Route Preserving Stabilization

Colette Johnen Sébastien Tixeuil

LRI-CNRS UMR 8623, Université Paris-Sud XI, 91405 Orsay cedex, France.

Abstract

A distributed system is self-stabilizing if it returns to a legitimate state in a finite
number of steps regardless of the initial state, and the system remains in a legitimate
state until another fault occurs. A routing algorithm is loop-free if, a path being con-
structed between two processors p and ¢, any edges cost change induces a modification
of the routing tables in such a way that at any time, there always exists a path from p
to gq.

We present a self-stabilizing loop-free routing algorithm that is also route preserving.
This last property means that, a tree being constructed, any message sent to the root
is received in a bounded amount of time, even in the presence of continuous edge cost
changes. Also, and unlike previous approaches, we do not require that a bound on
the network diameter is known to the processors that perform the routing algorithm.
We guarantee self-stabilization for many metrics (such as minimum distance, shortest
path, best transmitter, depth first seach metrics, etc.), by reusing previous results on
r-operators.

Key words: Distributed algorithms, fault-tolerance, self-stabilization, loop-free
routing, route preserving routing

Résumé

Un systéme réparti est auto-stabilisant s’il retourne a un état légitime en un nombre
fini d’étapes indépendamment de son état initial, et qu’il reste dans un état légitime
jusqu’a ce qu’une nouvelle défaillance survienne. Un algorithme de routage est sans
boucles si, un chemin étant construit entre deux processeurs p et ¢, tout changement
de colt des arétes induit une modification des tables de routage de telle maniére qu’a
chaque instant, il existe toujours un chemin de p a gq.

Nous présentons un algorithme de routage sans boucles auto-stabilisant qui préserve
les routes. Cette derniére propriété signifie que, un arbre de routage étant construit,
tout message envoyé a la racine de ’arbre est re¢gu en temps fini, méme en présente de
changements continus des poids des arétes. De plus, et contrairement aux approches
précédentes, notre algorithme ne nécessite pas que les processeurs connaissent une borne
sur le diamétre du systéme. Nous garantissons ’auto-stabilisation pour de multiples
meétriques (distance minimale, plus court chemin, meilleurs retransmetteurs, parcours
en profondeur d’abord, etc.) en réutilisant des résultats antérieurs sur les r-opérateurs.

Mots clef: Algorithmes répartis, tolérance aux fautes, auto-stabilisation, routage
sans boucles, routage préservant les routes

Contents

1 Introduction

2 Model

3 The route preserving self-stabilizing shortest path algorithm

3.1 Problem tobesolved
3.2 Description,

4 Proof of correctness
4.1 Route preserving proof
4.2 Self-stabilization proof
4.2.1 Local consistency
422 Liveness
4.2.3 Lower bound on weight
4.2.4 Towards legitimate configurations

5 The generic algorithm

6 Conclusion

\']

11
11
13
13
14
15
16

18

21

Chapter 1

Introduction

In 1974, Dijkstra pioneered the concept of self-stabilizatio in a distributed network [?]. A
distributed system is self-stabilizing if it returns to a legitimate state in a finite number of
steps regardless of the initial state, and the system remains in a legitimate state until another
fault occurs. Thus, a self-stabilizing algorithm tolerates transient processor faults. These
transient faults include variable corruption, program counter corruption (which temporarily
cause a processor to execute its code from any point), and communication channel corruption.

In the context of computer networks, resuming correct behavior after a fault occurs can
be very costly [?]: the whole network may have to be shut down and globally reset in a good
initial state. While this approach is feasible for small networks, it is far from practical in large
networks such as the Internet. Self-stabilization provides a way to recover from faults without
the cost and inconvenience of a generalized human intervention: after a fault is diagnosed,
one simply has to remove, repair, or reinitialize the faulty components, and the system, by
itself, will return to a good global state within a relatively short amount of time.

In the context of the communication networks, [?] showed that crash and restart failures
may lead the distributed systems into an arbitrary configurations, highlighting the need for
algorithms that are resilient to those failures (such as self-stabilizing algorithms). Fault-
tolerance is an important issue in the design of network routing protocols since the topology
changes due to the link/node failures and repairs. Many existing routing protocols are self-
stabilizing (for example [?] reports that RIP and OSPF have been proved self-stabilizing by
Nancy Lynch).

Related works The primary task of a routing protocol is to generate and maintain routing
table with the appropriate desirable property. This property is usually stated in terms of
maximizing a particular routing metric. In [?] is presented a self-stabilizing routing protocols
on Breath-first path metric (shortest path metric where all edge weighs are 1). An optimal
self-stabilizing algorithm for the shortest path metric is presented in [?]. In [?], a general
self-stabilizing protocol that computes routing table for several routing metrics (for instance
shortest path, maximal bandwidth path) on id-based networks is presented. In [?], another
approach for routing is taken by means of r-operators (for minimum distance, shortest path,
best transmitter, depth first search metrics). A common drawback of these algorithms is that

Figure 1.1: Example of self-stabilizing routing

they are not loop-free: assume that a tree is initially present in the network, then if edge costs
change, the self-stabilization property of the algorithm makes it return to a configuration
where a tree is built. However, in the reconfiguration phase, it is possible that a cycle appears
(see Figure 1.1). If a message is sent during this phase, it may loop in the network.

To circumvent this problem, self-stabilizing loop-free algorithms were developed. Assume
that there exists a path between two nodes p and ¢. After any edges cost change, the loop-free
protocol modifies its routing tables to compute the new optimal path. During this re-building
phase, they always exists a path from p to ¢q. In [?] are presented two self-stabilizing rout-
ing protocols with shortest path metric. One of these protocols is loop-free, but requires
unbounded memory per processor. In [?], a general self-stabilizing loop-free protocol is pre-
sented (using the formalism of [?]). The known self-stabilizing loop-free protocols (such as
[?, ?]) suffer from two drawbacks: (i) they require that an upper bound on the diameter of the
network is known to make them stabilizing, and (ii) if edge costs change often, it is possible
that messages sent actually loop in the network. For example, in Figure 1.2, at each step there
is a tree towards r that is constructed, yet message m does not reach r during configurations
A to F. Since configurations A and F are the same, it is possible that m loops forever in the
network if edge costs continue changing.

Our contribution We present a self-stabilizing loop-free routing algorithm that is also
route preserving. Our solution is self-stabilizing so that it can recover from any transient
failure once faults cease to appear; it is loop-free so that, a tree being constructed, a tree
remains forever in the network even with continuous edge cost changes; it is route preserving
so that, a tree being constructed, any message sent to the root is received within a bounded
amount of time, even in the presence of continuous edge cost changes. This last feature is by
providing a routing policy that permits to interleave consistently routing table updates and
message forwarding actions. Figure 1.3 captures that our system recovers from transient faults
(denoted by dotted lines in the figure) by eventually reaching a shortest path configuration
provided that no new faults occur. In addition, edge cost changes (dashed lines in the figure)
preserve the route preserving predicate in the sense that only route preserving configurations
can be reached (denoted by grayed circles in the figure).

Also, and unlike [?] and [?], we do not require that a bound on the network diameter is
known to all processors in the network. This makes our solution more adaptive to network
changes. Asin [?], we guarantee self-stabilization for many metrics (such as minimum distance,

Figure 1.2: Example of self-stabilizing loop-free routing

*e

W', Transient fault
/\ Computation step
/£ T\ Edge cost change

O Configuration
Shortest path

' configuration

Route preserving

N configuration

Figure 1.3: Properties of route preserving stabilization

shortest path, best transmitter, depth first search metrics, etc.). Since our approach is based
on r-operators (see [?]), the set of metrics that we support is distinct from that of [?] (usual
metrics however, such as shortest path tree, are common to both apporaches).

Outline of the paper The remaining of the paper is organized as follows. In Chapter 2,
we present the underlying model for self-stabilizing distributed systems. For sake of clarity,
in Chapter 3, we present a first version of our algorithm using the intuitive shortest path
metric, and prove the self-stabilizing route preserving property of this algorithm in Chapter
4. Chapter 5 provides the generic version of our algorithm, that supports as many metrics as
r-operators. Concluding remarks are given in Chapter 6.

Chapter 2

Model

Distributed systems A distributed system S is modeled as a collection of processors linked
with communication media allowing them to exchange information. A distributed system is
a connected graph G = (V| E), where V is the set of nodes (|V| = n) and E is the set of links
or edges. Each node i € V represents a processor, P;. (For the sake of simplicity, we will use
i and P; interchangeably to represent the processor.) Each edge, denoted by a pair (i,) € E,
represents a communication link between FP; and P;, where P; and P; are called neighbors.
Any ordered tuple of successive links ((, k), (k, s), .., (I, j)), represents a path p; ; between P,
and P;. If two nodes P, and P; are connected by some path p; ; (note that p;; is a path), P;
is said to be reachable from P;.

The processors asynchronously execute their programs consisting of a set of variables and a
finite set of rules. The variables are part of the shared register which is used to communicate
with the neighbors. A processor can write only into its own shared register and can read only
from the shared registers, owned by the neighboring processors or itself. So, variables of a
processor can be accessed by the processor and its neighbors.

The state of a processor is defined by the values of its local variables. A configuration of
a distributed system G = (V, E) is an instance of the states of its processors. The set of
configurations of G is denoted as C.

Processor actions change the global system configuration. Moreover, several processor actions
may occur at the same time. A computation e of a system G is defined as a weakly fair,
maximal sequence of configurations cy, co, ... such that for i = 1,2, ..., the configuration ¢;
is reached from ¢; by a single step of at least one processor. During a computation step, one
or more processors execute a step and a processor may take at most one step. Weak fairness
of the sequence means that if any action in G is continuously enabled along the sequence, it
is eventually chosen for execution. Maximality means that the sequence is either infinite, or
it is finite and no action of (G is enabled in the final global state.

Let C be the set of possible configurations and £ be the set of all possible computations of
a system (. Then the set of computations of G starting with a particular initial configuration
c1 € C will be denoted by &.,. Every computation e € &, is of the form ¢, ca, ... The set of
computations of P whose initial configurations are all elements of B C C is denoted as &p.

Thus, € = &.

We introduce the concept of an attractor to define self-stabilization. Intuitively, an attractor
is a set of configurations of a system G that “attracts” another set of configurations of G for
any computation of G.

Definition 1 (Attractor) Let By and By be subsets of C. Then By is an attractor for By if
and only if Ve € Ep,, (e =c1,¢q,...), Fi > 1: ¢; € By.

The shortest path maintenance is a static problem. The set of configurations that matches
the specification of static problems is called the set of legitimate configurations, denoted as L.
The remainder C \ £ denotes the set of illegitimate configurations.

Definition 2 (Self-stabilization) A distributed system S is called self-stabilizing if and only
if there exists a non-empty set L C C such that the following conditions hold: (i)Ve € ., (e =
c1,¢C,...), Vi >1, ¢; € L (closure). (ii) L is an attractor for C (convergence).

The program for a protocol consists of a sequence of rules: < rule > --- < rule >. Each
rule is the form: < guard >——< action >. A guard is a boolean expression over the variables
of a node and its neighborhood. An action is allowed to update the variables of the node only.
Any rule whose guard is true is said to be enabled. A node with one or more enabled rule is
said to be privileged and may make a move executing the action corresponding to the chosen
enabled rule. We do not make any assumption on the policy adopted by a node when more
than one rule guards are satisfied.

Chapter 3

The route preserving self-stabilizing
shortest path algorithm

3.1 Problem to be solved

In this section, we present the problem to be solved by our algorithm. The purpose of our
contribution is threefold: we wish to build a shortest path tree rooted at r (the shortest
path problem), we wish to be able to recover from any transient fault (the self-stabilization
requirement), and we want that when routes are constructed, messages can be routed during
changes of edge costs (the route reserving requirement).

The shortest path problem We associate to each link (i,7) of G = (V, E) a positive
integer ¢; ; that denotes the cost of a communication through this link in both direction (i.e.
from i to j and from j to i). Each processor i has the following inputs: N is the locally
ordered set of neighbors of 7, and ¢; ; is the cost of edge between processors ¢ and j.

On each processor i, the following variables are available: p; is a pointer to a particular
neighbor of 4, that is equal to the next processor j € N; on the current path from i to r, and
w; is an integer variable that is equal to the cost of the current path from i to r.

Given a source r, the shortest path problem consists in finding for each processor ¢ a path
from i to r (or from r to ¢) whose overall cost is minimal. Each path is induced by the p
variables at all nodes i # r. We denote by w; the cost of the shortest path from ¢ to r (note
that w, = 0). In a shortest path from i to 7, w; is equal to the minimum of the costs at a
neighbor j of ¢ plus the cost from j to i for any possible neighbor j of . Formally, Vi # r,
w; = Minjen, (Wj+c¢; ;). We now define a shortest path configuration (that must be eventually
reached by any algorithm that wishes to solve the shortest path problem):

Definition 3 (Shortest-path Configuration) Let SP be the following predicate on system
configurations: SP = {Vi € V,w; = w;}. A shortest path configuration is a configuration that
satisfies SP.

The self-stabilization requirement Not only our algorithm eventually provides a shortest
path configuration, it also ensures that the initial state can be arbitrary. Once the system is
stabilized, the set of p pointers should induce a shortest path tree rooted at r.

Due to the self-stabilization property of our algorithm, it computes for each processor
1 # r a shortest path to r from any initial configuration configuration under any weakly fair
scheduler. Our algorithm does not make any assumption about the initial value of w; or p; on
any processor i. We now define the legitimate configurations for our purpose using a legitimate
predicate LP.

Definition 4 (Legitimate Configuration) Let LP be the following predicate on system
configurations: LP = {(Vi # r,(w; = w;) N (w; = wp, + ¢ip;)) N w, = 0)}. A legitimate
configuration is a configuration that satisfies LP.

The route preserving requirement We wish to preserve a route towards the root r once
a path is constructed, even if edge costs are modified. For that purpose, we define so that the
stabilizing algorithm wishes to change node variables.

Definition 5 (Task preservation under input change) Let T'S be a task specification,
let TC be a set of changes of inputs in the system. A distributed system S preserves T'S under
TC if and only if there exists a non-empty set of configurations C' C C such that the following
conditions hold: (i) C is closed, (ii) C is closed under any change in TC, and (iii) every
computation starting from c € C eventually satisfies T'S.

For our purpose, the task to be solved (T'S) is to be able to route a message for any node
i to the root r, while the set of changes of inputs (7'C') is the set of possible variation of edge
costs.

3.2 Description

Each processor i performs several kinds of actions with different objectives:

Route finding 7 whishes to reach a configuration where every node maintains a route towards
r (so that messages can be sent to r). This goal is achieved by having the weight of
each node (the w; variable) set to a value that is strictly greater than that of its parent
(denoted by the w,, variable).

Route preserving The rules of the algorithms that are executed after a route is present
towards r from every node i have to preserve a route towards r from every node i. Also,
arbitrary changes of edge costs must not break the such defined routes (for the route
preserving requirement).

Shortest path finding ¢ wishes to reach a shortest path configuration.

Self-stabilization ¢ wishes to reach a legitimate configuration (for the self-stabilization re-
quirement). For that purpose, if ¢ = r, then ¢ updates w; so that w; = 0, and if i # r, i
updates p; and w; so that w; = Minjen;, (w; + ¢; ;).

Formal description

Each processor ¢ (except the root) has the following variables: rw; (the current value broadcast
in 4’s sub-tree) is an integer, and p; (the parent of i) is a pointer to a neighbor of i. Each
processor i (including the root) has the following variables: w; (the weight of i) is an integer,
and st; (the status of i) takes value in {P,N}.

All processors has the following local macro: w; is the best possible value of w; according
to the current configuration (see table below). Let j be a child of i (p; = 7). j is called a
descendant of i iff w; > w;. Each processor (except the root) has the following local macros:
D; is the set of the descendants of i in the tree, p; is the best possible parent i according to the
current configuration if a such neighbor exists otherwise the value of p is L (The best parent
7 should have the neutral status and should have a weight that minimizes the new weight
value of i: W; + ¢; ;), and ubw; is the upper bound of w; (that ¢ might take and still preserve
convergence towards a legitimate state) in the current configuration (see table below).

0 _ min;en, (w; + ¢ ;) ifi#r
! - 0 otherwise

minjen, (7 =2 (w; = w; — ¢ ;) A (st; = N)) if there exists j € N;

ﬁi = (U}j = QI}Z — Ci,j) A (Stj = N)
1 otherwise

D; = {je/\fi::pj:i/\wj>wi}

ubw; = { mingep, (w; — ¢;;) i Di # 0
00 otherwise

Each processor (except the root) has the following local predicates: End PIF' is used to
avoid that a processor increases its weight (i.e. to perform Rj action) simultaneously with
one of its descendants, Safe MOV E is used to avoid that a processor ¢ takes the status P
(i.e. to perform Ry action) when it could change its parent, and Safe INC' is verified by i
when it needs to increase its weight (see table below).

End_PIF; = (Vj € Di,st; =N)
Safe MOVE; = (A Egb;gj_l;}l) V ((wi = i) A (Pi # pi))))
Safe INC, = (y Eiﬁfiféf’l ﬁpfj’;’” A (sty, = P))

The rules of our algorithm are the following:

1. On the root r processor:

o Ry:(w, #0)V (st, #N) —
w, <« 0;st,. <— N

2. On any other processor i:

e Ry:(st;=N)ASafe MOVE; —
W; — Wy; TWy < Wi, Pi — Di

e Ry::(st;=N)A—=Safe MOVE; ASafe INC; —
TW; < TWp, + Cp, 3 St; < P

e R3:: (st; =P)A End_PIF; A\ (ubw; > rw;) —

w; < rw;; st«— N

o Ry (rw; < w;) — rw; «— w;

The Ry and R, rules are designed to ensure that eventually the variable values on a processor
are locally correct. The R; action allows a processor to get the best value for its w and p
variables according to the state of its neighbor. The R, action is executed when ¢ needs to
increase its weight, while the actual increase is achieved by executing the R3 action.

Observation 1 The weight of a processor increases only after that this processor has per-
formed the rule R3. Actions Ry, Ry and R3 are mutually exclusive: a processor cannot simul-
taneously verify two rule guards of Ry, Ry or R3. Rule Ry is performed at most once. After
any action on i, we have w; < rw; therefore the action Ry is performed at most once by any
Processor.

Lemma 1 When a processor i performs Rs, none of its descendants and parent can perform
R3 simultaneously with 1.

Proof: When the R3 guard holds, i’s descendants and parent have Status N. They cannot
satisfy the R3 guard. |

10

Chapter 4

Proof of correctness

In this section, we show that our algorithm is self-stabilizing for the shortest path tree problem.
We also prove that there exists a route preserving set of configurations RP that ensure routing
of messages towards the root r and that is preserved for any change of edge cost.

4.1 Route preserving proof

We wish to find a non-empty set of configurations RP that verifies the following properties:
(i) RP is not empty, (ii) RP is closed (any action of any processor executing our algorithm
preserves RP), (iii) RP is closed under any edge cost changes, and (iv) every computation
starting from a configuration in RP is guaranteed to deliver the message at r after finite time.
Once RP is verified, any message sent to r reaches it. Therefore, once RP is verified, our
algorithm guarantees that (i) any message towards r reaches its destination, even when the
edge costs vary, and (i) routes to r are eventually the costless ones. We define RP as the set
of configurations where Predicates Pr*”* and Pr*”> hold at each i € V. Those predicates are
defined as follows:

Definition 6 Let Plrzw1 be the following predicate on processor state:

7%)7;1: rw; > Ww; ifi£r
i | w,=0Ast, =N otherwise

Definition 7 Let PI‘ZRPZ be the following predicate on processor state:

RP2 Wy, <w; ifiFET
Pr = .
i w, =0 otherwise

Our algorithm ensures that increasing a weight is safe: (i) ¢ cannot gain a new child while
RP2

performing its weight increase action, (ii) all descendants j of ¢ still satisfy Predicate Pr;
after any action of i, and (%ii) ¢ changing its p; variable also preserves Predicate Pr;R%. In
our algorithm, the st; variable at processor ¢ helps to guarantee Properties (i) and (iii). The

rw; variable of 7 represents the maximal value that ¢ can take and its descendants still satisfy

11

Predicate Przw2 predicate. We now prove that the preserving predicate P1rzw1 /\Plrz.w2 is
closed.

Lemma 2 AR? = {Vi € V, Pt} holds} is an attractor for true.

Proof: A processor i that does not verify Plrzz731 verifies forever Ry or R, guard. By the

weak fairness hypothesis, every enabled processor i executes an action. After this action, we
have rw; > w; (observation 1). O

Observation 2 In AR?, no processor performs the actions Ry and Ry.

2

Lemma 3 In AR?, on any processor i, Przzp 18 closed.

Proof: Predicate Pr"? may becomes false its value after that either: (i) i executes R or,
(ii) p; executes Rs.

Just before ¢ executes R, to choose j as its parent, j has status N. Therefore j cannot increase
it weight (i.e. perform action R3) simultaneously with i’s action. Thus, we have w; > w;+c¢; ,
after i’s action. Let us now study the predicate value on ¢ when its parent j performs the
action R3. When j performs the action Rj, Its descendants (i.e. children of j that verify the
Pr®”2 predicate) cannot perform the action Rs (lemma 1). A descendant of j still verifies
Pr*72 after the action of j (w; < w; where i € D;). During the j action, j cannot gain a new
descendant via action R; because j has the status P. O

Lemma 4 RP is not empty and is closed.

Any configuration of LP (the non-empty set of legitimate configurations) is in RP, so RP
is not empty. By lemmas 2 and 3, RP is closed.

Lemma 5 RP is closed under any edge cost change.

Proof: Predicate Pr’*”* only involves local variables of a processor i (it does not involve
the local variables of i’s neighbors and edge cost values). Predicate Pr*"2 only involves local
variables of a processor ¢ and the local variables of i’s neighbors. Therefore, the RP set of
configuration is independent of edge cost values. |

There remains to show that every computation starting from a configuration in RP is
guaranteed to deliver the message at r after finite time. For that purpose, we consider the
following routing policy (denoted by RP) for every message: (i) a message to r from a processor
i # ris sent to p;, (ii) on a processor i, R3 is performed only when ¢ does not have any message
to send to r.

Lemma 6 There exists a routing policy RP such that once a configuration in R'P is reached,
there exists a bound on the number of hops number for any message sent towards r.

12

Proof: The current weight of a message m on a processor i is the weight of ¢.According to
the definition of RP and RP, the two following assertions hold: (i) the weight of a message
decreases each time the message is transmitted to the next processor on the path, and (i:) the
weight of a message m is 0 if and only if m has reached r.

Indeed, the weight of m on processor i can only increase when i performs action Rs (R3
is the only action that may increase the weight of a processor). The routing policy RP
guarantees that a processor does not have any waiting message to r when it performs R3. The
weight of message never increases, therefore, the weight of a message is an upper bound on
the number of processors that are traversed before reaching r. O

We now consider a new routing policy RP’ that ensures fairness of rules execution and
message forwarding. Point (i) of routing policy RP is changed as follows. A processor i
holding the R3 guard executes the following actions (i) ¢ sends a message to its descendants
and to its application layer to have them keep any message to r; (ii) ¢ sends to p; any waiting
message to r in its buffer and its incoming channels from its descendants, (7ii) i performs Rj,
and (iv) i authorizes its children to continue routing of their own user messages.

With the routing policy RP’, a processor i that prevents the R3 rule from executing is
eventually message free (and can then execute Rj3). As expected, configurations in RP are
secured under any series of modifications of edge costs. Moreover, any computation starting
from a configuration in R’P guarantees that any message sent to r reaches r in a bounded
number of hops (this bound is the weight of the sender processor at the sending time).

4.2 Self-stabilization proof

From now onwards, we consider that the initial configuration is a configuration in A®”. Such
a configuration is eventually reached by Lemma 2. Also, we assume that edge costs remain
constant. This does not break the route preserving requirement, since when A®” hold, routing
can always be performed. However, self-stabilization towards a shortest path tree is only
guaranteed if edge costs remain constant for a sufficiently long period of time.

The overview of our proof is as follows. First, we show that starting from a configuration
in ARP the weight of each processor eventually gets lower bounded by the weight of its parent
plus the cost of the link. Then, we show that whenever a processors initiates a propagation of
information to its subtree, this propagation eventually gets back to it (a processor with Status
P eventually gets Status N). Then, we prove that the weight of each processor eventually
gets greater or equal to the optimal weight of this processor (when the shortest path tree is
constructed). Finally, we prove that the algorithm converges to a configuration where a short-
est path tree is built, and where local consistency also holds, which makes the configuration
legitimate.

4.2.1 Local consistency

RP2

i .

We define the local consistency predicate Prfc as a refinement of Predicate Przw1 A Pr

13

Definition 8 Let Prfc be the following predicate on processor state:

i

£ _ [PP A(wy, +cip, Swi) iy
- otherwise

The proof of the following lemma is similar to that of Lemma 3.

ARP

Lemma 7 In , on any processor i, the predicate Prfc 18 closed.

Proof: Predicate Pr=° may becomes false when either: (i) i executes Ry or, (ii) p; executes
Rg.

After i performs Ry, Pri¢ is satisfied (see Action R;). Now assume i satisfies Pr=°. Let
us study the predicate value on i after its parent performs Action R3. Before Action R3 of
pi is executed, we have rw,, < ubw; < w; — ¢p,;. Then i cannot increase its weight (i.e.
perform Action R3) simultaneously with p;’s action. After Action Rz of p; is executed, we
have wy,, < w; — ¢p, ;. O

4.2.2 Liveness

In this section, we prove that any processor that gets Status P (at any stage of the algorithm

execution from a configuration in A®”) eventually performs action R3 and gets neutral status
(i.e. N).

Definition 9 (Broadcast tree) The broadcast tree of i, denoted by BT;, is the directed

subgraph (Vi, E;) of (V,E) such that (V;, E;) = (Vin, Ein), where (Vin, E;y) is recursively
defined as follows:

L ’iEVi,O;

e Vm=>1,5€Vipm1=7€ Vim,

Vm > 1, (] € V;,m—l) VAN (k’ € Dj) A (Stk = P) = ke va’

Vm >1,(j € Vim—1) A(j € Dy,) A (sty, =P) = p; € Vi,

Vm > 1,(k € Vim) A (pr € Vi) = (0, k) € Eim.
Lemma 8 BT, is a directed tree.

Proof: Let j be a processor of BT; with j # i. By construction, the following properties are
satisfied: (%) there exists a path in BT} from j to i or from i to j (BT} is a connected directed
graph), (i) by definition of E; and Dy, (k,j) € E; = (p; = k) A (wr, < w;) (BT; is without
cycle), and (7ii) each processor of V; has at most one in-going arc. Therefore BT; is a tree. O

Lemma 9 Let s € Eqrp. Leti € V. If st; = P then i eventually performs Rs in s.

14

Proof: Let [be the root of BT;. Assume that i remains forever in BT;. Then, every
processor j € E; on the path from [to i is disabled (j has status P and End_PIF; never
hold). Thus [remains forever in BT;. Let G; be the subtree of BT; that contains all processors
that remain forever in BT;. (; is not empty, since it contains [. Let j be a leaf of G;. We
now consider the following predicates on processor states:

P;r = (wg > 1wy, + cp k)
Pr = (st,=NAD
o= (st =NA kr)

A descendant k of j that does verify Prg still satisfy this predicate after executing any action
(it may only perform R;). Now, if Vk € D;, k satisfies Prf , then j remains enabled forever
(Action R3). Eventually, j performs R3 and quits G;. Assume that j has a descendant k
(k € Dj) that never satisfies Prg . If sty = P, then k eventually performs R3 (k does not
remain forever in G;). Therefore k never satisfies Pry. Then, either st, = N or sty = P. If
sty = P, then k eventually performs R3. If st;, = N, then £ is able to perform Ry or R, forever.
If k performs Ry, then k is no more a descendant of j. Otherwise £ would eventually perform
R, followed by Rs. After this sequence, we have wy > rw; + ¢, . Then, k satisfies Pr};. Thus,
a contradiction appears. O

4.2.3 Lower bound on weight

Starting from any configuration in A®”, any computation of our algorithm eventually guar-

antees that the weight w; of every processor i is greater or equal to the minimal cost of a path
from 4 to r. Thus, each node i satisfies a lower bound predicate Pr&?.

Definition 10 Let PrfB be the following predicate on processor state:

)

Lemma 10 A“8 = {Vi ¢ V, Pr*® VPr*¢ holds} is an attractor for ARP.

Proof: Let s be a computation of £, rrwhere i never satisfies Prfc. If st; = P then ¢
eventually performs R3 (by Lemma 9) and then st; = N. If st; = N then Safe INC; holds.
Then, i remains enabled until it performs an action (R; or Ry). If i performs R;, then after
the computation step, i verifies Pr~¢. Pr¢ is a closed predicate (see Lemma 7).

Along s, if ¢ never performs Ry, then i performs Ry followed by Rj infinitely often (by Lemma
9). Thus w; is strictly increasing. Therefore, eventually w; is greater than w; and Pr~® holds

onwards. O

Lemma 11 In A*B, for every processor i, PrfB holds.

15

Proof: Assume that there exists a processor i that do not satisfy Pr“®. Obviously, we have
i #r. In A8 i satisfies Pre¢ (i.e. w; > wy, + ¢p,;). We thus have i, + ¢, ; > ;. Now, if p;
does satisfy Prgf (i.e. w,, > 1) then i satisfies Pr=® (i.e. w; > ;). We can conclude that
p; # r and that p; does not verify PrfB , and we have w; > wy,.

This doing, we construct an infinite sequence of processors i1, is, 3, . . . such that Vn, p, =
iny1 and w;, > w;, . As Vn,w;, > w;, ,, all processors of the sequence are pairwise dis-
tinct. Since the total number of processors in the network is finite, the initial hypothesis is
contradicted. |

4.2.4 Towards legitimate configurations

In this section, we finally prove that starting from an arbitrary initial configuration, any
computation reaches a legitimate and terminal configuration. This proves the self-stabilization
property of our algorithm. We first define the shortest path local predicate Prf73 for every
node 7.

Definition 11 Let Prfp be the following predicate on processor states:

SP
Pr = (w; = ;) A (st; = N)

Definition 12 ASP = {Vi € V, PrS” holds}.

We wish to prove that A% is an attractor for A“®. The proof is by induction on the length
of the minimal cost path of a processor to the root. We thus define the following set A;.

Definition 13 Let d be a positive integer. Let X be the set of processors having a minimal
cost path to the root of length d (in number of hops)

For sake of the induction proof, we also weaken A7 as a family of parametrized predicates
ASP. Note that ASP = ASP where n is the number of processors in the system.

Definition 14 Let A5P = {Vi € V, the predicate (i € X; = Pr5”) holds}.

Since Xy = {r}, ASP = {Vi, the predicate (i € Xy = PrS”) holds} is an attractor for A5,
Note that AS” is included in ARP.

Lemma 12 Let d be an integer (d > 0) such that AS” is an attractor for A*P. Then AT, is
an attractor for A*B.

Proof: Let i be a processor of X;.1. Let s be a computation whose initial configuration is
in AJ”. i has a neighbor k in X, such that w; = wy, + cx; = wi + cx,. According to Lemma
11, we have:

1. VJ S M, W Z wj, therefore IZ)I Z U.}Z‘,

16

2. w; < ¢y + wy = w4, and

We conclude that w; > w; = w;. If st; = P, ¢ eventually performs Rz (by Lemma 9).

Now st; = N. If st,, = P or if w; < w,, +¢,, 4, then Safe MOV E; holds (either w; > w; or
i verifies (w; = w;) A (p; # p;)). Thus if ¢ verifies Safe I NC; then i also verifies the predicate
Safe MOV E;. Then, ¢ may only execute R;.

Once st; = N, while Pr” does not hold, i verifies the R, guard. By the weak fairness
hypothesis, i eventually performs R;. After this action, Pr®” holds.
Once P19 holds, i may only perform R;. O

According to the preceding proof, along any computation beginning in a configuration where
A‘gfl holds, a processor of X; can only perform R;.

Corollary 1 AS? = {Vi € V, Pr¥” holds} is an attractor for A*E,
We now define a local predicate Pr¢ for node 4 belonging to a legitimate configuration.

Definition 15 Let PlrimD be the following predicate on processor states:

LP SP
Pr=PrA(w; = wy, + cp,)
3 7

Lemma 13 A“? = {Vi € V, Pr*” holds} is an attractor for ASP.

Proof: In AS?, the weight of every processor is the right one and all processors have the N
status. Let i be a processor different from r. If i does not satisfy Pri”, then w; # w,, + ¢, 4.
In ASP, i has a neighbor k such that w; = w; = Wy, + Cki = Wk + ¢k Therefore, ¢ can perform
R, forever and choose k as a parent. After this action, 7 satisfies Prfp.

In ASP, processors do not change their weight value, thus Pr*” is a closed predicate. O
In AP, LP is satisfied. Moreover, all configurations of A*F are terminal configurations.

Theorem 1 Any computation s € & is finite. The terminal configuration of s satisfies LP.

17

Chapter 5

The generic algorithm

r-operators Following work of Tel concerning wave algorithms (see [?]), an infimum &
(hereby called an s-operator) over a set S is an associative, commutative and idempotent (i.e.
x @ x = x) binary operator. Such an operator defines a partial order relation <g over the set
S by: x <_ y if and only if x @y = 2. We denote by eg a greatest element on S, that verifies
x <g eg for every x € SU {eg}. Hence, the (SU {eg}, ®)structure is an Abelian idempotent
semi-group! (see [?]) with eq as identity element.

In [?], a distorted algebra — the r-algebra — is proposed. This algebra generalizes the
Abelian idempotent semi-group, and still allows convergence to terminal configuration of wave-
like algorithms.

Definition 16 (r-operator) The binary operator < on SU {eg} is an r-operator if there
exists a surjective mapping v called r-mapping, such that it verifies the following conditions:
(i) r-associativity: (z<y)<r(z) =x<(y<z); (it) r-commutativity: r(z) <y = r(y) <z; (i)
r-idempotency: r(x) <x = r(x) and (iv) right identity element: e, € SU {eg},r < ey = x.

Definition 17 (Strict idempotency) An r-operator < based on the s-operator & is strictly
idempotent if, for any x € S\ {eg}, * <g r(z) (i.e. x <g r(z) and r(z) # z).

For example, the operator min; (z,y) = min(x,y + 1) is a strictly idempotent r-operator
on N U {+o0}, with +00 as its identity element. It is based on the s-operator min and on
the surjective r-mapping 7(z) = x + 1. Note that although the set NU {400} has a greatest
element, it is an infinite set, and its greatest element can not be used as an upper bound for
a particular algorithm (such as in the works of [?, ?]).

In [?], it is proved that if a strictly idempotent r-operator is executed at every processor
in the network, then the system is self-stabilizing for the operation defined by the r-operator.
The r-operators defined in [?] provide solutions for minimum distance tree and forest, shortest
path tree and forest, best transmitters tree and forest, etc. For example, the operator min;
stabilizes to a minimum distance tree when a single node has 0 as the first term of every

!The prefix semi means that the structure cannot be completed to obtain a group, since the law is idem-
potent.

18

min; computation and every other node has ey, = +o0o as the first term of every min,
computation.

The algorithm that we provide is self-stabilizing for every r-operator defined in [?], yet
preserves routes for every message sent to the root when the r-functions of the system are
modified after a tree is constructed.

The generic algorithm It is parametrized by an n-ary r-operator <. A mapping < from
SU{eq}" into SU {eg} is an n-ary r-operator if there exists an s-operator & on S U {eg} and
n—1 homomorphisms (called r-mappings) r1, ..., 7,1 of (SU {eg}, ®) such that <(xq, ..., z,1) =
2o ®ri(x) B ®rp_1(r,_q) for any xg, ..., z, 1 in SU {eg}.

For our purpose, we associate to each link (7, j) of G = (V, E) a bijective r-function 7; ;
that is strictly idempotent. Each processor i has the following inputs: (i) N is the locally
ordered set of neighbors of 4, and (i) r;; is the bijective r-function associated to the edge
between processors ¢ and j. Each processor i (except the root) has the following variables: (i)
rwy (the current value broadcast in i’s sub-tree) is an integer, and (i) p; (the parent of 7) is
a pointer to a neighbor of i. Each processor i (including the root) has the following variables:

(i) wP (the weight of i, in the sense of @) is an integer, and (i) st; (the status of i) takes
value in {P,N}. Note that w{ and rw are elements of S U {eg}.

All processors has the following local macro: w{ is the best possible value of w’ according
to the current configuration. Let j be a child of i (p; = i). j is called a descendant of i iff
w <g w]@. Each processor (except the root) has the following local macro: p; is the best
possible parent ¢ according to the current configuration if a such neighbor exists otherwise
the value of p is L. 7, jl is the reverse function of r;; (since r;; is bijective, r; jl is always
defined, and the best parent j should have the neutral status and should have a weight equal
to 7, (©7)), D; is the set of the descendants of i in the tree, and ubwy is the upper bound of
w; (in the sense of @) in the current configuration (see table below).

a0 = J @ew(ri(wl) ifiFr
' B 0 otherwise
Djen; (7 = (w]@ - Ti—u‘l(w;e)) A (st; = N)) if there exists j € N; =
ﬁi = (wj@ = ’f‘;jl(UA)ZEB)) A (Stj — N)
L otherwise
ube® = | @epriy (W) i Di# 0
' 00 otherwise

Each processor (except the root) has the following local predicates: End_PIF; is used to
avoid that a processor increases its weight (i.e. to perform Rj action) simultaneously with
one of its descendants, Safe MOV E; is used to avoid that a processor i takes the status P

19

(i.e. to perform Ry action) when it could change its parent, and Safe INC; is verified by i
when it needs to increase its weight (see table below).

Safe_MOVE; = (X ((]()wi i wi) V ((wf =9F) A (s # 1)))
_ ((wi <g pi(rw)) A (sty, = P))
Safe INC; = (v (w <®@Tpi,i(w$))

The rules of our generic algorithm are the following;:
1. On the root r processor:

o Ry (w®#0)V (st, #N) —
w, < 0;st, <— N

2. On any other processor i:

o Ry (sti=N)ASafe_ MOVE; —

52 ~ND. 5 D. .).
Wy < Wiy TWy < Wy Pi < Pi

o Ry::(st;=N)A-Safe MOVE;\Safe INC; —
rwy — Tpi(rws); sty « P
o R3:: (st;=P)AEnd_PIF; A (ruf <g ubwf) —
w? — rw?; st — N
o Ry (rwd <gw?) — rwd «— wP
We now quickly sketch two possible applications of the generic algorithm. The interested
reader can refer to [?] for more details. First, to solve the shortest path problem with r-
operators, it is sufficient to consider N as S, +00 as eg, min as @&, and = — z + ¢;; as
r]. Second, in a telecommunication network where some terminals must chose their “best”
transmitter, distance is not always the relevant criterium, and it can be interesting to know
the transmitter form where there exists a least failure rate path, and to know the path itself.
If we consider [0, 1]NR as S, 0 as eq, max as @, and © — x X TZ as Tf (where Tf is the reliability
rate — 0 < 7'{ < 1 — of the edge between i and j) our parametrized algorithm ensures that
a best transmitter tree is maintained despite transient failures (in a self-stabilizing way) and
that once a coherent tree is constructed towards a transmitter, a coherent tree remains event
if edge rates continue changing.

20

Chapter 6

Conclusion

In this paper, we presented a self-stabilizing loop-free routing algorithm that is also route
preserving. This algorithm also does not require that a bound on the network diameter is
known to all processors in the network.

These two key properties make our approach suitable for mobile ad-hoc networks, where
nodes move often (inducing changes in the diameter of the system and in the edge costs).
Unlike previous approaches on self-stabilizing routing and mobile networks, we specifically
address the message delivery issue, even in an environment where dynamic changes occur all
the time.

21

Bibliography

22

