
Route Preserving Stabilization

Colette Johnen Sébastien Tixeuil

LRI-CNRS UMR 8623, Université Paris-Sud XI, 91405 Orsay cedex, France.

Abstract
A distributed system is self-stabilizing if it returns to a legitimate state in a �nite

number of steps regardless of the initial state, and the system remains in a legitimate
state until another fault occurs. A routing algorithm is loop-free if, a path being con-
structed between two processors p and q, any edges cost change induces a modi�cation
of the routing tables in such a way that at any time, there always exists a path from p
to q.
We present a self-stabilizing loop-free routing algorithm that is also route preserving.

This last property means that, a tree being constructed, any message sent to the root
is received in a bounded amount of time, even in the presence of continuous edge cost
changes. Also, and unlike previous approaches, we do not require that a bound on
the network diameter is known to the processors that perform the routing algorithm.
We guarantee self-stabilization for many metrics (such as minimum distance, shortest
path, best transmitter, depth �rst seach metrics, etc.), by reusing previous results on
r-operators.
Key words: Distributed algorithms, fault-tolerance, self-stabilization, loop-free

routing, route preserving routing

R�esum�e

Un système réparti est auto-stabilisant s�il retourne à un état légitime en un nombre
�ni d�étapes indépendamment de son état initial, et qu�il reste dans un état légitime
jusqu�à ce qu�une nouvelle défaillance survienne. Un algorithme de routage est sans
boucles si, un chemin étant construit entre deux processeurs p et q, tout changement
de coût des arêtes induit une modi�cation des tables de routage de telle manière qu�à
chaque instant, il existe toujours un chemin de p à q.
Nous présentons un algorithme de routage sans boucles auto-stabilisant qui préserve

les routes. Cette dernière propriété signi�e que, un arbre de routage étant construit,
tout message envoyé à la racine de l�arbre est reçu en temps �ni, même en présente de
changements continus des poids des arêtes. De plus, et contrairement aux approches
précédentes, notre algorithme ne nécessite pas que les processeurs connaissent une borne
sur le diamètre du système. Nous garantissons l�auto-stabilisation pour de multiples
métriques (distance minimale, plus court chemin, meilleurs retransmetteurs, parcours
en profondeur d�abord, etc.) en réutilisant des résultats antérieurs sur les r-opérateurs.
Mots clef : Algorithmes répartis, tolérance aux fautes, auto-stabilisation, routage

sans boucles, routage préservant les routes

1

Contents

1 Introduction 1

2 Model 5

3 The route preserving self-stabilizing shortest path algorithm 7
3.1 Problem to be solved . 7
3.2 Description . 8

4 Proof of correctness 11
4.1 Route preserving proof . 11
4.2 Self-stabilization proof . 13

4.2.1 Local consistency . 13
4.2.2 Liveness . 14
4.2.3 Lower bound on weight . 15
4.2.4 Towards legitimate con�gurations . 16

5 The generic algorithm 18

6 Conclusion 21

2

Chapter 1

Introduction

In 1974, Dijkstra pioneered the concept of self-stabilizatio in a distributed network [?]. A
distributed system is self-stabilizing if it returns to a legitimate state in a �nite number of
steps regardless of the initial state, and the system remains in a legitimate state until another
fault occurs. Thus, a self-stabilizing algorithm tolerates transient processor faults. These
transient faults include variable corruption, program counter corruption (which temporarily
cause a processor to execute its code from any point), and communication channel corruption.
In the context of computer networks, resuming correct behavior after a fault occurs can

be very costly [?]: the whole network may have to be shut down and globally reset in a good
initial state. While this approach is feasible for small networks, it is far from practical in large
networks such as the Internet. Self-stabilization provides a way to recover from faults without
the cost and inconvenience of a generalized human intervention: after a fault is diagnosed,
one simply has to remove, repair, or reinitialize the faulty components, and the system, by
itself, will return to a good global state within a relatively short amount of time.
In the context of the communication networks, [?] showed that crash and restart failures

may lead the distributed systems into an arbitrary con�gurations, highlighting the need for
algorithms that are resilient to those failures (such as self-stabilizing algorithms). Fault-
tolerance is an important issue in the design of network routing protocols since the topology
changes due to the link/node failures and repairs. Many existing routing protocols are self-
stabilizing (for example [?] reports that RIP and OSPF have been proved self-stabilizing by
Nancy Lynch).

Related works The primary task of a routing protocol is to generate and maintain routing
table with the appropriate desirable property. This property is usually stated in terms of
maximizing a particular routing metric. In [?] is presented a self-stabilizing routing protocols
on Breath-�rst path metric (shortest path metric where all edge weighs are 1). An optimal
self-stabilizing algorithm for the shortest path metric is presented in [?]. In [?], a general
self-stabilizing protocol that computes routing table for several routing metrics (for instance
shortest path, maximal bandwidth path) on id-based networks is presented. In [?], another
approach for routing is taken by means of r-operators (for minimum distance, shortest path,
best transmitter, depth �rst search metrics). A common drawback of these algorithms is that

1

r r

A B

Figure 1.1: Example of self-stabilizing routing

they are not loop-free: assume that a tree is initially present in the network, then if edge costs
change, the self-stabilization property of the algorithm makes it return to a con�guration
where a tree is built. However, in the recon�guration phase, it is possible that a cycle appears
(see Figure 1.1). If a message is sent during this phase, it may loop in the network.
To circumvent this problem, self-stabilizing loop-free algorithms were developed. Assume

that there exists a path between two nodes p and q. After any edges cost change, the loop-free
protocol modi�es its routing tables to compute the new optimal path. During this re-building
phase, they always exists a path from p to q. In [?] are presented two self-stabilizing rout-
ing protocols with shortest path metric. One of these protocols is loop-free, but requires
unbounded memory per processor. In [?], a general self-stabilizing loop-free protocol is pre-
sented (using the formalism of [?]). The known self-stabilizing loop-free protocols (such as
[?, ?]) su¤er from two drawbacks: (i) they require that an upper bound on the diameter of the
network is known to make them stabilizing, and (ii) if edge costs change often, it is possible
that messages sent actually loop in the network. For example, in Figure 1.2, at each step there
is a tree towards r that is constructed, yet message m does not reach r during con�gurations
A to F. Since con�gurations A and F are the same, it is possible that m loops forever in the
network if edge costs continue changing.

Our contribution We present a self-stabilizing loop-free routing algorithm that is also
route preserving. Our solution is self-stabilizing so that it can recover from any transient
failure once faults cease to appear; it is loop-free so that, a tree being constructed, a tree
remains forever in the network even with continuous edge cost changes; it is route preserving
so that, a tree being constructed, any message sent to the root is received within a bounded
amount of time, even in the presence of continuous edge cost changes. This last feature is by
providing a routing policy that permits to interleave consistently routing table updates and
message forwarding actions. Figure 1.3 captures that our system recovers from transient faults
(denoted by dotted lines in the �gure) by eventually reaching a shortest path con�guration
provided that no new faults occur. In addition, edge cost changes (dashed lines in the �gure)
preserve the route preserving predicate in the sense that only route preserving con�gurations
can be reached (denoted by grayed circles in the �gure).
Also, and unlike [?] and [?], we do not require that a bound on the network diameter is

known to all processors in the network. This makes our solution more adaptive to network
changes. As in [?], we guarantee self-stabilization for many metrics (such as minimum distance,

2

m

r

m

r

m

r

m

r

m

r

m

r

A B C

D E F

Figure 1.2: Example of self-stabilizing loop-free routing

Shortest path
configuration

Configuration

Edge cost change

Computation step

Route preserving
configuration

Transient fault

Figure 1.3: Properties of route preserving stabilization

3

shortest path, best transmitter, depth �rst search metrics, etc.). Since our approach is based
on r-operators (see [?]), the set of metrics that we support is distinct from that of [?] (usual
metrics however, such as shortest path tree, are common to both apporaches).

Outline of the paper The remaining of the paper is organized as follows. In Chapter 2,
we present the underlying model for self-stabilizing distributed systems. For sake of clarity,
in Chapter 3, we present a �rst version of our algorithm using the intuitive shortest path
metric, and prove the self-stabilizing route preserving property of this algorithm in Chapter
4. Chapter 5 provides the generic version of our algorithm, that supports as many metrics as
r-operators. Concluding remarks are given in Chapter 6.

4

Chapter 2

Model

Distributed systems A distributed system S is modeled as a collection of processors linked
with communication media allowing them to exchange information. A distributed system is
a connected graph G = (V;E), where V is the set of nodes (jV j = n) and E is the set of links
or edges. Each node i 2 V represents a processor, Pi. (For the sake of simplicity, we will use
i and Pi interchangeably to represent the processor.) Each edge, denoted by a pair (i; j) 2 E,
represents a communication link between Pi and Pj, where Pi and Pj are called neighbors.
Any ordered tuple of successive links ((i; k); (k; s); ::; (l; j)), represents a path pi;j between Pi
and Pj. If two nodes Pi and Pj are connected by some path pi;j (note that pi;i is a path), Pj
is said to be reachable from Pi.
The processors asynchronously execute their programs consisting of a set of variables and a
�nite set of rules. The variables are part of the shared register which is used to communicate
with the neighbors. A processor can write only into its own shared register and can read only
from the shared registers, owned by the neighboring processors or itself. So, variables of a
processor can be accessed by the processor and its neighbors.
The state of a processor is de�ned by the values of its local variables. A con�guration of
a distributed system G = (V;E) is an instance of the states of its processors. The set of
con�gurations of G is denoted as C.

Processor actions change the global system con�guration. Moreover, several processor actions
may occur at the same time. A computation e of a system G is de�ned as a weakly fair,
maximal sequence of con�gurations c1; c2; : : : such that for i = 1; 2; : : :, the con�guration ci+1
is reached from ci by a single step of at least one processor. During a computation step, one
or more processors execute a step and a processor may take at most one step. Weak fairness
of the sequence means that if any action in G is continuously enabled along the sequence, it
is eventually chosen for execution. Maximality means that the sequence is either in�nite, or
it is �nite and no action of G is enabled in the �nal global state.
Let C be the set of possible con�gurations and E be the set of all possible computations of

a system G. Then the set of computations of G starting with a particular initial con�guration
c1 2 C will be denoted by Ec1. Every computation e 2 Ec1 is of the form c1; c2; : : : The set of
computations of P whose initial con�gurations are all elements of B � C is denoted as EB.

5

Thus, E = EC.

We introduce the concept of an attractor to de�ne self-stabilization. Intuitively, an attractor
is a set of con�gurations of a system G that �attracts�another set of con�gurations of G for
any computation of G.

De�nition 1 (Attractor) Let B1 and B2 be subsets of C. Then B1 is an attractor for B2 if
and only if 8e 2 EB2, (e = c1; c2; : : :), 9i � 1: ci 2 B1.

The shortest path maintenance is a static problem. The set of con�gurations that matches
the speci�cation of static problems is called the set of legitimate con�gurations, denoted as L.
The remainder C n L denotes the set of illegitimate con�gurations.

De�nition 2 (Self-stabilization) A distributed system S is called self-stabilizing if and only
if there exists a non-empty set L � C such that the following conditions hold: (i)8e 2 EL; (e =
c1; c2; : : :), 8i � 1, ci 2 L (closure). (ii) L is an attractor for C (convergence).

The program for a protocol consists of a sequence of rules: < rule > � � � < rule >. Each
rule is the form: < guard >�!< action >. A guard is a boolean expression over the variables
of a node and its neighborhood. An action is allowed to update the variables of the node only.
Any rule whose guard is true is said to be enabled. A node with one or more enabled rule is
said to be privileged and may make a move executing the action corresponding to the chosen
enabled rule. We do not make any assumption on the policy adopted by a node when more
than one rule guards are satis�ed.

6

Chapter 3

The route preserving self-stabilizing
shortest path algorithm

3.1 Problem to be solved

In this section, we present the problem to be solved by our algorithm. The purpose of our
contribution is threefold: we wish to build a shortest path tree rooted at r (the shortest
path problem), we wish to be able to recover from any transient fault (the self-stabilization
requirement), and we want that when routes are constructed, messages can be routed during
changes of edge costs (the route reserving requirement).

The shortest path problem We associate to each link (i; j) of G = (V;E) a positive
integer ci;j that denotes the cost of a communication through this link in both direction (i.e.
from i to j and from j to i). Each processor i has the following inputs: Ni is the locally
ordered set of neighbors of i, and ci;j is the cost of edge between processors i and j.
On each processor i, the following variables are available: pi is a pointer to a particular

neighbor of i, that is equal to the next processor j 2 Ni on the current path from i to r, and
wi is an integer variable that is equal to the cost of the current path from i to r.
Given a source r, the shortest path problem consists in �nding for each processor i a path

from i to r (or from r to i) whose overall cost is minimal. Each path is induced by the p
variables at all nodes i 6= r. We denote by _wi the cost of the shortest path from i to r (note
that _wr = 0). In a shortest path from i to r, _wi is equal to the minimum of the costs at a
neighbor j of i plus the cost from j to i for any possible neighbor j of i. Formally, 8i 6= r,
_wi =Minj2Ni(_wj+ci;j). We now de�ne a shortest path con�guration (that must be eventually
reached by any algorithm that wishes to solve the shortest path problem):

De�nition 3 (Shortest-path Con�guration) Let SP be the following predicate on system
con�gurations: SP � f8i 2 V;wi = _wig. A shortest path con�guration is a con�guration that
satis�es SP.

7

The self-stabilization requirement Not only our algorithm eventually provides a shortest
path con�guration, it also ensures that the initial state can be arbitrary. Once the system is
stabilized, the set of p pointers should induce a shortest path tree rooted at r.
Due to the self-stabilization property of our algorithm, it computes for each processor

i 6= r a shortest path to r from any initial con�guration con�guration under any weakly fair
scheduler. Our algorithm does not make any assumption about the initial value of wi or pi on
any processor i. We now de�ne the legitimate con�gurations for our purpose using a legitimate
predicate LP.

De�nition 4 (Legitimate Con�guration) Let LP be the following predicate on system
con�gurations: LP � f(8i 6= r; (wi = _wi) ^ (wi = wpi + ci;pi)) ^(wr = 0)g. A legitimate
con�guration is a con�guration that satis�es LP.

The route preserving requirement We wish to preserve a route towards the root r once
a path is constructed, even if edge costs are modi�ed. For that purpose, we de�ne so that the
stabilizing algorithm wishes to change node variables.

De�nition 5 (Task preservation under input change) Let TS be a task speci�cation,
let TC be a set of changes of inputs in the system. A distributed system S preserves TS under
TC if and only if there exists a non-empty set of con�gurations C � C such that the following
conditions hold: (i) C is closed, (ii) C is closed under any change in TC, and (iii) every
computation starting from c 2 C eventually satis�es TS.

For our purpose, the task to be solved (TS) is to be able to route a message for any node
i to the root r, while the set of changes of inputs (TC) is the set of possible variation of edge
costs.

3.2 Description

Each processor i performs several kinds of actions with di¤erent objectives:

Route �nding i whishes to reach a con�guration where every node maintains a route towards
r (so that messages can be sent to r). This goal is achieved by having the weight of
each node (the wi variable) set to a value that is strictly greater than that of its parent
(denoted by the wpi variable).

Route preserving The rules of the algorithms that are executed after a route is present
towards r from every node i have to preserve a route towards r from every node i. Also,
arbitrary changes of edge costs must not break the such de�ned routes (for the route
preserving requirement).

Shortest path �nding i wishes to reach a shortest path con�guration.

Self-stabilization i wishes to reach a legitimate con�guration (for the self-stabilization re-
quirement). For that purpose, if i = r, then i updates wi so that wi = 0, and if i 6= r, i
updates pi and wi so that wi =Minj2Ni(wj + ci;j).

8

Formal description

Each processor i (except the root) has the following variables: rwi (the current value broadcast
in i�s sub-tree) is an integer, and pi (the parent of i) is a pointer to a neighbor of i. Each
processor i (including the root) has the following variables: wi (the weight of i) is an integer,
and sti (the status of i) takes value in fP;Ng.
All processors has the following local macro: ŵi is the best possible value of wi according

to the current con�guration (see table below). Let j be a child of i (pj = i). j is called a
descendant of i i¤ wj > wi. Each processor (except the root) has the following local macros:
Di is the set of the descendants of i in the tree, p̂i is the best possible parent i according to the
current con�guration if a such neighbor exists otherwise the value of p̂ is ? (The best parent
j should have the neutral status and should have a weight that minimizes the new weight
value of i: ŵj + ci;j), and ubwi is the upper bound of wi (that i might take and still preserve
convergence towards a legitimate state) in the current con�guration (see table below).

ŵi �
�
minj2Ni(wj + ci;j) if i 6= r
0 otherwise

p̂i �

8<:
minj2Ni(j :: (wj = ŵi � ci;j) ^ (stj = N)) if there exists j 2 Ni ::

(wj = ŵi � ci;j) ^ (stj = N)
? otherwise

Di � fj 2 Ni :: pj = i ^ wj > wig

ubwi �
�
minj2Di(wj � ci;j) if Di 6= ;
1 otherwise

Each processor (except the root) has the following local predicates: End_PIF is used to
avoid that a processor increases its weight (i.e. to perform R3 action) simultaneously with
one of its descendants, Safe_MOV E is used to avoid that a processor i takes the status P
(i.e. to perform R2 action) when it could change its parent, and Safe_INC is veri�ed by i
when it needs to increase its weight (see table below).

End_PIFi � (8j 2 Di; stj = N)

Safe_MOV Ei �
�

((ŵi < wi) _ ((wi = ŵi) ^ (p̂i 6= pi)))
^ (p̂i 6= ?)

�

Safe_INCi �
�

((wi < rwpi + cpi;i) ^ (stpi = P))
_ (wi < wpi + cpi;i)

�
The rules of our algorithm are the following:

1. On the root r processor:

9

� R0 :: (wr 6= 0) _ (stp 6= N)!
wr 0; str N

2. On any other processor i:

� R1 :: (sti = N) ^ Safe_MOV Ei !
wi ŵi; rwp wi; pi p̂i

� R2 :: (sti = N) ^ :Safe_MOV Ei ^ Safe_INCi !
rwi rwpi + cpi;i; sti P

� R3 :: (sti = P) ^ End_PIFi ^ (ubwi � rwi)!
wi rwi; st N

� R4 :: (rwi < wi) ! rwi wi

The R0 and R4 rules are designed to ensure that eventually the variable values on a processor
are locally correct. The R1 action allows a processor to get the best value for its w and p
variables according to the state of its neighbor. The R2 action is executed when i needs to
increase its weight, while the actual increase is achieved by executing the R3 action.

Observation 1 The weight of a processor increases only after that this processor has per-
formed the rule R3. Actions R1, R2 and R3 are mutually exclusive: a processor cannot simul-
taneously verify two rule guards of R1, R2 or R3. Rule R0 is performed at most once. After
any action on i, we have wi � rwi therefore the action R4 is performed at most once by any
processor.

Lemma 1 When a processor i performs R3, none of its descendants and parent can perform
R3 simultaneously with i.

Proof: When the R3 guard holds, i�s descendants and parent have Status N. They cannot
satisfy the R3 guard. 2

10

Chapter 4

Proof of correctness

In this section, we show that our algorithm is self-stabilizing for the shortest path tree problem.
We also prove that there exists a route preserving set of con�gurationsRP that ensure routing
of messages towards the root r and that is preserved for any change of edge cost.

4.1 Route preserving proof

We wish to �nd a non-empty set of con�gurations RP that veri�es the following properties:
(i) RP is not empty, (ii) RP is closed (any action of any processor executing our algorithm
preserves RP), (iii) RP is closed under any edge cost changes, and (iv) every computation
starting from a con�guration in RP is guaranteed to deliver the message at r after �nite time.
Once RP is veri�ed, any message sent to r reaches it. Therefore, once RP is veri�ed, our
algorithm guarantees that (i) any message towards r reaches its destination, even when the
edge costs vary, and (ii) routes to r are eventually the costless ones. We de�ne RP as the set
of con�gurations where Predicates PrRP1i and PrRP2i hold at each i 2 V . Those predicates are
de�ned as follows:

De�nition 6 Let PrRP1i be the following predicate on processor state:

RP1
Pr
i
�
�
rwi � wi if i 6= r
wr = 0 ^ str = N otherwise

De�nition 7 Let PrRP2i be the following predicate on processor state:

RP2
Pr
i
�
�
wpi < wi if i 6= r
wr = 0 otherwise

Our algorithm ensures that increasing a weight is safe: (i) i cannot gain a new child while
performing its weight increase action, (ii) all descendants j of i still satisfy Predicate PrRP2j

after any action of i, and (iii) i changing its pi variable also preserves Predicate Pr
RP2
i . In

our algorithm, the sti variable at processor i helps to guarantee Properties (i) and (iii). The
rwi variable of i represents the maximal value that i can take and its descendants still satisfy

11

Predicate PrRP2i predicate. We now prove that the preserving predicate PrRP1i ^PrRP2i is
closed.

Lemma 2 ARP � f8i 2 V , PrRP1i holdsg is an attractor for true.

Proof: A processor i that does not verify PrRP1i veri�es forever R0 or R4 guard. By the
weak fairness hypothesis, every enabled processor i executes an action. After this action, we
have rwi � wi (observation 1). 2

Observation 2 In ARP , no processor performs the actions R0 and R4.

Lemma 3 In ARP , on any processor i, PrRP2i is closed.

Proof: Predicate PrRP2i may becomes false its value after that either: (i) i executes R1 or,
(ii) pi executes R3.
Just before i executes R1 to choose j as its parent, j has status N. Therefore j cannot increase
it weight (i.e. perform action R3) simultaneously with i�s action. Thus, we have wi � wj+ci;j,
after i�s action. Let us now study the predicate value on i when its parent j performs the
action R3. When j performs the action R3, Its descendants (i.e. children of j that verify the
PrRP2 predicate) cannot perform the action R3 (lemma 1). A descendant of j still veri�es
PrRP2 after the action of j (wj < wi where i 2 Dj). During the j action, j cannot gain a new
descendant via action R1 because j has the status P. 2

Lemma 4 RP is not empty and is closed.

Any con�guration of LP (the non-empty set of legitimate con�gurations) is in RP, so RP
is not empty. By lemmas 2 and 3, RP is closed.

Lemma 5 RP is closed under any edge cost change.

Proof: Predicate PrRP1 only involves local variables of a processor i (it does not involve
the local variables of i�s neighbors and edge cost values). Predicate PrRP2 only involves local
variables of a processor i and the local variables of i�s neighbors. Therefore, the RP set of
con�guration is independent of edge cost values. 2

There remains to show that every computation starting from a con�guration in RP is
guaranteed to deliver the message at r after �nite time. For that purpose, we consider the
following routing policy (denoted byRP) for every message: (i) a message to r from a processor
i 6= r is sent to pi, (ii) on a processor i, R3 is performed only when i does not have any message
to send to r.

Lemma 6 There exists a routing policy RP such that once a con�guration in RP is reached,
there exists a bound on the number of hops number for any message sent towards r.

12

Proof: The current weight of a message m on a processor i is the weight of i.According to
the de�nition of RP and RP , the two following assertions hold: (i) the weight of a message
decreases each time the message is transmitted to the next processor on the path, and (ii) the
weight of a message m is 0 if and only if m has reached r.
Indeed, the weight of m on processor i can only increase when i performs action R3 (R3

is the only action that may increase the weight of a processor). The routing policy RP
guarantees that a processor does not have any waiting message to r when it performs R3. The
weight of message never increases, therefore, the weight of a message is an upper bound on
the number of processors that are traversed before reaching r. 2

We now consider a new routing policy RP 0 that ensures fairness of rules execution and
message forwarding. Point (ii) of routing policy RP is changed as follows. A processor i
holding the R3 guard executes the following actions (i) i sends a message to its descendants
and to its application layer to have them keep any message to r; (ii) i sends to pi any waiting
message to r in its bu¤er and its incoming channels from its descendants, (iii) i performs R3,
and (iv) i authorizes its children to continue routing of their own user messages.
With the routing policy RP 0, a processor i that prevents the R3 rule from executing is

eventually message free (and can then execute R3). As expected, con�gurations in RP are
secured under any series of modi�cations of edge costs. Moreover, any computation starting
from a con�guration in RP guarantees that any message sent to r reaches r in a bounded
number of hops (this bound is the weight of the sender processor at the sending time).

4.2 Self-stabilization proof

From now onwards, we consider that the initial con�guration is a con�guration in ARP . Such
a con�guration is eventually reached by Lemma 2. Also, we assume that edge costs remain
constant. This does not break the route preserving requirement, since when ARP hold, routing
can always be performed. However, self-stabilization towards a shortest path tree is only
guaranteed if edge costs remain constant for a su¢ ciently long period of time.
The overview of our proof is as follows. First, we show that starting from a con�guration

in ARP , the weight of each processor eventually gets lower bounded by the weight of its parent
plus the cost of the link. Then, we show that whenever a processors initiates a propagation of
information to its subtree, this propagation eventually gets back to it (a processor with Status
P eventually gets Status N). Then, we prove that the weight of each processor eventually
gets greater or equal to the optimal weight of this processor (when the shortest path tree is
constructed). Finally, we prove that the algorithm converges to a con�guration where a short-
est path tree is built, and where local consistency also holds, which makes the con�guration
legitimate.

4.2.1 Local consistency

We de�ne the local consistency predicate PrLCi as a re�nement of Predicate PrRP1i ^PrRP2i .

13

De�nition 8 Let PrLCi be the following predicate on processor state:

LC
Pr
i
�
�
PrRP1i ^(wpi + ci;pi � wi) if i 6= r
PrRP1r otherwise

The proof of the following lemma is similar to that of Lemma 3.

Lemma 7 In ARP , on any processor i, the predicate PrLCi is closed.

Proof: Predicate PrLCi may becomes false when either: (i) i executes R1 or, (ii) pi executes
R3.
After i performs R1, PrLCi is satis�ed (see Action R1). Now assume i satis�es PrLCi . Let
us study the predicate value on i after its parent performs Action R3. Before Action R3 of
pi is executed, we have rwpi � ubwi � wi � cpi;i. Then i cannot increase its weight (i.e.
perform Action R3) simultaneously with pi�s action. After Action R3 of pi is executed, we
have wpi � wi � cpi;i. 2

4.2.2 Liveness

In this section, we prove that any processor that gets Status P (at any stage of the algorithm
execution from a con�guration in ARP) eventually performs action R3 and gets neutral status
(i.e. N).

De�nition 9 (Broadcast tree) The broadcast tree of i, denoted by BTi, is the directed
subgraph (Vi; Ei) of (V;E) such that (Vi; Ei) � (Vi;n; Ei;n), where (Vi;n; Ei;n) is recursively
de�ned as follows:

� i 2 Vi;0,

� 8m � 1; j 2 Vi;m�1) j 2 Vi;m,

� 8m � 1; (j 2 Vi;m�1) ^ (k 2 Dj) ^ (stk = P)) k 2 Vi;m,

� 8m � 1; (j 2 Vi;m�1) ^ (j 2 Dpj) ^ (stpj = P)) pj 2 Vi;m,

� 8m � 1; (k 2 Vi;m) ^ (pk 2 Vi;m)) (pk; k) 2 Ei;m.

Lemma 8 BTi is a directed tree.

Proof: Let j be a processor of BTi with j 6= i. By construction, the following properties are
satis�ed: (i) there exists a path in BTi from j to i or from i to j (BTi is a connected directed
graph), (ii) by de�nition of Ei and Dk, (k; j) 2 Ei) (pj = k) ^ (wk < wj) (BTi is without
cycle), and (iii) each processor of Vi has at most one in-going arc. Therefore BTi is a tree. 2

Lemma 9 Let s 2 EARP . Let i 2 V . If sti = P then i eventually performs R3 in s.

14

Proof: Let l be the root of BTi. Assume that i remains forever in BTi. Then, every
processor j 2 Ei on the path from l to i is disabled (j has status P and End_PIFj never
hold). Thus l remains forever in BTi. Let Gi be the subtree of BTi that contains all processors
that remain forever in BTi. Gi is not empty, since it contains l. Let j be a leaf of Gi. We
now consider the following predicates on processor states:

�

Pr
k
� (wk � rwpk + cpk;k)

�

Pr
k
� (stk = N ^

�

Pr
k
)

A descendant k of j that does verify Pr�k still satisfy this predicate after executing any action
(it may only perform R1). Now, if 8k 2 Dj, k satis�es Pr�k , then j remains enabled forever
(Action R3). Eventually, j performs R3 and quits Gi. Assume that j has a descendant k
(k 2 Dj) that never satis�es Pr�k . If stk = P, then k eventually performs R3 (k does not
remain forever in Gi). Therefore k never satis�es Pr�k . Then, either stk = N or stk = P. If
stk = P, then k eventually performs R3. If stk = N, then k is able to perform R2 or R1 forever.
If k performs R1, then k is no more a descendant of j. Otherwise k would eventually perform
R2 followed by R3. After this sequence, we have wk � rwj + cj;k. Then, k satis�es Pr�k . Thus,
a contradiction appears. 2

4.2.3 Lower bound on weight

Starting from any con�guration in ARP , any computation of our algorithm eventually guar-
antees that the weight wi of every processor i is greater or equal to the minimal cost of a path
from i to r. Thus, each node i satis�es a lower bound predicate PrLBi .

De�nition 10 Let PrLBi be the following predicate on processor state:

LB
Pr
i
� (wi � _wi)

Lemma 10 ALB � f8i 2 V , PrLBi _PrLCi holdsg is an attractor for ARP .

Proof: Let s be a computation of EARPwhere i never satis�es PrLCi . If sti = P then i
eventually performs R3 (by Lemma 9) and then sti = N. If sti = N then Safe_INCi holds.
Then, i remains enabled until it performs an action (R1 or R2). If i performs R1, then after
the computation step, i veri�es PrLCi . Pr

LC
i is a closed predicate (see Lemma 7).

Along s, if i never performs R1, then i performs R2 followed by R3 in�nitely often (by Lemma
9). Thus wi is strictly increasing. Therefore, eventually wi is greater than _wi and PrLBi holds
onwards. 2

Lemma 11 In ALB, for every processor i, PrLBi holds.

15

Proof: Assume that there exists a processor i that do not satisfy PrLBi . Obviously, we have
i 6= r. In ALB, i satis�es PrLCi (i.e. wi � wpi + cpi;i). We thus have _wpi + cpi;i � _wi. Now, if pi
does satisfy PrLBpi (i.e. wpi � _wpi) then i satis�es Pr

LB
i (i.e. wi � _wi). We can conclude that

pi 6= r and that pi does not verify PrLBi , and we have wi > wpi.
This doing, we construct an in�nite sequence of processors i1; i2; i3; : : : such that 8n; pn =

in+1 and win > win+1. As 8n;win > win+1, all processors of the sequence are pairwise dis-
tinct. Since the total number of processors in the network is �nite, the initial hypothesis is
contradicted. 2

4.2.4 Towards legitimate con�gurations

In this section, we �nally prove that starting from an arbitrary initial con�guration, any
computation reaches a legitimate and terminal con�guration. This proves the self-stabilization
property of our algorithm. We �rst de�ne the shortest path local predicate PrSPi for every
node i.

De�nition 11 Let PrSPi be the following predicate on processor states:

SP
Pr
i
� (wi = _wi) ^ (sti = N)

De�nition 12 ASP � f8i 2 V , PrSPi holdsg.

We wish to prove that ASP is an attractor for ALB. The proof is by induction on the length
of the minimal cost path of a processor to the root. We thus de�ne the following set Xd.

De�nition 13 Let d be a positive integer. Let Xd be the set of processors having a minimal
cost path to the root of length d (in number of hops)

For sake of the induction proof, we also weaken ASP as a family of parametrized predicates
ASPd . Note that ASPn = ASP , where n is the number of processors in the system.

De�nition 14 Let ASPd � f8i 2 V , the predicate (i 2 Xd) PrSPi) holdsg.

Since X0 = frg, ASP0 � f8i, the predicate (i 2 X0) PrSPi) holdsg is an attractor for ALB.
Note that ASP0 is included in ARP .

Lemma 12 Let d be an integer (d � 0) such that ASPd is an attractor for ALB. Then ASPd+1 is
an attractor for ALB.

Proof: Let i be a processor of Xd+1. Let s be a computation whose initial con�guration is
in ASPd . i has a neighbor k in Xd such that _wi = _wk + ck;i = wk + ck;i. According to Lemma
11, we have:

1. 8j 2 Ni; wj � _wj, therefore ŵi � _wi,

16

2. ŵi � ck;i + wk = _wi, and

3. wi � _wi.

We conclude that wi � ŵi = _wi. If sti = P, i eventually performs R3 (by Lemma 9).
Now sti = N. If stpi = P or if wi < wpi+cpi;i, then Safe_MOV Ei holds (either wi > ŵi or

i veri�es (wi = ŵi)^ (pi 6= p̂i)). Thus if i veri�es Safe_INCi then i also veri�es the predicate
Safe_MOV Ei. Then, i may only execute R1.

Once sti = N, while PrSPi does not hold, i veri�es the R1 guard. By the weak fairness
hypothesis, i eventually performs R1. After this action, PrSPi holds.
Once PrSPi holds, i may only perform R1. 2

According to the preceding proof, along any computation beginning in a con�guration where
ASPd+1 holds, a processor of Xd can only perform R1.

Corollary 1 ASP � f8i 2 V , PrSPi holdsg is an attractor for ALB.

We now de�ne a local predicate PrLCi for node i belonging to a legitimate con�guration.

De�nition 15 Let PrLPi be the following predicate on processor states:

LP
Pr
i
�

SP
Pr
i
^(wi = wpi + cpi;i)

Lemma 13 ALP � f8i 2 V , PrLPi holdsg is an attractor for ASP .

Proof: In ASP , the weight of every processor is the right one and all processors have the N
status. Let i be a processor di¤erent from r. If i does not satisfy PrLPi , then wi 6= wpi + cpi;i.
In ASP , i has a neighbor k such that wi = _wi = _wk+ ck;i = wk+ ck;i. Therefore, i can perform
R1 forever and choose k as a parent. After this action, i satis�es PrLPi .
In ASP , processors do not change their weight value, thus PrLP is a closed predicate. 2

In ALP , LP is satis�ed. Moreover, all con�gurations of ALP are terminal con�gurations.

Theorem 1 Any computation s 2 E is �nite. The terminal con�guration of s satis�es LP.

17

Chapter 5

The generic algorithm

r-operators Following work of Tel concerning wave algorithms (see [?]), an in�mum �
(hereby called an s-operator) over a set S is an associative, commutative and idempotent (i.e.
x� x = x) binary operator. Such an operator de�nes a partial order relation �� over the set
S by: x �� y if and only if x� y = x. We denote by e� a greatest element on S, that veri�es
x �� e� for every x 2 S [fe�g. Hence, the (S [fe�g;�)structure is an Abelian idempotent
semi-group1 (see [?]) with e� as identity element.
In [?], a distorted algebra � the r-algebra � is proposed. This algebra generalizes the

Abelian idempotent semi-group, and still allows convergence to terminal con�guration of wave-
like algorithms.

De�nition 16 (r-operator) The binary operator / on S [fe�g is an r-operator if there
exists a surjective mapping r called r-mapping, such that it veri�es the following conditions:
(i) r-associativity: (x / y) / r(z) = x / (y / z); (ii) r-commutativity: r(x) / y = r(y) / x; (iii)
r-idempotency: r(x) / x = r(x) and (iv) right identity element: 9e/ 2 S [fe�g; x / e/ = x.

De�nition 17 (Strict idempotency) An r-operator / based on the s-operator � is strictly
idempotent if, for any x 2 S n fe�g, x <� r(x) (i.e. x �� r(x) and r(x) 6= x).

For example, the operator min1(x; y) = min(x; y + 1) is a strictly idempotent r-operator
on N [f+1g, with +1 as its identity element. It is based on the s-operator min and on
the surjective r-mapping r(x) = x + 1. Note that although the set N [f+1g has a greatest
element, it is an in�nite set, and its greatest element can not be used as an upper bound for
a particular algorithm (such as in the works of [?, ?]).
In [?], it is proved that if a strictly idempotent r-operator is executed at every processor

in the network, then the system is self-stabilizing for the operation de�ned by the r-operator.
The r-operators de�ned in [?] provide solutions for minimum distance tree and forest, shortest
path tree and forest, best transmitters tree and forest, etc. For example, the operator min1
stabilizes to a minimum distance tree when a single node has 0 as the �rst term of every

1The pre�x semi means that the structure cannot be completed to obtain a group, since the law is idem-
potent.

18

min1 computation and every other node has emin1 = +1 as the �rst term of every min1
computation.
The algorithm that we provide is self-stabilizing for every r-operator de�ned in [?], yet

preserves routes for every message sent to the root when the r-functions of the system are
modi�ed after a tree is constructed.

The generic algorithm It is parametrized by an n-ary r-operator /. A mapping / from
S [fe�gn into S [fe�g is an n-ary r-operator if there exists an s-operator � on S [fe�g and
n�1 homomorphisms (called r-mappings) r1; : : : ; rn�1 of (S [fe�g;�) such that /(x0; : : : ; xn�1) =
x0 � r1(x1)� � � � � rn�1(xn�1) for any x0; : : : ; xn�1 in S [fe�g.
For our purpose, we associate to each link (i; j) of G = (V;E) a bijective r-function ri;j

that is strictly idempotent. Each processor i has the following inputs: (i) Ni is the locally
ordered set of neighbors of i, and (ii) ri;j is the bijective r-function associated to the edge
between processors i and j. Each processor i (except the root) has the following variables: (i)
rw�i (the current value broadcast in i�s sub-tree) is an integer, and (ii) pi (the parent of i) is
a pointer to a neighbor of i. Each processor i (including the root) has the following variables:
(i) w�i (the weight of i, in the sense of �) is an integer, and (ii) sti (the status of i) takes
value in fP;Ng. Note that w�i and rw�i are elements of S [fe�g.
All processors has the following local macro: ŵ�i is the best possible value of w

�
i according

to the current con�guration. Let j be a child of i (pj = i). j is called a descendant of i i¤
w�i <� w

�
j . Each processor (except the root) has the following local macro: p̂i is the best

possible parent i according to the current con�guration if a such neighbor exists otherwise
the value of p̂ is ?. r�1i;j is the reverse function of ri;j (since ri;j is bijective, r�1i;j is always
de�ned, and the best parent j should have the neutral status and should have a weight equal
to r�1i;j (ŵ

�
i)), Di is the set of the descendants of i in the tree, and ubw�i is the upper bound of

wi (in the sense of �) in the current con�guration (see table below).

ŵ�i �
�
�j2Ni(ri;j(w�j)) if i 6= r
0 otherwise

p̂i �

8<:
�j2Ni(j :: (w�j = r�1i;j (ŵ�i)) ^ (stj = N)) if there exists j 2 Ni ::

(w�j = r
�1
i;j (ŵ

�
i)) ^ (stj = N)

? otherwise

Di � fj 2 Ni :: pj = i ^ w�i <� w�j g

ubw�i �
�
�j2Dir�1i;j (w�j) if Di 6= ;
1 otherwise

Each processor (except the root) has the following local predicates: End_PIFi is used to
avoid that a processor increases its weight (i.e. to perform R3 action) simultaneously with
one of its descendants, Safe_MOV Ei is used to avoid that a processor i takes the status P

19

(i.e. to perform R2 action) when it could change its parent, and Safe_INCi is veri�ed by i
when it needs to increase its weight (see table below).

End_PIFi � (8j 2 Di; stj = N)

Safe_MOV Ei �
� �

(ŵ�i <� w
�
i) _

�
(w�i = ŵ

�
i) ^ (p̂i 6= pi)

��
^ (p̂i 6= ?)

�

Safe_INCi �
� �

(wi <� rpi;i(rw
�
pi
)) ^ (stpi = P)

�
_ (wi <� rpi;i(w

�
pi
))

�
The rules of our generic algorithm are the following:

1. On the root r processor:

� R0 :: (w�r 6= 0) _ (stp 6= N)!
wr 0; str N

2. On any other processor i:

� R1 :: (sti = N) ^ Safe_MOV Ei !
w�i ŵ�i ; rw

�
p w�i ; pi p̂i

� R2 :: (sti = N) ^ :Safe_MOV Ei ^ Safe_INCi !
rw�i rpi;i(rw

�
pi
); sti P

� R3 :: (sti = P) ^ End_PIFi ^ (rw�i �� ubw�i)!
w�i rw�i ; st N

� R4 :: (rw�i <� w�i) ! rw�i w�i

We now quickly sketch two possible applications of the generic algorithm. The interested
reader can refer to [?] for more details. First, to solve the shortest path problem with r-
operators, it is su¢ cient to consider N as S, +1 as e�, min as �, and x 7! x + ci;j as
rji . Second, in a telecommunication network where some terminals must chose their �best�
transmitter, distance is not always the relevant criterium, and it can be interesting to know
the transmitter form where there exists a least failure rate path, and to know the path itself.
If we consider [0; 1]\R as S, 0 as e�, max as �, and x 7! x�� ji as r

j
i (where �

j
i is the reliability

rate �0 < � ji < 1 �of the edge between i and j) our parametrized algorithm ensures that
a best transmitter tree is maintained despite transient failures (in a self-stabilizing way) and
that once a coherent tree is constructed towards a transmitter, a coherent tree remains event
if edge rates continue changing.

20

Chapter 6

Conclusion

In this paper, we presented a self-stabilizing loop-free routing algorithm that is also route
preserving. This algorithm also does not require that a bound on the network diameter is
known to all processors in the network.
These two key properties make our approach suitable for mobile ad-hoc networks, where

nodes move often (inducing changes in the diameter of the system and in the edge costs).
Unlike previous approaches on self-stabilizing routing and mobile networks, we speci�cally
address the message delivery issue, even in an environment where dynamic changes occur all
the time.

21

Bibliography

22

