Lemma 7 (Message Validity) All messages, except (possibly) the �rst Æi mes-sages received by i were sent by the root.Proof. The proof follows from Lemma 6 and by using induction on Æi, thedistance of i from the root. 2.Theorem 3 (Self-stabilization) Algorithm BA is self-stabilizing.Proof. Follows from Lemmas 5 and 7, and the fact that these lemmas wereproven independent of the initial con�guration. 2.4.2. ComplexityIn this section, we present the time and space requirements of Algorithm BAand the time to broadcast m messages in the tree network.Space Complexity. Algorithm BA uses two variables, c and m. Since m isused only to carry messages for the application level, the extra space used by ouralgorithm is only one bit.Time Complexity. As seen in the proof of correctness of Algorithm BA, anycomputation, starting from any initial con�guration, is correct with respect to thespeci�cation SPBA. Then, it is trivial to deduce the 0(1) stabilization time.Theorem 4 (Optimal Snap-Stabilization) Algorithm BA is an optimal snap-stabilizing broadcast algorithm.

C. Johnen, L. O. Alima, A. K. Datta & S. TixeuilProof. Algorithm BA uses only one additional binary variable c. Thus, itrequires only one bit overhead. Since any computation starting from any initialcon�guration satis�es the speci�cation, Algorithm BA has a zero stabilization time,meaning that it always satis�es its speci�cation. 2.Broadcasting Time. We need to prove some properties to compute the time tobroadcast messages.De�nition 3 (Color Synchronized Processor) A processor i 2 V is color syn-chronized if at least one of the following conditions is true:1. i 2 (frg [L).2. ci = cPi .3. 8j 2 Cldi :: ci = cj .De�nition 4 (Color Synchronized Con�guration) A con�guration is color syn-chronized when all processors are color synchronized. We characterize any colorsynchronized con�guration by a predicate, called Lcs.Lemma 8 Let i be a processor such that i and its children are colored synchronized.After a round, i is still color synchronized.Proof. Consider a processor i 2 I . We do not need to consider the root andthe leaf processors because they are always color synchronized by de�nition.1. Assume that i changes its color in this round by copying its parent's color.By Property 1, the parent and children of i cannot execute any action duringthis round. Thus, i remains synchronized because Condition 2 of De�nition 3is satis�ed.2. Assume that i does not change its color during a round.Let j be a child of i such that cj 6= ci in a con�guration
 before the round.Since j is synchronized in
, j must satisfy Condition 3 of De�nition 3, i.e.,all children of j must have the same color as j in
. So, either B2 or B3will be enabled at j. During the round, j will execute its action and cj willbecome equal to ci. Let k be a child of i such that ck = ci before the round.k will not execute an action during the round. Condition 3 of De�nition 3 atprocessor i is satis�ed after the round.3. Assume that Pi changes its color during this round. By Property 1, i cannotexecute any action during this round (see Case 2).2. The following corollary follows directly from Lemma 8.Corollary 1 8
 ` Lcs;8e 2 E
, any con�guration reached after one round of com-putation starting from
 is also color synchronized.

OPTIMAL SNAP-STABILIZING NEIGHBOROOD SYNCHRONIZERLemma 9 Starting from any arbitrary con�guration, after h�1 rounds, the systemwill reach a color synchronized con�guration.Proof. We prove the lemma by induction on hi, the height of the subtree rootedat i,1. Base Case: hi = 0The lemma is true for hi = 0 (the leaf processors) by de�nition.2. Hypothesis: Assume that the lemma is true for 0 � hi � m;m � h � 2.(Note that the lemma is true for hi = h because the root is always colorsynchronized.)Processors which are the root of a subtree of height less than or equal to mwill be color synchronized withinm rounds and will remain color synchronizedthereafter. We now need to prove that the lemma is also true for hi = m+1.Let i be a processor such that hi = m + 1. Assume that i is not colorsynchronized after m rounds and 9j 2 Cldi :: cj 6= ci before the m + 1thround. i will not change its color during the m+1th round. If k is a child of isuch that ck = ci before the m+1th round, then k will not execute an actionduring the m+ 1th round.Let j be a child of i such that cj 6= ci before the m+1th round. As, hj � m, jwill be color synchronized within m rounds by the hypothesis. All children ofj will get the color of j after m rounds. So, either B2 or B3 will be enabledat j. In the m+1th round, j will execute its action and cj will become equalto ci. Thus, after m+ 1 rounds, all children of i have the color of i, and i iscolor synchronized.2. A con�guration
 ` Ldeven if all processors at a distance 2; 4; 6; : : :2d from theroot have the same color as their parent. Formally:Ldeven � 8k 2]0; d] : 8i 2 V : Æi = 2k :: ci = cPiA con�guration
 ` Ldodd if all processors at a distance 1; 3; 5 : : :2d+1 from theroot have the same color as their parent. Formally:Ldodd � 8k 2 [0; d] : 8i 2 V : Æi = 2k + 1 ::: ci = cPiA con�guration
 ` Gdeven if all processors at a distance 2; 4; 6; : : :2d from theroot do not have the same color as their parent. Formally:Gdeven � 8k 2]0; d] : 8i 2 V : Æi = 2k :: ci 6= cPiA con�guration
 ` Gdodd if all processors at a distance 1; 3; 5 : : :2d+1 from theroot do not have the same color as their parent. Formally:Gdodd � 8k 2 [0; d] : 8i 2 V : Æi = 2k + 1 ::: ci 6= cPi

C. Johnen, L. O. Alima, A. K. Datta & S. TixeuilWe also de�ne the following notations:G0even � LcsLeven � Ldeven; 2d � h Lodd � Ldodd; 2d+ 1 � hGeven � Gdeven; 2d � h Godd � Gdodd; 2d+ 1 � hThe following two properties follow from Algorithm BA.Property 2 Let
 be a con�guration such that
 ` Lcs ^ Ldodd ^ Gdeven. Afterone round of computation starting from
, the system will reach a con�guration
0 ` Lcs ^ Ld+1even ^ Gdodd.Property 3 Let
 be a con�guration such that
 ` Lcs ^ Ldeven ^ Gd�1odd . Afterone round of computation starting from
, the system will reach a con�guration
0 ` Lcs ^ Ldodd ^ Gdeven.Lemma 10 Starting from any arbitrary con�guration
 2 C, the system will reacha con�guration
0 in h� 1 or h rounds such that
0 ` Lcs ^ L0odd.Proof. By Lemma 9, all processors are synchronized (i.e., Lcs is true) withinh� 1 rounds. If all children of the root have the same color as the root, then L0oddis true. Assume that there exists one child i of the root whose color is not the sameas the root. Since i is synchronized, all its children have its color and B2 is enabledat i. So, in the next round, i will execute B2, copy the root's color, and L0odd willbecome true. 2.We de�ne Loe � Lcs ^ ((Lodd ^ Geven) [(Leven ^ Godd)).Lemma 11 Starting from a con�guration
 ` Lcs ^ L0odd, the system will reach acon�guration
0 in h� 1 rounds such that
0 ` Loe.Proof. Let
 be a con�guration satisfying Lcs ^ L0odd ^ G0even. Starting from
,during the next round, the system will reach a con�guration
1 ` Lcs^L1even ^G0odd(Property 2). Now, starting from
1, the system will reach a con�guration
2 `Lcs ^ L1odd ^ G1even (Property 3). Thus, after h� 1 rounds of computation startingfrom
, the system will reach a con�guration
0 ` Loe. 2.The following properties follow from Lemma 11 and Properties 2 and 3.Property 4 Starting from a con�guration
 ` Lcs ^ Leven ^ Godd, in one round,the system will reach a con�guration
0 ` Lcs^Lodd^Geven. Starting from a con�g-uration
 ` Lcs ^ Lodd ^ Geven, in one round, the system will reach a con�guration
0 ` Lcs ^ Leven ^ Godd.Property 5 Starting from a con�guration
 ` Loe, in alternate rounds, the pro-cessors at odd distance from the root (i.e., Æi = 1; 3; : : :) and the processors at evendistance from the root (i.e., Æi = 0; 2; : : :), execute an action.Lemma 12 Starting from a con�guration
 ` Lcs^L0odd, a sequence of m messagesbroadcast by the root will reach all processors of the tree within h+ 2m� 1 rounds.Proof. Assume that
 ` Lcs ^ L0odd. The root can send its �rst message in
.It takes h rounds for the message to reach all processors of the tree. By Property 5,the root will be able to send a message once in every two rounds. Thus, starting

OPTIMAL SNAP-STABILIZING NEIGHBOROOD SYNCHRONIZERfrom
, the root will send the mth message in 2m�1th round and this last messagewill take another h rounds to reach all processors of the tree. Thus, the maximumnumber of rounds necessary to broadcast m messages in the tree starting from
 ish+ 2m� 1. 2.Theorem 5 Starting from an arbitrary con�guration, it takes at most 2h+2m�1 rounds for all processors to receive m messages broadcast by the root.Proof. Follows from Lemmas 10 and 12. 2.5. ConclusionsWe presented a new space eÆcient self-stabilizing synchronizing technique, theneighborhood synchronizer. This method implements the synchronization betweena processor and its neighbors. This scheme also allows concurrency among proces-sors which do not have a neighborhood relationship. The concurrency inherent inthis scheme is similar to the pipelining scheme. We show an application of Algo-rithm NS by extending it into an eÆcient broadcasting algorithm. Algorithm BArequires only 2h+ 2m� 1 rounds to broadcast m messages in the tree network.Both algorithms are optimal in space. NS makes use of only one bit of memory,and BA add only one bit overhead to the message size. Both algorithms are alsooptimal in time because they are snap-stabilizing. The delay (see [13]) of NS andBA are zero and O(h) rounds, respectively.[1] Y Afek, S Kutten, and M Yung. Memory-eÆcient self-stabilization on general networks.In WDAG90 Distributed Algorithms 4th International Workshop Proceedings,Springer LNCS:486, pages 15{28, 1990.[2] L O Alima, J Beauquier, A K Datta, and S Tixeuil. Self-stabilization with global rootedsynchronizers. In ICDCS98 Proceedings of the 18th International Conference onDistributed Computing Systems, pages 102{109, 1998.[3] S Antonoiu and PK Srimani. Self-stabilizing protocol for mutual exclusion amongneighboring nodes in a tree structured distributed system. Parallel Algorithms andApplications, 14(1):1{18, 1999.[4] A Arora and MG Gouda. Distributed reset. IEEE Transactions on Computers,43:1026{1038, 1994.[5] B. Awerbuch. Complexity of network synchronization. Journal of the Association ofthe Computing Machinery, 32(4):804{823, 1985.[6] B Awerbuch, S Kutten, Y Mansour, B Patt-Shamir, and G Varghese. Time optimalself-stabilizing synchronization. In STOC93 Proceedings of the 25th Annual ACMSymposium on Theory of Computing, pages 652{661, 1993.[7] B Awerbuch, B Patt-Shamir, and G Varghese. Self-stabilization by local checkingand correction. In FOCS91 Proceedings of the 31st Annual IEEE Symposium onFoundations of Computer Science, pages 268{277, 1991.[8] B Awerbuch and G Varghese. Distributed program checking: a paradigm for buildingself-stabilizing distributed protocols. In FOCS91 Proceedings of the 31st AnnualIEEE Symposium on Foundations of Computer Science, pages 258{267, 1991.[9] J Beauquier, AK Datta, M Gradinariu, and F Magniette. Self-stabilizing local mutualexclusion and daemon re�nement. In DISC00 Distributed Computing 14th Interna-tional Symposium, Springer LNCS:1914, pages 223{237, 2000.

C. Johnen, L. O. Alima, A. K. Datta & S. Tixeuil[10] A Bui, AK Datta, F Petit, and V Villain. Snap-stabilizing pif algorithms in tree net-works without sense of direction. In Proceedings of SIROCCO'99, Carleton Uni-versity Press, pages 32{46, 1999.[11] A Bui, AK Datta, F Petit, and V Villain. State-optimal snap-stabilizing PIF in treenetworks. In Proceedings of the Fourth Workshop on Self-Stabilizing Systems(published in association with ICDCS99 The 19th IEEE International Conferenceon Distributed Computing Systems), pages 78{85. IEEE Computer Society, 1999.[12] JE Burns, MG Gouda, and RE Miller. On relaxing interleaving assumptions. InProceedings of the MCC Workshop on Self-Stabilizing Systems, MCC TechnicalReport No. STP-379-89, 1989.[13] A Cournier, A K Datta, F Petit, and V Villain. Snap-stabilizing pif algorithm inarbitrary networks. In Proceedings of ICDCS'02. IEEE Computer Society press,2002.[14] EW Dijkstra. Self stabilizing systems in spite of distributed control. Communicationsof the Association of the Computing Machinery, 17:643{644, 1974.[15] S Dolev. Self-stabilization. The MIT Press, 2000.[16] S Dolev, A Israeli, and S Moran. Uniform dynamic self-stabilizing leader election.IEEE Transactions on Parallel and Distributed Systems, 8(4):424{440, 1997.[17] MG Gouda and F Haddix. The linear alternator. In Proceedings of the Third Work-shop on Self-Stabilizing Systems, pages 31{47. Carleton University Press, 1997.[18] MG Gouda and F Haddix. The alternator. In Proceedings of the Fourth Workshop onSelf-Stabilizing Systems (published in association with ICDCS99 The 19th IEEEInternational Conference on Distributed Computing Systems), pages 48{53. IEEEComputer Society, 1999.[19] S T Huang. The fuzzy philosophers. In Proceedings of Workshop on Advances ofParallel and Distributed Computational Models, pages 130{136. LNCS 1800, 2000.[20] C Johnen, LO Alima, AK Datta, and S Tixeuil. Self-stabilizing neighborhood synchro-nizer in tree networks. In ICDCS99 The 19th IEEE International Conference onDistributed Computing Systems, pages 487{494, 1999.[21] HSM Kruijer. Self-stabilization (in spite of distributed control) in tree-structured sys-tems. Information Processing Letters, 8:91{95, 1979.[22] N Lynch. Distributed algorithms. Morgan Kaufmann, 1996.[23] M Mizuno and M Nesterenko. A transformation of self-stabilizing serial model programsfor asynchronous parallel computing environments. Information Processing Letters,66(6):285{290, 1998.[24] M Nesterenko and A Arora. Stabilization-preserving atomicity re�nement. In DISC99Distributed Computing 13th International Symposium, Springer LNCS:1693,pages 254{268, 1999.[25] M Raynal and JM Helary. Synchronization and Control of Distributed Systemsand Programs. John Wiley and Sons, Chichester, UK, 1990.[26] G Tel. Introduction to distributed algorithms. Cambridge university press, 1994.[27] G Varghese. Self-stabilization by local checking and correction (Ph.D. thesis). TechnicalReport MIT/LCS/TR-583, MIT, 1993.[28] G Varghese. Self-stabilization by counter
ushing. In PODC94 Proceedings of theThirteenth Annual ACM Symposium on Principles of Distributed Computing,pages 244{253, 1994.

