Research Perspectives

Sébastien Tixeuil

March 21, 2006

Most of classical distributed fault tolerant techniques do not scale well. Using them
would result to mechanisms that either consume too many ressources (memory, processing
time), or are an overkill to solve the problem. To circumvent impossibility results in the area
of self-stabilization, several paths were followed: restricting hypotheses on the faults that
are likely to appear (either their nature or their geographic location), or restricting the kind of
applications that can be solved. The frontier between problems that cannot be solved due to
overwhelming costs, and those that admit reasonable solutions is still fuzzy. Several results
show that there probably exists a tradeoff between the used resources and the capacity to
tolerate failures, still a lot of further work is needed to obtain a clear vision of this tradeoff.
In the next two sections, we further develop paths we believe are interesting research issues.

1 Theoretical side

Since its introduction in 1974 by Dijkstra [5], self-stabilization is based on a solid mathemati-
cal background. It is thus not surprising that various formalisms used in Mathematics, Au-
tomatics, and Computer Science were succesively used to prove self-stabilization: transfer
functions [18], iteration systems [1], max-plus algebra [10], rewriting systems [2], tempo-
ral [15] or high order logic [17], etc. The works we mentioned and conducted lead to other
theoretical aspects related to self-stabilization.

1.1 Competitive self-stabilization

In “pure” self-stabilizing approaches, nodes cooperate to acomplish a common goal (i.e. sat-
isfying a problem specification), in spite of an adversarial environment that tries to prevent
stabilization. In Byzantine insensitive stabilization [16], we distinguish two kinds of nodes,
those that correctly execute the algorithm (the correct nodes), and those that try to fail stabi-
lization (the Byzantine nodes). Here, all correct nodes collaborate, and all Byzantine nodes
have unlimited resources to execute their actions.

It is likely that the model of self-stabilization with Byzantine failures is too extreme to
match reality. For example, in interdomain routing in the Internet, nodes have a common
goal (permit to exchange messages across the Internet) but also a local goal (like maximizing
its own profit). It is then possible to refine the stabilization with Byzantine model in a new
model that is not binary any more (correct vs. Byzantine), but rather united on a global goal,
and competitive on the local goals.

1.2 Complexity and self-stabilization

There exist a large number of impossibility and lower bound results in distributed compu-
ting. For lower bound results, few results are specific to self-stabilization. The reason is
twofold:

1. memory lower bound : if a “classical” distributed algorithm (i.e. non stabilizing) requires
a certain amount of memory, then a self-stabilizing algorithm also requires this memo-

ry (it must behave properly when started from the initial configuration of the classical
algorithm),

2. time lower bound : if a distributed algorithm requires a certain amount of time to solve
a problem, then a self-stabilizing algorithm also (the stabilization time equals the max-
imum amount of time, over all possible system executions, including those that start
from a correct initial state).

Thus, lower bound results of “classical” distributed computing translate directly to self-
stabilizing algorithms, but the converse is not necessarily true. In particular, a number of
problems that are impossible to solve in a self-stabilizing way (for example due to symetry
in the intial configuration) can be easily solved in a properly initialized algorithm (restricting
initial configurations so that such a symetry does not appear).

Recently, several distributed algorithms that approximate NP-complete problems have
been designed. Self-stabilizing versions of some of them have jest appeared. There is usually
a tradeoff between the locality of the algorithm (the amount of information about its neigh-
borhood that it should known) and its efficiency (the quality of the proposed approxima-
tion). In a self-stabilizing context, the question that whether such a tradeoff exists remains
open.

1.3 Systematic self-stabilization

In [9, 10, 3], we have proved that a local condition on the local code executed by a distributed
system could imply self-stabilization of the whole system under various hypothesis. In par-
ticular, depending on the considered model (high or low atomicity), different results were
obtained (partial order in the case of high atomicity, total order in the case of low atomicity).
A partial order permits to solve the ordered ancestor list problem, which in a strongly con-
nected system (which corresponds to most actual systems) can be used (by the technique
of [7]) to solve any static task. The fact that the same operator does not work properly in the
low atomicity models does not imply, though, that there exist no such operator. An ad hoc
algorithm was proposed in [4] for the ordered ancestor list in a low atomicity model. The
question of whether there exists a universal operator (for static tasks) in the low atomicity
models remain open.

Then, even if such an operator exists and shows that the approach is universal, maybe
it is not the best operator to implement the solution to a particular static problem. Indeed,
the memory space (in O(nlogy(n))) and the amount of transfered information across the
network is important compared to other specialized operators. Currently, the technique that
permits to find an operator to solve a given problem, remains ad hoc. An interesting open
question is whether there exists a way to systematically design an operator that implements
a specified problem.

2 Practical side

A large number of the routing protocols that are currently used in the Internet are, to some
extend, self-stabilizing. For example, the link state exchange protocol of OSPF (Open Shortest
Path First, an intradomain routing protocol in the Internet) has been proved self-stabilizing
by Nancy Lynch. Except in the routing domain, though, applications of self-stabilization are
still limited. these limitations can be explained by various factors:

1. hypotheses made about self-stabilizing systems do not apply to every actual system: for exam-

2.1

ple, self-stabilization assumes that processors never stop executing their code, but it is
well known that a simple sequence of low level instructions (that could result from a
memory corruption) can indefinitely hang some processors,

self-stabilizing environments are not yet available for current software: current operating
systems upon which current software is executed were not designed nor proved self-
stabilizing, so building self-stabilizing bricks on top of those foundations may seem
artificial.

Self-stabilizing systems

To enable actual self-stabilizing distributed systems, two complementary approaches are
possible:

the bottom-up approach : starting from the system foundations (hardware, operating sys-

tem), we end up with applications that are based on self-stabilizing foundations. For
example, the work of Shlomi Dolev follows this approach. In [6], they propose mech-
anisms to make a processor self-stabilizing, i.e. to guarantee that eventually, the pro-
cessor infinitely executes the following sequence: fetch, decode, execute. Several ap-
proaches are described: it is possible to design from scratch a new processor, or to
add to an existing processor an external harware mechanism (the watchdog) that ver-
ifies that the processors does not hang in some illegal state. Then, in [8], they have
proposed the basis of a minimal self-stabilizing operating system (provided a self-
stabilizing microprocessor) and considered several services (memory management,
self-stabilization preserving compilation). While this work does give sound founda-
tions for self-stabilizing systems, the disposal of a fully grown system that is usable
for complex applications will still take at least several years.

the top-down approach : starting from the applications that are meaningful for current

needs, we show that, under the assumption that underlying services are self-stabilizing,
those new services are self-stabilizing as well. The verification of self-stabilizing pro-

perties in this context leads to many practical problems, since self-stabilization is u-

sually compromized by few particular computations of the system, whose probability

to occur in a real system is extremely low. Moreover, reproducing a particular execu-

tion that identified a problem in a self-stabilizing algorithm implementation decreases

even more this probability.

We have designed and implemented a middleware platform, FAIL-FCI [12], that should
ultimately permit a top-down approach for constructing self-stabilizing systems. This mid-
dleware is developped in the context of several projects (the GrideXplorer project of ACI
«Masse de Données», and the FRAGILE project of ACI «Sécurité et Informatique»), and has
two main components:

1. a fault scenario specification language (FAIL, for FAult Injection Language) : this language
permits to specify, using a formalism that mimics synchronized automata, scenarios
that are meant to provide quantitative (every x seconds, a proportion y of the system
has a z probability to experience a fault) and qualitative (once process p; at machine
m1 has executed line z of its code, then process p; at machine mg should be hit by a
fault before executing line y) measures. In particular, this language permits cascading
or epidemic faults where a causality relation exists between the first and subsequent
faults.

2. a distributed fault-injection middleware (FCI, for FAIL Cluster Implementation) : this mid-
dleware operates between the operating system and the application under test. A nice
property of our approach is that it is transparent to both the programmer and the user,
because the source code of the application is not modified, and does not need to be
recompiled.

The current status of FAIL-FCI enables to elaborate complex fault (or attack considering
malicious faults) scenarios, and the fault-injection middleware permits to inject faults in two
main kinds of applications:

1. native code applications (resulting from the compilation of e.g. C or FORTRAN source
code),

2. some bytecode applications (currently, only Java bytecode is supported [14]).

For now, the set of faults that it is possible to inject with our tool are limited: crash faults
(possibly followed by a restart from the initial state) and the suspend action (possibly fol-
lowed by a resume action) that are meant to simulate fully asynchonous and faulty systems.

FAIL-FCI already permitted to reveal abnormal behavior in several applications (such
as a global calculus middleware in [13]), and was noticed within the CoreGRID European
Network of Excellence: for the second joint program of activities, a dedicated task “Fault
injection and Robustness” was introduced. We plan to to further develop our tool. In partic-
ular, we plan to add new fault categories (memory corruption, resource premption), to test
new kinds of applications (for example, Peer to Peer applications, that are well known to
be scalable, have received little attention reguarding fault-tolerance and stress testing), and
to permit fault-injection for different execution models (for example, MPI based applica-
tions). Another aspect worth investigating is the ability to replay real executions (modelled
by execution traces) to evaluate application performance in a realistic context.

The ultimate goal of FAIL-FCI is to provide a tool that permits to run standardized
benchmarks for fault tolerance and dependability in distributed systems.

2.2 Wireless Sensor Networks

Wireless sensor networks are one of the most obvious application areas for self-stabilizing
actual systems. The two main reasons are as follows:

problems to be solved : many problems that are currently studied in the context of sen-
sor networks can be modelled by graph problems, for which distributed or even self-
stabilizing solutions exist. Moreover, the distributed nature of the solution is essen-
tial here since the envisioned size for sensor networks for the next years (dozens of
thousands), it will be impossible to properly initialize such a system component by
component according to the results of a sequential algorithm.

In the commonly used layered network model for wireless networks, distributed algo-
rithms appear in the four upmost layers: data link, network, transport, and application
layers. Most of the solutions that have been proposed, though, are for the data link and
network layers.

For the data link layer, and most importantly the MAC (for Medium Access Control),
several kinds of protocols can be used. Among them, the most common in wireless
networks are CSMA (for Carrier Sense Multiple Access), TDMA [11] (for Time Division
Multiple Access), or FDMA (for Frequency Division Multiple Access). In every case, the
main goal is to permit access to the communication medium in spite of problems that
compromise network performance (latency, throughput) or energy used to communi-
cate (that is crucial in sensor networks). The main problem is due to collisions that
occur when neighbor nodes concurrently try to access the radio medium to emit data:
receiving nodes may then receive garbled or unusable data. In sensor networks, addi-
tional problems appear, like the fact that receiving a signal is almost as costly (in terms
of energy) as waiting to receive a signal, this practical limitation induces algorithmic
techniques that propose a tradeoff between latency and energy saving to communicate
through the network.

By nature, TDMA and FDMA techniques are related to vertex or link coloring of some
graph. As wireless networks we consider must be self-organised, this coloring can-
not be predefined before the system is deployed, and must result from a distributed
algorithm run by the system itself. Current distributed solutions to graph coloring
problems show that theoretical bounds relate the quality of the coloring and the local-
ity of the algorithm (that is strongly dependent of the used energy). Moreover, TDMA
requires that local clocks are synchronized, which may require running supplementary
distributed algorithms for synchronization.

Alternative algorithms based on solutions of graph problems can be used for the net-
work layer. For example, it is possible to build an energy-wise efficient infrastructure
by self-organizing the network in a hierarchical manner or by finding a subnetwork
with interesting properties. The considered graph problems are then most related to
dominating sets (sets of nodes that are capable to communicate with every other node
in the graph), the goal being to make those sets as small and/or efficient as possible.

hardware specifics of sensor networks : wireless sensor networks are machines based on
simple and low-cost components. Those machines support a limited set of devices,
operating system services, and their operating system itself has a very small footprint.
For example, TinyOS, the main operating system currently deployed in academic sen-
sor wetworks, has a 3450 bytes code space , and a 226 bytes data space. This reduced
size enables to study self-stabilization at the operating system level. Moreover, the
fact that those networks are envisioned at a very large scale implies that fault toler-
ance must be part of their design from the begining. For most considered applications
(data collection over a long period), non-masking solutions such as self-stabilization,
are probably preferable, due to lower resource requirements, to masking approaches
based on consensus and replication.

The currently sustained research effort in sensor networks will probably lead, within a
few years, to large scale deployment of those (with several dozens of thousands nodes). In
this context, it is not possible to manage those sensors or resume network behavior after
failures manually. Techniques for large scale stabilization, until now developped in a theo-
retical manner, would be good candidates for such large scale deployment on real hardware
systems. Indeed, they could lead to a unified and simple solution for both self-organization
(made necessary by the large scale) and fault tolerance (that will frequently and continu-
ously appear).

References

[1] Anish Arora, Paul C. Attie, Michael Evangelist, and Mohamed G. Gouda. Convergence
of iteration systems. Distributed Computing, 7(1):43-53, 1993.

[2] Joffroy Beauquier, Béatrice Bérard, Laurent Fribourg, and Frédéric Magniette. Prov-
ing convergence of self-stabilizing systems using first-order rewriting and regular lan-
guages. Distributed Computing, 14(2):83-95, 2001.

[3] Sylvie Delaét, Bertrand Ducourthial, and Sébastien Tixeuil. Self-stabilization with r-
operators revisited. In Proceedings of the Seventh Symposium on Self-stabilizing Systems
(§55°05), volume 3764 of Lecture Notes in Computer Science, pages 68-80, Barcelona,
Spain, October 2005. Springer Verlag.

[4] Sylvie Delaét and Sébastien Tixeuil. Tolerating transient and intermittent failures. Jour-
nal of Parallel and Distributed Computing, 62(5):961-981, May 2002.

[5] Edsger W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun.
ACM, 17(11):643-644, 1974.

[6] Shlomi Dolev and Yinnon A. Haviv. Self-stabilizing microprocessor - analyzing and
overcoming soft-errors (extended abstract). In Christian Miiller-Schloer, Theo Ungerer,
and Bernhard Bauer, editors, Organic and Pervasive Computing - ARCS 2004, International
Conference on Architecture of Computing Systems, Augsburg, Germany, March 23-26, 2004,

Proceedings, volume 2981 of Lecture Notes in Computer Science, pages 31-46. Springer,
2004.

[7] Shlomi Dolev and Ted Herman. Superstabilizing protocols for dynamic distributed
systems. Chicago |. Theor. Comput. Sci., 1997, 1997.

[8] Shlomi Dolev and Reuven Yagel. Toward self-stabilizing operating systems. In 15th
International Workshop on Database and Expert Systems Applications (DEXA 2004), with
CD-ROM, 30 August - 3 September 2004, Zaragoza, Spain, pages 684-688. IEEE Computer
Society, 2004.

[9] Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with r-operators. Dis-
tributed Computing, 14(3):147-162, July 2001.

[10] Bertrand Ducourthial and Sébastien Tixeuil. Self-stabilization with path algebra. Theo-
retical Computer Science, 293(1):219-236, 2003. Extended abstract in Sirrocco 2000.

[11] Ted Herman and Sébastien Tixeuil. A distributed tdma slot assignment algorithm for
wireless sensor networks. In Proceedings of the First Workshop on Algorithmic Aspects of
Wireless Sensor Networks (AlgoSensors’2004), number 3121 in Lecture Notes in Computer
Science, pages 45-58, Turku, Finland, July 2004. Springer-Verlag.

[12] William Hoarau and Sébastien Tixeuil. A language-driven tool for fault injection in
distributed applications. In Proceedings of the IEEE/ACM Workshop GRID 2005, page to
appear, Seattle, USA, November 2005.

[13] William Hoarau, Sébastien Tixeuil, and Fabien Vauchelles. Fault injection in distributed
java applications. Technical Report 1420, Laboratoire de Recherche en Informatique,
Université Paris Sud, October 2005.

[14] William Hoarau, Sébastien Tixeuil, and Fabien Vauchelles. Fault injection in distributed
java applications. In International Workshop on Java for Parallel and Distributed Computing
(joint with IPDPS 2006), page to appear, Greece, April 2006. IEEE.

[15] Sandeep S. Kulkarni, John M. Rushby, and Natarajan Shankar. A case-study in
component-based mechanical verification of fault-tolerant programs. In Anish Arora,
editor, 1999 ICDCS Workshop on Self-stabilizing Systems, Austin, Texas, June 5, 1999, Pro-
ceedings, pages 33—40. IEEE Computer Society, 1999.

[16] Toshimitsu Masuzawa and Sébastien Tixeuil. A self-stabilizing link coloring algorithm
resilient to unbounded byzantine faults in arbitrary networks. In Proceedings of OPODIS
2005, Lecture Notes in Computer Science, page to appear, Pisa, Italy, December 2005.
Springer-Verlag.

[17] I. S. W. B. Prasetya. Mechanically verified self-stabilizing hierarchical algorithms. In
Ed Brinksma, editor, Tools and Algorithms for Construction and Analysis of Systems, Third
International Workshop, TACAS 97, Enschede, The Netherlands, April 2-4, 1997, Proceedings,
volume 1217 of Lecture Notes in Computer Science, pages 399—415. Springer, 1997.

7

[18] Oliver E. Theel and Felix C. Gartner. An exercise in proving convergence through trans-
fer functions. In Anish Arora, editor, 1999 ICDCS Workshop on Self-stabilizing Systems,
Austin, Texas, June 5, 1999, Proceedings, pages 41-47. IEEE Computer Society, 1999.

