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Abstract

We propose several self-stabilizing protocols for unidirectional, anonymous, and uni-
form synchronous rings of arbitrary size, where processors communicate by exchanging
messages. When the size of the ring n is unknown, we better the service time by a factor
of n (performing the best possible complexity for the stabilization time and the memory
consumption). When the memory size is known, we present a protocol that is optimal in
memory (constant and independant of n), stabilization time, and service time (both are
in Θ(n)).

1 Introduction

The mutual exclusion one is a fundamental problem in the area of distributed computing.
Consider a distributed system of n processors. Every processor, from time to time, may need
to execute a critical section in which exactly one processor is allowed to use some shared
resource. A distributed system solving the mutual exclusion problem must guarantee the
following two properties: (i) Mutual Exclusion: one and only one processor is allowed to
execute its critical section at any time; (ii) Fairness: each processor must be able to execute
its critical section infinitely often. A classical technique consists in having every processor
passing a special message called token. Holding a token means that the processor may enter
its critical section. This token must satisfy mutual exclusion constraints: be unique and pass
infinitely often at each processor.
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The concept of self-stabilization was first introduced by Edsger W. Dijkstra in 1974 [5]. It
is now considered to be the most general technique to design a system to tolerate arbitrary
transient faults. A self-stabilizing system guarantees that starting from an arbitrary state,
the system converges to a legal configuration in a finite number of steps and remains in a
legal state until another fault occurs (see also [6]). Intuitively, a self-stabilizing token passing
protocol for mutual exclusion guarantees that, even if the system is started from a global
state where mutual exclusion specification is violated (zero or several tokens are present
in the system), then within a finite number of steps, a unique token circulates fairly in the
network.

In practise, we only prove that starting from a global state with several tokens, the system
reaches in finite time a global state with a unique token. Indeed, it is proved in [14] that
when processors communicate by exchanging messages, a timeout mechanism is required
to spontaneously inject new tokens: if such a mechanism is not available, the system may
not be self-stabilizing since it would be deadlocked when started from a message-free initial
global state.

1.1 Previous works

A network is uniform if every processor executes the same code, and it is anonymous if pro-
cessors do not have identifiers that would enable executing different sections of code. If
a protocol works in a uniform and anonymous network, then it works a fortiori in a non-
uniform or non-anonymous network. Since the first three self-stabilizing protocols about
tokens passing presented in the pioneering paper [5], numerous works dealt with the same
problem in various contexts: For the case of unidirectional anonymous and uniform rings.,
see [10, 1, 2, 4, 18, 13, 11, 12].

A self-stabilizing token passing protocol is transparent to the application if it does not
modify the format or the content of tokens that are exchanged by the application. Such a
property is desirable e.g. whenever the token’s content is used by the application (it is the
case in Token Ring or FFDI networks, where the token also contains a piece of information
to be transmitted to the destination). Indeed, a transparent protocol is easier to implement
(it does not modify the frame format of the application that can thus be encrypted or com-
pressed) and to integrate in heterogeneous networks (where some parts of the network use
a different token passing protocol). Moreover, checking for message integrity can be del-
egated entirely to the calling application. Among the pre-cited protocols, only [10, 1] and
the synchronous protocol of [4] are transparent to the upper layer application. In order to
ensure stabilization, the protocols presented in [2, 4, 18, 13, 11, 12] either make use of several
types of tokens (thus adding a type field to application messages), or add information to each
token in order to ensure stabilization.

A major criterion to evaluate the efficiency of self-stabilizing protocols is its stabilization
time (or convergence time), noted T , that is the time needed to go from a global state with
an arbitrary number of tokens to a global state with a unique token. As proved in [3], it is
impossible to solve the problem of self-stabilizing token passing in a n-sized unidirectional
anonymous and uniform ring using a deterministic protocol (except when n is prime, which
is not a realistic assumption). Thus, the aforementioned solutions are probabilistic. Among
those, [10, 1] do not provide any stabilization time calculus, and the expected stabilization
times of [2, 4, 13, 11, 12] are of order n3, where n denotes the size of the ring, and that of [18]
is of order n2. It is obvious that the stabilization time for any algorithm is Ω(n): if the system

2



is started from a configuration with two opposite tokens, at least n/2 time units are needed
for a token to catch up with the other.

Another evaluation criterion is the service time, i.e. the time, in stabilized phase, between
two tokens passing at the same processor. This criterion is important to evaluate the per-
formance of the protocol when there are no faults and thus the overhead compared to a
non stabilizing protocol. In a system with n processors, the service time is Ω(n), since if
every processor waits the least amount of time, it waits as long as every other. The ser-
vice time is not calculated in [10, 1, 2], and it is respectively of order n3, n2, n, n and n2 in
[4, 18, 13, 11, 12].

1.2 Our contribution

We propose several self-stabilizing protocols for synchronous, anonymous, uniform and uni-
directional ring networks, in which processors communicate by exchanging messages. The
first two protocols are the transpositions in a message passing model of the protocols of
[10, 1] (for the 0Memory protocol) and [4] (for the 1bitMemory protocol) that were using a
shared memory model. By a tight complexity analysis, we prove that the equivalent of [10, 1]
stabilizes in expected time Θ(n2), and that its service time is Θ(n) (those complexities were
not calculated in the quoted papers). Then, we show that the equivalent of the synchronous
protocol of [4] converges in expected time Θ(n2) (it was only proved O(n3) in the original
paper) and has a service time of Θ(n). The technique used for proving the 1bitMemory
protocol may be of independant interest for proving other complex probabilistic distributed
algorithms using Markov chains (see also [8, 9]).

Then, we propose several new protocols based on the notion of speed reducer. Each pro-
cessor may declare itself to be a speed reducer and slow down token it receives with some
probability. According to the power that is given to the speed reducer (i.e. the quantity of
memory it has), the complexity results are different, but both new protocols we present have
an expected convergence time, noted E(T ), and an expected service time in Θ(n).

Protocol Knowledge Stabilization Service Memory Synchronous Transparent
of n time time

? certain
[2] yes Θ(n3) O(n3) O(log(n)) no no
[11] yes O(n3) ?O(n) O(log(n)) no no
[13] yes O(n3) ?O(n) O(log(n)) no no
[12] yes O(n3) ?O(n2) O(1) no no
[18] no Θ(n2) O(n2) O(1) yes no
0Memory no Θ(n2) Θ(n) 0 yes yes
1bitMemory no Θ(n2) ?Θ(n) O(1) yes yes
SpeedReducer1 yes Θ(n) Θ(n) O(log(n)) yes yes
SpeedReducer2 yes Θ(n) Θ(n) O(1) yes yes

Figure 1: Results summary

All the protocols we present (see Figure 1) are transparent to the upper layer application.
For some protocols (i.e. [11, 13, 12],1bitMemory), not only the expected service time is upper
bounded, but the bound is also certain (processors are ensured that the upper bound cannot
be broken in any execution).

The protocols of [2, 11, 13, 12] work in shared memory systems, while the protocol of
[18] and ours perform in message passing systems. In shared memory systems, a combina-
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torial trick (see [1]) permits to avoid any timeout mechanism (that is mandatory in message
passing systems). This technique however requires that some global knowledge about the
network (the smallest non divisor of n) is known to all nodes in the network. In addition,
an extra variable that takes values between 0 and log n (thus requiring O(log log n) bits) is
necessary at each node. The positive side of some shared memory unidirectional token rings
(such as [10]) is that the number of tokens is always odd, so that extra tokens are removed
two at a time, which may speed up stabilization time by a factor of two. For fair comparison,
the memory space used by [2, 11, 13, 12] has been decreased by O(log log n) in Figure 1.

The protocol of [18] works in asynchronous systems, but for fair comparison, the com-
plexity measures presented here are for the synchronous setting (Those results are not pre-
sented in the original paper, but are easy to obtain).

When the size of the ring is unknown, the 1bitMemory protocol is the most interesting
(since the service time is certain). When the size of the ring is known, the SpeedReducer2
protocol is the most interesting, being optimal according to the three evaluation criteria
(memory consumption, stabilization time, and service time).

2 Preliminaries

2.1 Execution model

We assume that processors are organized as a unidirectional ring of size n and communicate
by exchanging messages. A processor may only receive messages from its predecessor and
may only send messages to its successor. We consider a synchronous system where every
processor takes an action at each pulse of a global clock. While processors are synchronized,
there exists no global absolute time, only time pulses. Such a phase where all processors
take action is called round. We also assume that any processor is able to query its underlying
communication layer to know if a message (for example, a token) was delivered.

In this paper, we consider the problem of token passing. An algorithm is self-stabilizing
for the token passing task if, starting from any configuration, after finite time there remains
a unique token that pass forever at every processor. In the context of message passing sys-
tems, it is well known [14] that at least one timeout mechanism must be assumed in order
to cope with initial configurations where no tokens are present. It is also assumed that those
timeouts are activated at most once, and only at the begining of an execution. Thus, de-
signing a self-stabilizing token passing algorithm is reduced to designing an algorithm that
reduces tokens so that eventually, a single token remains. To ensure that the system never
ends up in a deadlocked (i.e. message free) situation, all previous algorithms (and ours) use
the technique of token merging: when two or more tokens are present at the same time at a
single processor, all tokens are merged into one.

2.2 Markov Chains

We follow the terminology of [17] about Markov Chains. The classical hypothesis can be
used since the network has a synchronous behaviour; for an asynchronous setting, see [8].
Let Pn×n be a stochastic matrix, that is the sum of every line is equal to 1. A discrete Markov
Chain, denoted by (Xt)t≤0 on a set of states X is a sequence of random variables X0, X1, . . .
with Xi ∈ X and so that Xi+1 only depends on Xi and Pr(Xi+1 = y|Xi = x) = px,y. The
matrix P is called the transition probability matrix.
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A node x leads to a node y if ∃j ≥ i,Pr(Xj = y|Xi = x) > 0. A state y is an absorbing state
if y does not lead to any other state. The expected hitting time or hitting time Ey

x is the average
number of steps starting from node x to reach node y for the first time.

We will make use of the following theorem for Markov chains :

Theorem 1 The vector of hitting times Et = (Et
x : x ∈ V ) is the minimal non-negative solution of

the following system of linear equations :
{
Et

t = 0
Et

x = 1 +
∑

y 6=t px,yEt
yforx ∈ V

and the following lemma:

Lemma 1 (cf. [17] page 5) Let (Xt) be a Markov Chain of two states {1, 2} with transition matrix

P defined by: P =
(

1− α α
β 1− β

)
then

Pr(Xt = 1|X0 = 1) =

{
β

α+β + α
α+β (1− α− β)t forα + β > 0

1 forα = β = 0

3 Algorithms: without a knowledge of n

The first protocol we propose is equivalent to a random walk of tokens in the ring, and can
be seen as a transposition in the message passing model of the protocols of [10, 1]:

3.1 0Memory protocol

Each processor i executes the following code: at each pulse, if i is currently holding a token,
it transmits it to its successor with probability p, and keeps it with probability 1− p. Remark
that the protocol runs without memory and without a knowledge of n.

Applying Theorem 1 to a specific Markov chain, we obtain a useful Lemma for the anal-
ysis of 0Memory protocol :

Lemma 2 Let Cd be a chain of d+1 states 0, 1, . . . , d and q ∈]0, 1/2]. If state 0 is absorbing and the
transition matrix is of the form :





pi,i−1 = pi,i+1 = q for 1 ≤ i ≤ d− 1
pi,i = 1− 2q for 1 ≤ i ≤ d− 1
pd,d = 1− q

then the hitting time to state 0 starting from state i is E0
i = i

2q (2d− i + 1).

Proof: We make a use of Theorem 1 for the computation of E0
i . We have




E0

1 = 1 + (1− 2q)E0
1 + qE0

2

E0
i = 1 + qE0

i−1 + (1− 2q)E0
i + qE0

i+1 for 2 ≤ i ≤ d− 1
E0

d = 1 + (1− q)E0
d + qE0

d−1
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Noting that E0
i =

∑i
j=1 E

j−1
j , we are interested by Ej−1

j for 1 ≤ j ≤ d. Therefore, Ed−1
d =

1 + (1− q)Ed−1
d = 1/q and

Ej−1
j = 1 + (1− 2q)Ej−1

j + qEj−1
j+1

= 1 + (1− 2q)Ej−1
j + q(Ej

j+1 + Ej−1
j )

= 1/q + Ej
j+1

=
d− j

q

This implies that E0
i =

∑i
j=1(d− j)/q = 1

q (di− i(i−1)
2 ). q

Theorem 2 In a unidirectional n-sized ring containing an arbitrary number k of tokens (k ≥ 2), the
stabilization time of protocol 0Memory is n2

8p(1−p) < E(T ) < n2

2p(1−p)(
π2

6 −1)+ n log n
p(1−p) . For constant

p, E(T ) = Θ(n2).

Proof: For any k ≥ 2, the evolution of the ring with exactly k tokens under the 0Memory
protocol can be described by a Markov chain Sk whose state space is the set of k-tuples of
positive integers whose sum is equal to n (these integers represent the distances betweeen
successive tokens on the ring), with an additional state δ = (0, . . . , 0) to represent transitions
to a configuration with fewer than k tokens. To prove the upper bound of the theorem, we
will prove an upper bound on the hitting time of this state δ, independently of the initial
state.

Consider two successive tokens on the ring. On any given round, each will move for-
ward, independently of the other, with probability p, and stay in place with probability 1−p.
Thus, with probability p(1− p), the distance between them will decrease by 1; with the same
probability, it will increase by 1; and, with probability 1− 2p(1− p), the distance will remain
the same. Thus, locally, the distance between consecutive tokens follows the same evolution
rule as that of the chain Cn of Lemma 2.

What follows is a formal proof, using the technique of couplings of Markov chains, that
the expected time it takes for two tokens among k to collide is no longer than the expected
time for Cn/k to reach state 0.

For any state x = (x1, . . . , xk) of Sk, let m(x) = mini x
i denote the minimum distance

between two successive tokens, and let i(x) = min{j : xj = m(x)} denote the smallest
index where this minimum is realized. Let (Xt)t≥0 denote a realization of the Markov chain
Sk. We define a coupling (Xt, Yt)t≥0 of the Markov chains Sk and Cd, where d = bn/kc and
q = p(1− p), as follows :

• Y0 = m(X0);

• Yt+1 = min{d, Yt + (Xi(Xt)
t+1 −X

i(Xt)
t )}

In other words, the evolution of Yt is determined by selecting two tokens that are sep-
arated by the minimum distance in Xt, and making the change in Yt reflect the change in
distance between these two tokens (while capping Yt at d).

A trivial induction on t shows that Yt ≥ m(Xt) holds for all t, so that (Xt) will reach state
δ no later than (Yt) reaches 0. Thus, the time for Sk to reach δ (that is, the time during which the
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ring has exactly k tokens) is stochastically dominated by the time for Cd to reach 0. By Lemma 2, the
expectation of this time is no longer than

d(d + 1)
2q

≤ 1
2q

(
n2

k2
+

n

k

)

Summing over all values of k from 2 to n, we get, for the expected stabilization time T ,

E(T ) ≤ 1
2p(1− p)

n∑

k=2

n2

k2
+

n

k

≤ 1
2p(1− p)

((
π2

6
− 1

)
n2 + n ln(n)

)

The lower bound comes from the fact that, when k = 2, the expected time for Cn/2 to
reach state 0 from state n/2 is at least n2

8p(1−p) . q

Remark 1 Our upper bound on the expected convergence time is minimal for p = 1/2. The precise
study of the 0Memory protocols show that the convergence time hardly depends on the initial number
of tokens: for n high enough and p = 1/2, E(T ) > n2/2 for two initial tokens at distance n/2, and
E(T ) < 1.3n2 for n tokens.

Our upper and lower bound are for the message passing model. In contrast, Herman’s
algorithm [10] (in the shared memory model), upon which 0Memory is based, has been
extensively studied by various researchers. First, [8] showed that the expected time was
O(n2 log(n)). Recently, [9] shows that its stabilization time is lower than 2n2, and [15] proves,
using elementary proof, that Herman’s algorithm is Θ(n2) (both results are superceded by
ours). Using a different (and more complicated) approach, [16] showed that the stabilization
of Herman’s algorithm is lower than π2−8

8p(1−p)n
2; for p = 1/2, this gives an upper bound of

0.936n2. This latter bound is lower than ours (1.3n2), but Herman’s algorithm merges two
tokens at a time, while 0Memory only merge one token at a time.

The expected service time is exactly n/p. The following protocol, 1bitMemory, guaran-
tees that the the service time can be upper bounded by 2n with probability 1. This allows to
ease the implementation of the timeout mechanism by inserting a new token if no token has
been encountered for 2n rounds.

3.2 1bitMemory protocol

Each processor i executes the following code: at each pulse, if a token was just delivered to
i, then i executes the 0Memory protocol for one pulse. If a token was delivered to i at the
previous round, then i transmits the token to its successor on the ring. Processor i needs
only one bit of memory to store whether it received a token at the previous round. Remark
that the protocol runs with one bit of memory and without a knowledge of n.

The analysis of this protocol leads to the following result:

Theorem 3 In a unidirectional n-sized ring containing an arbitrary number k of tokens (k ≥ 2), the
service time of protocol 1bitMemory is between n et 2n with probability 1 and the stabilization time
is E(T ) = O(n2) for constant p.
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Proof: The state of the ring with k tokens is described by a Markov chain S ′k, whose states
are of the form x = (x1, s1, . . . , xk, sk). In such a state, xi denotes the distance between
tokens i and i + 1, and si ∈ {0, 1} keeps track of the current state of the node holding token
i (0 corresponds to a node who just received a token, and 1, to a node that got its token one
round ago). If we only look at two consecutive tokens – that is, the part (si, xi+1, si+1) for
some i – we can see that this will evolve according to a Markov chain C′d, part of whose state
space and transition probabilities are represented in Figure 2.

(0, `, 0)

(1, `, 1)

(1− p)2

(1, ` + 1, 0)(0, `− 1, 1) (1, `, 0) (0, `, 1)

1

pp

1− p 1− p

(0, `− 1, 0) (0, ` + 1, 0)

p(1− p)p(1− p)

(0, d, 0)

(1, d, 1)

(1, d, 0) (0, d, 1)

p(1− p)
pp

1
(1− p)2

p2

1− p

1

p2

δ

Figure 2: Transition probabilities of chain C′d

Our proof of the upper bound on the expected collision time (in the chain S ′k) is in two
steps. In the first part of the proof, we construct a kind of coupling between S ′k and C′d (with
the caveat that we have to use a trick where one of the chains in the coupling may have to be
“stopped” from time to time while the other “catches up” with it; i.e., until Yt = m(Xt)); this
allows us to prove that the expected collision time is lower than the expected hitting time of
state (0, 0, 1) in C′d. In the second step, we use yet another Markov chain to prove an upper
bound on this expected hitting time.

First, we need to introduce some notation. If x = (x1, s1, . . . , xk, sk) is some state of S ′k
and 1 ≤ i ≤ k, di(x) = xi, and Imin(x) is the smallest index j such that dj(x) is minimal.
Also, mi(x) = (xi, si, xi+1) is a mapping of the states of S ′d to the states of C′d, with the special
provision that, if di(x) > d, then mi(x) = δ. The set of “good” states A of C′d is the set of
states of the form (0, `, 0) or (0, `, 1), plus the special state δ; note that any transition from a
state not in A is guaranteed to lead to a state in A – see Figure 2.

The idea of our coupling is as follows: we start with a copy (Xt) of the chain S ′k, and
initially select two consecutive tokens in the configuration; the distance between these two
tokens will be used to define a copy (Yt) of the chain Cd. We have to be careful, however,
if the two tokens ever get too far apart from each other (that is, their distance grows larger
than d). In such a case, we select two “new” tokens with the minimal distance between
them, and “stop” the chain (Xt), while still running the chain (Yt) until it “catches up” with
the distance between the two newly selected tokens in (Xt). This last part is only possible
because of the special structure of the Markov chain C′d.

More precisely, our coupling will be a Markov chain (Xt, Yt, It, Tt)t≥0. Here, Tt indicates
the number of transitions (X) has gone through when (Y ) has gone through t transitions
(it is a “change of time”); It simply keeps track of which two tokens of Xt we are currently
“watching”. The coupling is constructed as follows : X0 is any state of S ′k, T0 = 0, I0 =
Imin(X0), Y0 = mI0(X0); then, the transition from time t to t + 1 is done as follows :
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• if Yt = mIt(Xt) : this corresponds to the “normal” operation of the coupling. Xt+1

is selected randomly, according to the evolution law of S ′k, and we set Tt+1 = Tt + 1,
Yt+1 = mIt(Xt+1), then It+1 is determined depending on dIt(Xt+1) :

– if dIt(Xt+1) ≤ d, then It+1 = It;

– if dIt(Xt+1) > d (in which case we have Yt+1 = δ, then It+1 = Imin(Xt+1) (that
is, It+1 is now the index of a new pair of consecutive tokens in the configuration
described by Xt+1)

• if Yt 6= mIt(Xt), then we need to distinguish whether Xt ∈ A (in which case we “stop”
Xt) or not (in which case running Xt for one more round will ensure Xt+1 ∈ A) :

– if Xt ∈ A, then we set Xt+1 = Xt, Tt+1 = Tt, It+1 = It, and select Yt+1 randomly,
according to the evolution law of C′d;

– otherwise, we set Tt+1 = Tt, It+1 = It, and select Xt+1 and Yt+1 independently,
according to the evolution laws of S ′k and C′d, respectively.

It should be clear that (Yn)n≥0 is a faithful copy of the chain C′d. Next, if we set, for all
n ≥ 0, τn = inf{t : Tt ≥ n} (so that we have Tτn = n with probability 1, and thus τn ≥ n),
then (Xτn)n≥0 is a faithful copy of the chain S ′k. Furthermore, dIt(Xt) ≤ d(Yt) holds for all
t (the only evolution rules where this might conceivably not be maintained are those that
apply when Yt 6= mIt(Xt); the key observation is that the chain C′d cannot go from a state
(x, `, y) to a state (x′, `′, y′) with `′ < `, without going through states (0, `′, 1), then (0, `′, 0)).

Thus, if we define hitting times tX = inf{t ≥ 0 : dImin(Xt) = 0} and tY = inf{t ≥ 0 :
d(Yt) = 0}, then we have tX ≤ tY , thus TtX ≤ tY . But the expected value of TtX is the
expected collision time of the chain S ′k, while the expected value of tY is the expected hitting
time of state (0, 0, 1) for the chain C′d (starting from states X0 and Y0, respectively), which
ends the first part of the proof.

To give an upper bound on the hitting time of (0, 0, 1) for C′d, we consider the simpler
chainDd, which is exactly the chain C′d, stopped at each passage in a state of A; the transition
probabilities ofDd are as illustrated in Figure 3. Note that, because, in C′d, states not in A have
only states in A as their successors, a copy of C′d will make at most twice as many steps as
the corresponding (coupled) copy of Dd; this ensures that the expected hitting time of state
(0, 0, 1) is at most twice as large in C′d as it is in Dd.

For convenience, we rename the states of Dd in the following way : (0, `, 0) will be de-
noted by 2`, (0, `, 1) by 2` + 1 and δ by 2d + 2. For any ` ≤ 2d + 2, let us upper bound
E1

` in chain Dd. Since to go from state j > i to state i, we should visit all the states from
j − 1, j − 2, . . . , i + 1, we have in Dd that Ei

j =
∑j−1

k=i E
k+1
k .

We make use of Theorem 1 to obtain, for k < d:

E2k
2k+1 =

1
p

+ (1− p)E2k+1
2k+2

E2k−1
2k =

1
p(1− p)

+ E2k
2k+1 + pE2k+1

2k+2

=
2− p

p(1− p)
+ E2k+1

2k+2
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(1− p)2 + p2

0, `, 0 0, ` + 1, 0
p2(1− p)

0, `− 1, 1

p(1− p)
p(1− p)p(1− p)2p

0, `, 1

(1− p)2

Figure 3: Transition probabilities of chain Dd

It turns out that

E2k−1
2k = (d− k)

2− p

p(1− p)
+ E2d−1

2d

E2k
2k+1 =

1
p

+
(d− k − 1)(2− p)

p
+ (1− p)E2d−1

2d

The recurrence can be completed after the computation of E2d+1
δ , E2d

2d+1 and E2d−1
2d :

E2d+1
δ = 1

E2d
2d+1 = 1 + (1− p)E2d

δ

=
2− p

p

E2d−1
2d = 1 +

(
p2 + (1− p)2

)
E2d−1

2d + p(1− p)E2d−1
δ

=
3− 2p

p(1− p

Since E1
` ≤ E1

δ , summing Ek−1
k for k = 2 . . . 2d, we obtain that:

tY ≤ 2

(
E2d+1

δ +
2d+1∑

k=2

Ek−1
k

)

≤ d2

(
2− p

p
+

p + 2
p(1− p)

)
+ d

(
4− 3p

p(1− p)
+

2− p

p

)
+ 2 +

4− 2p

p
+

6− 4p

p(1− p)

Subsituying d by n
k and summing tY ’s over all values of k from n downto 2, we obtain that

the stabilization time is O(n2) for constant p. q

10



4 Algorithms: with a knowledge of n

We now consider the possibility that some particular processors have a different behavior
from the others, with some probability. We call these processors speed reducers: each round,
normal processors always transmit any token they are holding, while speed reducers do not
transmit them.

4.1 SpeedReducer1 protocol

Each processor i executes the following code: every n pulses, processor i randomly decides
whether it must act as a speed reducer or not. Processor i acts as a speed reducer with
probability 1/2n.

Theorem 4 In a n-sized ring containing an arbitrary number k of tokens (k ≥ 2) in its initial state,
the protocol SpeedReducer1 has a stabilization time upper bounded by (1 + 3e3/2)n.

Proof: Note that convergence is to occur as soon as, during a lapse of time of length n,
a unique processor is a speed reducer. We estimate the average time before this situation
happens in order to bound the expected convergence time.

A processor has two possible states: normal or speed reducer. At each round, the con-
figuration of the ring (discounting token positions) can be described by a binary vector of n
states. Let Ck be the configuration at time kn and let Rk its number of speed reducers. The
probability Pr(Rk = 1) of the existence of a unique speed reducer in the configuration Ck is:

Pr(Rk = 1) =
1
n

(
1− 1

2n

)n−1 (
n

1

)

= e(n−1) ln(1−1/2n)

≥ e
(1−n)

n .

For x ∈]0, 1/2], ln(1− x) ≥ −2x. This implies that for n ≥ 2,Pr(R) ≥ e−1/2.
Similarly, we have Pr(Rk = 0)

(
1− 1

2n

)n ≥ e−1/2.
Let us define Ek the event "Rk−1 = 0, Rk = 1 and Rk+1 = 0", and assume Ek occurs. Let i

be the unique speed reducer node at time kn, and let t denote the last time before kn where
it had to decide on its state; (k − 1)n < t ≤ kn. Ek implies that, from time (k − 1)n to time
(k + 1)n, all nodes other than i chose to be normal whenever they had to choose. Thus, i is
the only speed reducer from time t to time t + n − 1, and convergence occurs no later than
time t + n− 1 < (k + 1)n.

From what has been written previously, Pr(Ek) ≥ e−3/2. If J is the smallest integer j
such that E3i+1 occurs, J has an expected value no larger than e3/2 (the events (E3i+1)i≥0 are
independent, contrary to (Ei)i≥0). As a consequence, the expected stabilization time is less
than (1 + 3e3/2)n. q

In order to count n pulses, protocol SpeedReducer1 requires logarithmic memory. The
next protocol SpeedReducer2 does not need that much space, and only uses a constant mem-
ory (that is independent of n).

11



4.2 SpeedReducer2 protocol

Each processor i executes the following code: at each pulse, if the state of the processor is
normal, it becomes a speed reducer with probability q = 1

n(n−1) ; otherwise (if the state of the
processor is speed reducer), it becomes normal with probability p = 1/n.

Theorem 5 In a n-sized ring containing an arbitrary number k of tokens (k ≥ 2) in its initial state,
the protocol SpeedReducer2 has a stabilization time upper bounded by n(1 + e4

e−1) and only needs
one bit of memory.

Proof: Let us show that after n rounds, we have a constant probability to have a unique
speed reducer during n rounds.

The state of each node evolves independently from the other nodes like a two states
Markov chain of transition probabilities α = 1

n(n−1) and β = 1
n . Let Ex,t be the event "proces-

sor x is in the normal state at time t". From Lemma 1, Pr(Ex,t) = 1 − 1
n + 1

n

(
1− 1

n−1

)t
. For

t ≥ n− 1, 1− 1/n ≤ Pr(Ex,t) ≤ 1− 1/n + e−1/n. Let Rt be the number of speed reducers at
time t. The probability that there exists a unique speed reducer at time t ≥ n− 1 is:

Pr(Rt = 1) ≥ 1− e−1

n

(
1− 1

n

)n−1 (
n

1

)
≥ 1− e−1

e
.

The probability that a speed reducer stays in the same state during n rounds is (1− 1/n)n =
e−1 + o(1) and the probability that the n− 1 other nodes remain normal during n rounds is
(1− 1

n(n−1))
n(n−1) = e−1 + o(1).

Therefore, for any configuration of states at time 0, the probability that a node is a unique
speed reducer during n rounds between t = n and t = 2n − 1 (implying the total merger
between tokens takes place before time 2n) is asymptotically greater than p = e−1

e4 . The
same is true every n rounds thereafter until stabilization occurs, so that the probability that
stabilization fails to occur in the first (k + 1)n rounds is at most pk; this, in turn, implies that
the expected stabilization time is at most n

(
1 + e4

e−1 + o(1)
)

. q

5 Conclusion

We propose several self-stabilizing protocols for synchronous, anonymous, uniform, and
unidirectional ring networks, where processors communicate by exchanging messages. A
common quality of all presented algorithm is that they are transparent to the upper layer
application (that uses the token passing algorithm to perform e.g. critical sections of code).
First, we provided tight complexity results about previously known self-stabilizing algo-
rithm ([10, 1, 4]). Then, we provided original algorithms using the notion of a speed reducer.
One algorithm, SpeedReducer1, is optimal in stabilization time and service time, but require
O(log(n)) bits of memory per processor. The last algorithm, SpeedReducer2, is optimal with
respect to all three complexity measures of self-stabilizing token passing algorithms: stabi-
lization time, service time, and memory.

There remains the open question of having an optimal self-stabilizing algorithm for uni-
form and anonymous unidirectional rings of any size that is optimal in stabilization time,
service time, and memory, but also that has a bounded service time on all possible execu-
tions.
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