A Distributed TDMA Slot Assignment Algorithm for
Wireless Sensor Networks*

Ted Herman Sébastien Tixeuil'
University of Iowa LRI - CNRS UMR 8623 & INRIA Grand Large
t ed- her man@i owa. edu tixeuil @ri.fr
March 8, 2006
Abstract

Wireless sensor networks benefit from communication protocols that reduce power
requirements by avoiding frame collision. Time Division Media Access methods sched-
ule transmission in slots to avoid collision, however these methods often lack scalabil-
ity when implemented in ad hoc networks subject to node failures and dynamic topol-
ogy. This paper reports a distributed algorithm for TDMA slot assignment that is self-
stabilizing to transient faults and dynamic topology change. The expected local conver-
gence time is O(1) for any size network satisfying a constant bound on the size of a node
neighborhood.

Moreover, the bandwidth that is allocated to a node depends on its local topology
rather than on a global network parameter. This permits nodes in locally sparse areas to
get more bandwidth share than nodes in locally dense areas.

Finally, in this scheme, nodes need not be able to detect collisions, be those induced
by simultaneous transmission and reception at a single node, or by the well known
hidden terminal problem.

Keywords: TDMA, distributed algorithms, self-stabilization, sensor networks, adap-
tativity.

1 Introduction

Collision management and avoidance are fundamental issues in wireless network proto-
cols. Networks now being imagined for sensors [28] and small devices [4] require energy
conservation, scalability, tolerance to transient faults, and adaptivity to topology change.
Time Division Media Access (TDMA) is a reasonable technique for managing wireless me-
dia access, however the priorities of scalability and fault tolerance are not emphasized by

*A preliminary abstract of this paper appears in [13]
TContact Author. Address: LRI Batiment 490, Université Paris Sud, 91405 Orsay cedex, FRANCE. Tel: +33
1691 54239. Fax: +33 1691 56586

most previous research. Recent analysis [11] of radio transmission characteristics typical
of sensor networks shows that TDMA may not always substantially improve bandwidth
when compared to randomized collision avoidance protocols, however fairness and energy
conservation considerations remain important motivations. In applications with predictable
communication patterns, a sensor may even power down the radio receiver during TDMA
slots where no messages are expected; such timed approaches to power management are
typical of the sensor regime.

Emerging models of ad hoc sensor networks are more constrained than general models of dis-
tributed systems, especially with respect to computational and communication resources.
These constraints tend to favor simple algorithms that use limited memory. A few con-
straints of some sensor networks can be helpful: sensors may have access to geographic
coordinates and a time base (such as GPS provides), and the density of sensors in an area
can have a known, fixed upper bound. The question we ask in this paper is how systems can
distributively obtain a TDMA assignment of slots to nodes, given the assumptions of syn-
chronized clocks and a bounded density (where density is interpreted to be a fixed upper
bound on the number of immediate neighbors in the communication range of any node). In
practice, such a limit on the number of neighbors in range of a node has been achieved by
dynamically attenuating transmission power on radios. Our answers to the question of dis-
tributively obtaining a TDMA schedule are partial: our results are not necessarily optimum,
and although the algorithms we present are self-stabilizing, they are not optimally designed
for all cases of minor disruptions or changes to a stabilized sensor network.

Before presenting our results, it may be helpful for the reader to consider the relation be-
tween problems of TDMA scheduling and graph coloring. Algorithmic research on TDMA
relates the problem of timeslot assignment to minimal graph coloring, where the coloring
constraint is typically that of ensuring that no two nodes within distance two have the same
color. The constraint of distance two is motivated by the well known hidden terminal prob-
lem in wireless networks. This simple reduction of TDMA timeslot assignment neglects
some opportunities for time division: even a solution to minimum coloring does not neces-
sarily give the best result for TDMA slot assignment. Consider the two colorings shown in
Figure 1, which are minimum distance-two colorings of the same network. We can count, for
each node p, the size of the set of colors used within its distance-two neighborhood (where
this set includes p’s color); this is illustrated in Figure 2 for the respective colorings of Figure
1. We see that some of the nodes find more colors in their distance-two neighborhoods in
the second coloring of Figure 1. The method of slot allocation in Section 6 allocates larger
bandwidth share when the number of colors in distance-two neighborhoods is smaller. In-
tuitively, if some node p sees £ < A colors in its distance-two neighborhood, then it should
have at least a 1/(k + 1) share of bandwidth, which is superior to assigning a 1/(\ + 1)
share to each color. Thus the problem of optimum TDMA slot assignment is, in some sense,
harder than optimizing the global number of colors.

Contributions. The main issues for our research are dynamic network configurations, tran-
sient fault tolerance and scalability of TDMA slot assignment algorithms. Our approach
to both dynamic network change and transient fault events is to use the paradigm of self-
stabilization, which ensures that the system converges to a valid TDMA assignment after

2

Figure 2: number of colors used within distance two

any transient fault or topology change event. Our approach to scalability is to propose a
randomized slot assignment algorithm with O(1) expected local convergence time. The ba-
sis for our algorithm is, in essence, a probabilistically fast clustering technique (which could
be exploited for other problems of sensor networks). The expected time for all nodes to have
a valid TDMA assignment is not O(1); our view is that stabilization over the entire network
is an unreasonable metric for sensor network applications; we discuss this further in the
paper’s conclusion.

Related Work. The idea of self-stabilizing TDMA has been developed in [17, 18] for a grid
topology with a base station such that each node has knowledge of its location in the grid.
The solutions of [17, 18] are deterministic and optimized for certain types of application
communication patterns. Our work investigates the more general problem of unknown
topology and unknown communication pattern. In [3], a distributed self-stabilizing algo-
rithm for TDMA slot assignment is presented for general topologies, however that algo-
rithm requires collision detection mechanisms not assumed by our model; the algorithm
also has a “softer” form of self-stabilization than we use in this paper (in [3], certain initial
state values are assumed for new nodes joining the network). A refined type of TDMA,
for link scheduling, is considered in [7], which is a slot assignment problem when directed
transmission is possible in the communication model, which not part of the model of this
paper.

Algorithms for allocating TDMA time slots and FDMA frequencies are formulated as vertex
coloring problems in a graph [21]. Let the set of vertex colors be the integers from the range
0..A. For FDMA the colors (f,, fu) of neighboring vertices (v, w) should satisfy |f, — fi,| > 1
to avoid interference. A useful notation for this constraint is L(¢;, ¢3): for any pair of ver-
tices at distance i € {1,2}, the colors differ by at least ¢;. The coloring problem for TDMA
is: let L'(¢1, ¢2) be the constraint that for any pair of vertices at distance i € {1, 2}, the colors
differ by at least ¢; mod (A + 1). (This constraint represents the fact that time slots wrap
around, unlike frequencies.) The coloring constraint for TDMA is L’(1,1). Coloring prob-

lems with constraints L(1,0), L(0, 1), L(1,1), and L(2, 1) have been well-studied not only for
general graphs but for many special types of graphs [2, 15, 22]; many such problems are NP-
complete and although approximation algorithms have been proposed, such algorithms are
typically not distributed. (The related problem finding a minimum dominating set has been
shown to have a distributed approximation using constant time [16], though it is unclear if
the techniques apply to self-stabilizing coloring.) Self-stabilizing algorithms for L(1,0) have
been studied in [8, 25, 23, 24, 10], and for L(1,1) in [9]. Our algorithms borrow from tech-
niques of self-stabilizing coloring and renaming [9, 10], which use techniques well-known
in the literature of parallel algorithms on PRAM models [19]. To the extent that the sensor
network model is synchronous, some of these techniques can be adapted; however working
out details when messages collide, and the initial state is unknown, is not an entirely trivial
task. This paper is novel in the sense that it composes self-stabilizing algorithms for renam-
ing and coloring for a base model that has only probabilistically correct communication, due
to the possibility of collisions at the media access layer. Also, our coloring uses a constant
number of colors for the L(1,1) problem, while the previous self-stabilizing solution to this
problem uses n? colors.

The rest of the paper is organized as follows. In Section 2, we present the underlying model
that we consider and discuss implementation issues relative to the probabilistic nature of
communications when there is no collision detection mechanism. In Sections 3, 4, and 5, we
successively present the three layers of a minimal distance two coloring algorithm. A pos-
sible way to convert this coloring into a TDMA schedule along with bandwith guarantees
is presented in Section 6. Section 7 states our main results, while we discuss open issues
in Section 8. An appendix of independent interest provides guidance for emulating higher
level models using our scheme.

2 Wireless Network, Program Notation

The system is comprised of a set V' of nodes in an ad hoc wireless network, and each node
has a unique identifier. Communication between nodes uses a low-power radio. Each node
p can communicate with a subset IV, C V' of nodes determined by the range of the radio
signal; N, is called the neighborhood of node p. In the wireless model, transmission is
omnidirectional: each message sent by p is effectively broadcast to all nodes in V,. We also
assume that communication capability is bidirectional: ¢ € N, iff p € N,. Define N; = N,
and fori > 1, N} = N1 U {r|(3¢: qe Nj7': r € Ny} (call N} the distance-i
neighborhood of p). Similarly, we denote by I, the set of edges that are incident to p. We
definel’), = Iyand fori > 1, T, = T5' U {(¢,7) | 3g: qe N,',r € Ny)} (call I,
the distance-i topology of p). Distribution of nodes is sparse: there is some known constant
d such that for any node p, |N,| < J. (Sensor networks can control density by powering off
nodes in areas that are too dense, which is one aim of topology control algorithms.)

Each node has fine-grained, real-time clock hardware, and all node clocks are synchronized
toa common, global time. Each node uses the same radio frequency: one frequency is shared
spatially by all nodes in the network. Media access is managed by CSMA /CA: if node p has

4

amessage ready to transmit, but is receiving some signal, then p does not begin transmission
until it detects the absence of signal; and before p transmits a message, it waits for some
random period (as implemented, for instance, in [27]) with a fixed upper bound. A queued
transmit that has to wait for absence of signal longer than this upper bound is aborted. We
assume that the implementation of CSMA /CA satisfies the following: there exists a constant
7 > 0 such that the probability of a frame transmission without collision is at least 7. This
assumption corresponds to typical models for multiaccess channels [1]; the independence of
7 for different frame transmissions indicates our assumption of an underlying memoryless
probability distribution in a Markov model. We also assume that some constants d > 0,
a > 0 exist such that any p having a queued message to send at time ¢ will observe the
medium to be available for transmission before time ¢ + d with probability at least c. Jointly,
7 and o imply a nonzero probability of being able to send a message without collision with
at most delay d before transmission.

Nodes do not have the ability to detect collision of concurrently transmitted messages. For
instance if node p begins transmitting and a message from node ¢ concurrently arrives to
p, then p will not detect any type of collision. Similarly if two messages, say from ¢ and r
concurrently arrive at node p, then p does not detect collision. In such a model, collisions
are treated as noise, where noise is defined as any reception of a bits, in the form of a frame,
whose error detection coding does not corroborate the frame’s payload data. In some sensor
network architectures, software is only able to observe the arrival of (correct) frames and
unable to observe even the presence of noise, so techniques which rely on collision detection,
such as those used in [3], are inapplicable here.

Notation. We describe algorithms using the notation of guarded statements: G — S rep-
resents a guarded statement, where G is a predicate of the local variables of a node, and
S is an assignment to local variables of the node or a command, such as transmit. Predi-
cate G is called the guard. Execution of a G — S consists of evaluating G, and if G is true,
then S is executed, otherwise S is skipped. Some guards can be event predicates that hold
upon the event of receiving a message: we assume that all such guarded assignments ex-
ecute atomically when a message is received. At any system state where a given guard G
holds, we say that G is enabled at that state. The [] operator is the nondeterministic compo-
sition of guarded assignments; ([l¢ : ¢ € M, : G4 — S,) is a closed-form expression of
Gq = S [| Ggy = Sgo | -+ [| Gg — Sqi, where My, = {q1,q2, ..., qr}-

Execution Semantics. The life of computing at every node consists of the infinite repetition
of finding a guard and executing its corresponding assignment or skipping the assignment
if the guard is false. Generally, we suppose that when a node executes its program, all state-
ments with guards evaluating to true are executed within some constant time bound (done,
for example, in round-robin order).

2.1 Shared Variable Propagation

A certain subset of the variables at any node are designated as shared variables. Nodes
periodically transmit the values of their shared variables, based on a timed discipline. A

5

simple protocol in our notation for periodic retransmission would be true — transmit(vary)
for each shared variable of p. One local node “variable” we do not explicitly use is the clock,
which advances continuously in real time; guards and assignments could refer to the clock,
but we prefer to discipline the use of time by the following procedure.

In addition to periodic retransmission, let each assignment to a shared variable schedule
immediate transmission of the value of that variable. We impose the following time con-
straint: if G — S assigns to a shared variable, then we suppose execution of the statement is
slow enough, in real time, so that its execution speed does not exceed some desired rate; we
also suppose that the transmission protocol provides randomized delay to avoid collision
in messages that carry shared variable values. Execution of G — S is not complete until the
transmission of the message carrying the shared variable value is complete (whether colli-
sion occurs or not). However, to enforce the atomicity of G — S we require that evaluation of
all local and shared variables in G and expressions used with S be effectively instantaneous:
all of the time duration of G — S is due to random delay, queueing, and transmission. Call
this type of time-constrained transmission with random delay a time-constrained propagation.
Our intent of giving some upper bound on execution speed is to ensure that assignments
to shared variables in nodes do not occur too fast: we use this bound to prove properties
of a naming protocol presented in Section 3. We assume that periodic retransmissions are
interleaved with assignment-triggered transmissions, if the node has any such triggered
transmissions; no statement executes during a periodic retransmission. It follows that state-
ments are executed serially within each node, there is at most one scheduled transmission
at any instant.

Time-constrained propagation could be implemented using a timer associated with G — S.
One technique for implementing G — S is the following procedure:

Suppose the previous invocation of the procedure implementing G — S fin-
ished at time ¢; the next evaluation of G — S occurs at time ¢ + 3, where [is
a random delay inserted by the CSMA /CA implementation. After executing .S,
or skipping it if G is false, the node attempts a message transmission contain-
ing all shared variable values. Note that for CSMA/CA, message transmission
may be postponed if the node is currently receiving a message, in which case
the pending message is sent at the first available moment when no message is
being received. Finally, after transmitting the message, the node waits for an
additional ~ time units, where & is a given constant. Thus, in brief, G — S is
forever evaluated by waiting for a random period, atomically evaluating G — S,
transmitting shared variable(s), and waiting for a constant time period «. Figure
3 illustrates the cycle of shared variable propagation for one node.

Given the discipline of repeated transmission of shared variables, each node can have a
cached copy of the value of a shared variable for any neighbor. This cached copy is up-
dated atomically upon receipt of a message carrying a new value for the shared variable.
To reconcile our earlier assumption of atomic processing of messages with the discipline of
shared variable propagation, no guarded assignment execution should change a shared variable in

6

Figure 3: shared variable propagation

the atomic processing of receiving a message. This prescription simplifies our reasoning about
concurrency and enables us to use traditional proof techniques for self-stabilizing protocols
composed of guarded statements [12].

Lemma 1 The model of atomic guarded statement execution is observed by our protocol of sending
messages of cached variables.

Proof: Our program constraints are as follows: for any guarded command that is triggered
upon message receipt, no shared variable is modified. Also, we assumed the following
axiom. For any guarded command that is triggered by a predicate on the local state of
a node p, the actual execution of the guard can be seen as two different parts: an atomic
part that uses the local state of the node, and a non-atomic part that transmits triggered or
periodic messages.

First, we show that for any node p, guarded commands that are triggered upon message
receipt either do not interfere with one another, because they relate to different private vari-
ables, or are received in sequence, because they were received by the same node. (Indeed, all
of our algorithms use a cache mechanism to hold variables that pertain to particular neigh-
bors, so the cache variable relative to one particular neighbor is to be updated only by this
neighbor.)

Second, we show that a guarded command that is triggered upon message receipt does
not interfere with a guarded command that is triggered by a predicate on a local state of
a node p. The first part of the predicate-triggered command is atomic, so by hypothesis it
does not interfere with the message-triggered command. The second part of the predicate-
triggered command only transmits messages. Since none of the message-triggered com-
mands are allowed to write shared variables or message buffers, those may not interfere
with the non-atomic part of the predicate-triggered command. As a result, the two kinds
of actions (message-triggered commands, and non atomic part of predicate-triggered com-
mands) do not interfere with one another and may be executed in any order. In particular,
they can be executed with the non-atomic part of the predicate-trigerred command occuring
first.

Finally, predicate-triggered commands executed at the same node p are executed in se-
quence.

Since no actions are interfering with one another with the assumed hypothesis, our protocols
exhibit the model of atomic guarded statement protocols. 0

7

The goal of this paper is to provide an implementation of a general purpose, collision-free
communication service. This service can be regarded as a transformation of the given wire-
less model into an abstract model without collisions. The method for shared variable propa-
gation specifies that any execution of some G — S that assigns to a shared variable schedule
immediate transmission of that variable’s value. We also desire to exploit the property that
shared variable propagation can be expected to succeed within constant time. A more effi-
cient policy for evaluating guarded statements could be the following: atomically execute
all guarded statements that assign to shared variables, in some arbitrary sequence, and then
immediately schedule the combined shared variable propagation. All the protocols given in
this paper have a constant number of guarded assignment statements, so this atomic eval-
uation of numerous statements is feasible. The resulting behavior can be shown to obey
the semantics of guarded statement execution by arguments similar to those in the proof of
Lemma 1.

2.2 Problem Definition

Let 7 denote the task of assigning TDMA slots so that each node has some assigned slot(s)
for transmission, and this transmission is guaranteed to be collision-free. We seek a solution
to 7 that is distributed and self-stabilizing in the sense that, after some transient failure or
reconfiguration, node states may not be consistent with the requirements of collision-free
communication and collisions can occur; however eventually the algorithm corrects node
states to result in collision-free communication.

2.3 Model Construction

Our first design decision is to suppose that the implementation we seek is not itself free of
collisions. That is, even though our goal is to provide applications a collision-free service,
our implementation is allowed to introduce “overhead messages” that are susceptible to
collisions. Initially, in the development of algorithms, we accept collisions and resends of
these overhead messages, which are internal to 7 and not visible to the user application
which is using only TDMA slots for its own communication.

To solve 7 it suffices to assign each node a color and use node colors as the schedule for a
TDMA approach to collision-free communication [21]. Even before colors are assigned, we
use a schedule that partitions radio time into two parts: one part is for TDMA scheduling
of application messages and the other part is reserved for the overhead messages of the
algorithm, which assigns colors and time slots to nodes. The following diagram illustrates
such a schedule, in which each TDMA part has five slots. Each overhead part occupies a
fixed duration within in the TDMA schedule.

—— ——
TDMA overhead TDMA overhead

8

The programming model, including the technique for sharing variables described in Section
2, refers to message and computation activity in the overhead parts. It should be understood
that the timing of shared variable propagation illustrated in Figure 3 may span overhead
slots: the computation by the solution to 7 operates in the concatenation of all the overhead
slots. Whereas CSMA /CA is used to manage collisions in the overhead slots, the remaining
TDMA slots do not use random delay. During initialization or after a dynamic topology
change, frames may collide in the TDMA slots, but after the slot assignment algorithm self-
stabilizes, collisions do not occur in the TDMA slots.

With respect to any given node v, a solution 7 is locally stabilizing for v with convergence
time ¢ if, for any initial system state, after at most ¢ time units, every subsequent system state
satisfies the property that any transmission by v during its assigned slot(s) is free from colli-
sion. Solution 7 is globally stabilizing with convergence time ¢t if, for every initial state, after
at most ¢ time units, every subsequent system state has the property that all transmissions
during assigned slots are free from collision. For randomized algorithms, these definitions
are modified to specify expected convergence times (all stabilizing randomized algorithms
we consider are probabilistically convergent in the Las Vegas sense). When the qualification
(local or global) is omitted, convergence times for local stabilization are intended for the
presented algorithms.

Several primitive services that are not part of the initial model can simplify the design and
expression of 7”’s implementation. All of these services need to be self-stabilizing. Briefly
put, our plan is to develop a sequence of algorithms that enable TDMA implementation.
These algorithms are: neighborhood-unique naming, maximal independent set, minimal
coloring, and the assignment of time slots from colors. In addition, we rely on neighborhood
services that update cached copies of shared variables.

2.4 Neighborhood Identification

We do not assume that a node p has built-in knowledge of its neighborhood N, or its
distance-three neighborhood Nj. This is because the type of network under considering
is ad hoc, and the topology dynamic. Therefore some protocol is needed so that a node can
refer to its neighbors. We describe first how a node p can learn of Np2, since the technique
can be extended to learn N in a straightforward way.

Each node p can represent N/ for i € 1..3 by a list of identifiers learned from messages
received at p. However, because we do not make assumptions about the initial state of any
node, such list representations can initially have arbitrary data. Let L be a data type for a list
of up to ¢ items of the form a : A, where a is an identifier and A is a set of up to J identifiers.
Let sL, be a shared variable of type L. Let message type mN with field of type L refer to a
shared variable propogation message for sL,,. Let L, be a private variable of a type thatis an
augmentation of L. Variable L, contains (a : A)-type items and also associates a real number
with each item: let age(a : A) denote a positive real value attached to the item (a : A). Our
intent is that age(a : A) should, at any instant, be the difference between the current clock

9

and the time at which item (a : A) was last updated. In the neighborhood identification
protocol, L, informs p of N for each neighbor ¢, thereby enabling p to learn N;.

Function update(L,, a : A) changes L, to have new item information: if L, already has some
item whose first component is g, it is removed and replaced with a : A (which then has age
zero); if L, has fewer than § items and no item with a as first component, then a : A is added
to L,; if L, has already ¢ items and no item with a as first component, then a : A replaces
some item with maximal age.

Let maxAge be some constant designed to be an upper limit on the possible age of items in
L,,. Function neighbors(L,) returns the set

{qgla#p AN (F(a:A): (a:A)eL,: a=q)}

Given these variable definitions and functions, we present the algorithm for neighborhood
identification.

NO: receive mN(a : A) — update(L,,a : A\ {p})
N1: ([J(a: A) € Ly : age(a: A) > maxAge — Ly,:=L,\ (a:A))
N2: true — sL, := (p: neighbors(L,))

We cannot directly prove that this algorithm stabilizes because the CSMA /CA model admits
the possibility that a frame, even if repeatedly sent, can suffer arbitrarily many collisions.
Therefore the age associated with any element of L, can exceed maxAge, and the element
will be removed from L,,. The constant maxAge should be tuned to be small enough to re-
move old or invalid neighbor data, yet it must be large enough to retain current neighbor
information until other mN messages can arrive before age expiration. This is an imple-
mentation issue beyond of the scope of this paper: our abstraction of the behavior of the
communication layer is the assumption that, eventually for any node, the guard of N1 re-
mains false for any (a : A) € L, for which a € N,,.

Proposition 1 Eventually, for every node p, sL,, = N, holds continuously.

Proof: Note: as is usual in the literature of self-stabilization, we prove the claim only for
periods when there are no topology changes. Eventually any element (a : A) € L, such that
a ¢ N is removed. Therefore, eventually every node p can have only its neighbors listed
in sL,. Similarly, with probability 1, each node p eventually receives an mN message from
each neighbor, so sL,, contains exactly the neighbors of p. O

By a similar argument, eventually each node p correctly has knowledge of N as well as N,
The same technique can enable each node to eventually have knowledge of NS. In all subse-
quent sections, we use NV, for i € 1..3 as constants in programs with the understanding that
such neighborhood identification is actually obtained by the stabilizing protocol described
above. In Section 5, we make use of slightly more information than N;3: we consider that we

10

are aware of the local topology of p at distance three I'}; this information is to be acquired
through the same means.

Building upon L, cached values of the shared variables of nodes in N}, for i € 1..3, can
be maintained at p; erroneous cache values not associated with any node can be discarded
by the aging technique. We use the following notation in the rest of the paper: for node p
and some shared variable var, of node ¢ € N3, let [Joar, refer to the cached copy of var, at
p. The method of propagating cached copies of shared variables is generally self-stabilizing
only for shared variables that eventually do not change value. With the exception of one
algorithm presented in Section 3, all of our algorithms use cached shared variables in this
way: eventually, the shared variables become constant, implying that eventually all cached
copies of them will be coherent.

For algorithms developed in subsequent sections, we require a stronger property than even-
tual propagation of shared variable values to their caches. We require that with some con-
stant probability, any shared variable will be propagated to its cached locations within
constant time. This is tantamount to requiring that with constant probability, a node will
transmit within constant time and the transmission will not collide with any other frame.
Section 2 states our assumption on wireless transmission, based on the constants 7 and «
for collision-free, queued transmission. The discipline of shared variable propagation illus-
trated in Figure 3 spaces shared-variable updates by « + 3, where (3 is a random variable
with an upper bound. It follows that there is a positive probability that any particular shared
variable propagation attempt will succeed without collisions within a fixed time interval,
and this positive probability is bounded below by some constant. Therefore the expected
number of attempts to propagate a shared variable value before successfully writing to all
its caches is O(1). We henceforth assume that the expected time for shared variable propa-
gation is constant.

3 Neighborhood Unique Naming

To this point, the architecture of the protocol being described has layered the neighbor iden-
tification protocol upon a protocol for shared variable propagation. In this section we pro-
pose to add another layer, which creates new names for nodes using a smaller space of
names. This renaming layer relies on the output of the neighborhood identification proto-
col: it needs knowledge of N3. Note that following a topology change or a transient failure,
knowledge of N3 could be faulty. Our renaming protocol can mistakenly perform many op-
erations starting from such a state. Eventually, the neighbor identification protocol stabilizes
and thereafter the renaming steps are meaningful. In subsequent sections also, we continue
this layered approach to the full protocol construction. Section 7 shows how all parts are
combined.

An algorithm providing neighborhood-unique naming gives each node a name distinct from
any of its N3-neighbors. This may seem odd considering that we already assume that nodes
have unique identifiers, but when we try to use the identifiers for certain applications such

11

as coloring, the potentially large namespace of identifiers can cause scalability problems.
Therefore it can be useful to give nodes smaller names, from a constant space of names, in a
way that ensures names are locally unique.

Our neighborhood unique naming algorithm is roughly based on the randomized technique
described in [9], and introduces some new features. Define A = [§'] for some ¢ > 3; the
choice of t to fix constant A has two competing motivations discussed at the end of this
section. We call A the namespace. Let shared variable Id, have domain 0..A; variable Id,
is the name of node p. A local function is used to collect the names of neighboring nodes:
Cids, = {[0ld, | ¢ € N3\ {p} }. Let random(S) choose with uniform probability some
element of set S. Node p uses the following function to compute Id,,:

Id, if Id, ¢ Cids,

newld(Id,) = { random(A \ Cids,) otherwise

The algorithm for unique naming is the following.
N3: true — Id, := newld(ld),)

Define Uniq(p) to be the predicate that holds iff (i) no name mentioned in Cids,, is equal to
Id,,, (ii) for each q € N;’, q # p, 1d, # 1d,, (iii) for each ¢ € N;’, one name in Cids, equals Id,,
(iv) for each q € Ng, q # p, the equality []Id, = Id, holds at node ¢, and (v) no cache update
message en route to p conveys a name that would update Cids, to have a name equal to Id,,.
Predicate Uniq(p) states that p’s name is known to all nodes in N} and does not conflict
with any name of a node ¢ within N7, nor is there a cached name liable to update Cids,, that
conflicts with p’s name. A key property of the algorithm is the following: Uniq(p) is a stable
property of the execution. This is because after Unig(p) holds, any node ¢ in N;’ will not
assign Id, to equal p’s name, because N3 avoids names listed in the cache of distance-three
neighborhood names - this stability property is not present in the randomized algorithm
[9]. The property (Vr : r € R : Uniq(r)) is similarly stable for any subset R of nodes. In
words, once a name becomes established as unique for all the neighborhoods it belongs to,
it is stable. Therefore we can reason about a Markov model of executions by showing that
the probability of a sequence of steps moving, from one stable set of ids to a larger stable set,
is positive.

Lemma 2 Starting from any state, for any p, there is a constant, positive probability that Uniq(p)
holds within constant time.

Proof: The proof has three cases for p: (a) Uniq(p) holds initially, (b) ~Uniq(p) holds, but
p cannot detect this locally (this means that there exists some neighbor ¢ of p such that
(1d, # Id, at q); or (c) p detects ~Uniq(p) and chooses a new name. Case (a) trivially verifies
the lemma. For case (b), it could happen that Uniq(p) is established only by actions of nodes
other than p within constant time, and the lemma holds; otherwise we rely on the periodic
mechanism of cache propagation and the lower bound 7 on the probability of collision-free

12

transmission to reduce (b) to (c) with some constant probability within constant time. For
case (c) we require a joint event, which is the following sequence: p chooses a name different
from any name in Ng and in their caches (or in messages en route), then p transmits the new
name without collision to N, each node ¢ € N, transmits the cache of p’s name without
collision, and then each node in Ng \ N, transmits the cache of p’s name without collision.
Fix some constant time ® for this sequence of events; time ® could be (§ + 1) - 1, where y is
the average time for a cached value to be transmitted without collision. The joint probability
x for this scenario is the product of probabilities for each event, with the constraint that the
event is transmission without collision within the desired time constraint ;.. This sequence
is not enough, however to fully estimate the probability for case (c), because it could be that
nodes of N} concurrently assign new identifiers, perhaps equal to p’s name. Therefore we
multiply by = the product of probabilities that each invocation of newld by ¢ € N during
the time period ® does not return a name equal to p’s name. Notice that the number of
times that any ¢ € N, can invoke N3 is bounded by ®/x, because assignment to shared
variables follows the discipline of at least x delay. Thus the entire number of invocations
of newld in the ®-length time period is bounded by a constant. Therefore the overall joint
probability is estimated by the product of and a fixed number of constant probabilities;
the joint probability for this scenario is thus bounded by a product of constant probabilities
(dependent on A, 6, 7, alpha, and k). Because this joint probability is bounded below by a
nonzero constant, the expected number of trials to reach a successful result is constant. [

Corollary 1 The algorithm N3 self-stabilizes with probability 1 and has constant expected local
convergence time.

Proof: The Markov chain for the algorithm has a trapping state for any p such that Uniq(p)
holds. The stability of Uniq(p) for each p separately means that we can reason about self-
stabilization for each node independently. The previous lemma implies that each node con-
verges to Uniq(p) with probability 1, and also implies the constant overall time bound. O

Using the names assigned by N3 is a solution to L(1, 1) coloring, however using A colors is
not the basis for an efficient TDMA schedule. The naming obtained by the algorithm does
have a useful property. Let P be a path of ¢ distinct nodes, that is, P = p1, ps, ..., pt. Define
predicate Up(P) to hold if id), < idy, for each i < j. In words, Up(P) holds if the names
along the path P increase.

Lemma 3 Every path P satisfying Up(P) has fewer than A + 1 nodes.

Proof: 1f a path P satisfying Up(P) has A + 1 nodes, then some name appears at least twice
in the path. The ordering on names is transitive, which implies that some name a of a node
in P satisfies a < a, and this contradicts the total order on names. O

This lemma shows that the simple coloring algorithm gives us a property that node iden-
tifiers do not have: the path length of any increasing sequence of names is bounded by a

13

constant. Henceforth, we suppose that node identifiers have this property, that is, we treat
N, as if the node identifiers are drawn from the namespace of size A.

There are two competing motivations for tuning the parameter ¢ in A = §*. First, ¢ should
be large enough to ensure that the choice made by newld is unique with high probability.
In the worst case, |NJ| = 6° — 26° + 6 + 1, and each node’s cache can contain about ¢°
names, so choosing ¢t ~ 6 could be satisfactory. Generally, larger values for ¢ decrease the
expected convergence time of the neighborhood unique naming algorithm. On the other
hand, smaller values of ¢t will reduce the constant A, which will reduce the convergence
time for algorithms described in subsequent sections.

4 Leaders via Maximal Independent Set

Simple distance two coloring algorithms may use a number of colors that is wastefully large.
Our objective is to find an algorithm that uses a reasonable number of colors and completes,
with high probability, in constant time. We observe in this section that an assignment to
satisfy distance two coloring can be done in constant time given a set of neighborhood leader
nodes distributed in the network. In Section 5, it is shown how the leaders dictate coloring
for nearby nodes. The coloring enabled by this method is minimal (not minimum, which is
an NP-hard problem).

An algorithm selecting a maximal independent set is our basis for selecting the leader nodes.
Selecting which nodes are leaders can be thought of as an iteration of stages. In the first
stage, nodes with locally minimum names, which have been assigned from the A-size names-
pace by the randomized protocol of Section 3, become leaders. The second stage makes
leaders of those nodes with the smallest names that are neither leaders in the first phase
nor neighbor to a first-phase leader. Remaining stages continue in this fashion. The self-
stabilizing algorithm presented below does not use explicit stages, though the notion of
stages helps structure the proof of correctness.

Let each node p have a boolean shared variable /,. In an initial state, the value of ¢, is
arbitrary. A legitimate state for the algorithm satisfies (Vp: p € V : L), where

L, = ({,=Nqg: g€ Ny: =L,))
N (== (Fq: g€ Ny: £y))

Thus the algorithm should elect one leader (identified by the /-variable) for each neighbor-
hood. As in previous sections,]/, denotes the cached copy of the shared variable /,,. Note
that V), treated here as a constant, is in fact an output of the neighborhood identification
protocol given in Section 2.4, upon which the naming and leader selection protocols are
based.

R1:(Vg: g€ Np: q¢>p) — €, :=true
R2:([Jg: g€ Np: by N q<p — Ly, := false)
R3:(3¢: ¢ Np: g<p) N (Vg: g€ Ny A (g>p V —[J4y)) — £p:=true

14

Although the algorithm does not use randomization, its convergence technically remains
probabilistic because our underlying model of communication uses CSMA /CA based on
random delay. The algorithm’s progress is therefore guaranteed with probability 1 rather
than by deterministic means.

Lemma 4 With probability 1 the algorithm R1-R3 converges to a solution of maximal independent
set; the convergence time is O(1) if each timed variable propagation completes in O(1) time.

Proof: 'We prove by induction on the namespace that each node p stabilizes its value of ¢,
within O(A) time. For the base case, consider the set S of nodes with locally minimum
names, thatis, (Vp,¢: pe S A ¢ € N, : p < q). Any node p € S stabilizes in O(1) time
to ¢, = true. The claim follows from the fact that guards of R2 and R3 are false, whereas the
guard of R1 is permanently frue. Therefore for the induction step, we can ignore R1, as it is
dealt with in the base case.

To complete the induction, suppose that each node r has stabilized the value of ¢,, where
r < k. Now consider the situation of a node p with name k + 1 (if there is no such node, the
induction is trivially satisfied). As far as the guards of R2 and R3 are concerned, the value
of {, is only relevant for a neighbor ¢ with ¢ < p, and for any such neighbor, /, is stable by
hypothesis. Since guards of R2 and R3 are exclusive, it follows that p stabilizes ¢, and []¥,
is propagated within O(1) time.

Finally, we observe that in any fixed point of the algorithm R1-R3, no two neighbors are
leaders (else R2 would be enabled for one of them), nor does any nonleader find no leader
in its neighborhood (else R1 or R3 would be enabled). This establishes that £, holds at a
fixed point for every p € V. The induction terminates with at most |A| steps, the size of the
namespace, and because A is a constant, the convergence time is O(1) for this algorithm. [

5 Leader Assigned Coloring

Our method of distance-two coloring is simple: colors are assigned by the leader nodes
given by maximal independent set output. The following variables are introduced for each
node p:

color, is a number representing the color for node p.
mint, is meaningful only for p such that —¢, holds: it is intended to satisfy
mint, = min{q|qge N, N [J{;}

In words, min/, is the smallest id of any neighbor that is a leader. Due to the unique-
ness of names in N}, the value min), stabilizes to a unique node.

spectrumy, is a set of pairs (¢, r) where c is a color and r is an id. Pertaining only to
nonleader nodes, spectrum,, should contain (color,, minty) and ([Jcolory, [Jminty) for
each ¢ € N,,.

15

setcol, is meaningful only for p such that £, holds. It is an array of colors indexed by
identifier: setcol,[q] is p’s preferred color for ¢ € N,,. We consider color,, and setcol,, [p] to
be synonyms for the same variable. In the algorithm we use the notation setcol,[A] :=B
to denote the parallel assignment of a set of colors B based on a set of indices A. To
make this assignment deterministic, we suppose that A can be represented by a sorted
list for purposes of the assignment; B is similarly structured as a list.

dom,, for leader p is computed to be the nodes to which p can give a preferred color; these
include any ¢ € N, such that min{, = p. We say for q € dom, that p dominates q.

f is afunction used by each leader p to compute a set of unused colors to assign to the nodes
in dom,,. The set of used colors (along with their associated node) for p is

{(e,s)]| (3gq,r: quIf A seN;’ A [eolors = ¢ A (c,r) € [spectrum, A r <p) }

That is, used colors with respect to p are those colors in N} that are already assigned
by leaders with smaller identifiers than p. The complement of the used set is the range
of possible colors that p may prefer for nodes it dominates. Let f be the function to
minimize the number of colors preferred for the nodes of dom,,, ensuring that the colors
for dom,, are distinct, and assigning smaller color indices (as close to 0 as possible)
preferentially, using the topology at distance 3. Function f returns a list of colors to
match the deterministic list of dom,, in the assignment of R5.

R4: ¢, — domy,:={p}U{q|qe Ny AN[minl, =p}
R5: ¢, — setcol,[dom,] := f({(c,s) |
(3¢,7: g€ Nj A seNj A [eolors = ¢ A (¢,r) € Ospectrum, A r < p) })
R6: true — minl, :=min{q|qge N,U{p} A 04}
R7: -, — color, := [setcol,[p], where r = mint,
R8: —f, — spectrum,, := (colory, minty) U J{ (c,r) |
(Fq,¢,7: g€ Ny c=[Jeolory AN = [minly)}

Lemma 5 The algorithm R4-R8 converges to a distance-two coloring, with probability 1; the con-
vergence time is O(1) if each timed variable propagation completes in O(1) time.

Proof: The proof is a sequence of observations to reflect the essentially sequential character
of color assignment. We consider an execution where the set of leaders has been estab-
lished by R1-R3 initially. Observe that in O(1) time the assignments of R6 reach a fixed
point, based on the local reference to []¢, for neighbors. Therefore, in O(1) time, the shared
variables mint, are propagated to N, and caches []min/, are stable. Similarly, in O(1) ad-
ditional time, the assignments of R4 reach a fixed point, so that leaders have stable dom
variables.

The remainder of the proof is an induction to show that color assignments stabilize in O(A)
phases (recall that A is the constant of Lemma 3). For the base case of the induction, consider
the set S of leader nodes such that for every p € S, within Ng no leader of smaller name

16

than p occurs. We use distance three rather than distance two so that such a leader node’s
choice of colors is stable, independent of the choices made by other leaders. Set S is non-
empty because, of the set of leaders in the network, at least one has minimal name, which
is unique up to distance three. Call S the set of root leaders. Given such a leader node p,
each neighbor ¢ € NV, executes R8 within O(1) time and assigns to spectrum, a set of tuples
with the property that for any (c,r) € spectrum,, r > p. Notice that although spectrum,
could subsequently change in the course of the execution, this property is stable. Therefore,
in O(1) additional time, no tuple of [Jspectrum, has a smaller value than p in its second
component. It follows that any subsequent evaluation of R5 by leader p has a fixed point: p
assigns colors to all nodes of N,,. After O(1) delay, for ¢ € N, []setcol, stabilizes. Then in
O(1) time, all nodes of dom,, assign their color variables using R7. This completes the base
case, assignment of colors by root leaders.

We complete the induction by examining nodes with minimum distance £ > 0 from any
root leader along a path of increasing leader names (referring to the Up predicate used in
Lemma 3). The hypothesis for the induction is that nodes up to distance £ — 1 along an
increase path of leader names have stabilized to a permanent assignment of colors to the
nodes they dominate. Arguments similar to the base case show that such nodes at distance
k eliminate colors already claimed by leaders of the hypothesis set in their evaluations of
RS5. The entire inductive step — extending by one all paths of increasing names from the
root leaders — consumes O(1) additional time. The induction terminates at A, thanks to
Lemma 3, hence the overall bound of O(A) holds for convergence. O

Only at one point in the proof do we mention distance-three information, which is to es-
tablish the base case for root leaders (implicitly it is also used in the inductive step as well).
Had we only used neighborhood naming unique up to distance two, it would not be ensured
that a clear ordering of colors exists between leaders that compete for dominated nodes, eg,
a leader p could find that some node r € N7 has been assigned a color by another leader ¢,
but the names of p and ¢ are equal; this conflict would permit ¢ to assign the same color to
r that p assigns to some neighbor of . We use distance-three unique naming to simplify the
presentation, rather than presenting a more complicated technique to break ties. Another
useful intuition for an improved algorithm is that Lemma 3’s result is possibly stronger
than necessary: if paths of increasing names have at most some constant length d with high
probability, and the algorithms for leader selection and color assignment tolerate rare cases
of naming conflicts, the expected convergence time would remain O(1) in the construction.

A vertex coloring at distance two is locally minimal if any change of a color at one node p
in the network (that preserves a proper distance two vertex coloring) does not reduce the
number of colors in N7.

Lemma 6 The distance two coloring achieved by Algorithm R4-R8 is minimal.

Proof: Assume for contradiction that there exists a node p such that changing p’s color re-
duces the number of colors used in N7. There are two cases depending whether p is a leader

17

or not. If p is a leader, then it chose its color in such a way that it was minimal considering
the input of its two-neighborhood, so p’s color cannot be changed in a way that reduces the
number of colors in NZ. If p is not a leader, p’s color was given by a neighbor ¢ of p that
is a leader (if p is not a leader, it has a leader in IV,). Now, ¢ is aware of the topology and
color information at distance three from itself, and thus is aware of the topology and color
information at distance two from p. So, ¢ chose p’s color so that it is minimal considering
N7. As aresult, p’s color cannot be changed in a way that reduces the number of colors in
N7 in this case either. Thus a contradiction. 0

6 Assigning Time Slots from Colors

Given a distance-two coloring of the network nodes, the next task is to derive time slot as-
signments for each node for TDMA scheduling. Our starting assumption is that each node
has equal priority for assigning time slots, i.e., we are using an unweighted model in allo-
cating bandwidth. Before presenting an algorithm, we have two motivating observations.

First, the algorithms that provide coloring are local in the sense that the actual number of
colors assigned is not available in any global variable. Therefore to assign time slots con-
sistently to all nodes apparently requires some additional computation. In the first solution
of Figure 1, both leftmost and rightmost nodes have color 1, however only at the leftmost
node is it clear that color 1 should be allocated one ninth of the time slots. Local informa-
tion available at the rightmost node might imply that color 1 should have one third of the
allocated slots.

The second observation is that each node p should have about as much bandwidth as any
other node in N;. This follows from our assumption that all nodes have equal priority. Con-
sider the number of colors in the distance two neighborhood shown in Figure 2 that corre-
spond to the colorings of Figure 1. The rightmost node p in the second coloring has three col-
ors in its two-neighborhood, but has a neighbor ¢ with four colors in its two-neighborhood.
It follows that ¢ shares bandwidth with four nodes: ¢’s share of the bandwidth is at most
1/4, whereas p’s share is at most 1/3. It does not violate fairness to allow p to use 1/3 of the
slot allocation if these slots would otherwise be wasted. Our algorithm therefore allocates
slots in order from most constrained (least bandwidth share) to least constrained, so that
extra slots can be used where available.

To describe the algorithm that allocates media access time for node p, we introduce these
shared variables and local functions.

base, stabilizes to the number of colors in Ng. The value base, L' = 1/base, is used as a
constraint on the share of bandwidth required by p in the TDMA slot assignment.

itvl, is a set of intervals of the form [z,y) where 0 < = < y < 1. For allocation, each unit
of time is divided into intervals and itvl, is the set of intervals that node p can use to
transmit messages. The expression |z, y)| denotes the time-length of an interval.

18

g(b,S) is a function to assign intervals, where S is a set of subintervals of [0,1). Function
g(b, S) returns a maximal set 7" of subintervals of [0, 1) that are disjoint and also disjoint
from any element of S such that (3 .1 |a]) < b.

To simplify the presentation, we introduce S, as a private (nonshared) variable.

RO: true — base, := | {[Jcolory | g € N} |
R10: true — S,:={Oitvly | g€ N} A
(O baseq > base, v
(O basey = base, N []color, < colory)) }
R11: true — itol, = g(base, ", S,)

Lemma 7 With probability 1 the algorithm R9—R11 converges to an allocation of time intervals
such that no two nodes within distance two have conflicting time intervals, and the interval lengths
for each node p sum to |{ colory | q € N} }|~'; the expected convergence time of R9-R11 is O(1)
starting from any state with stable and valid coloring.

Proof: Similar to that for Lemma 5; we omit details. 0

Definition 1 The TDMA bandwith B,, of node p refers to the sum of the sizes of each element of
itvl),.

Lemma 8 Consider a graph of degree with minimal distance two coloring, then the TDMA bandwith
B,, allocated by Algorithm R9-R11 to each node p is at least 1/(|C;|), where C3 denotes the set of
colors in the distance two neighborood of p.

Proof: Assume the contrary. We consider a stable configuration where for every node p,
base, = |C’§\, and where every shared variable is correctly cached up to distance 3. By hy-
pothesis, there is one node p that is allocated less than 1/|C>| TDMA bandwidth. Then, the
set S, that is calculated by p would represent more than a 1—1/|C2| portion of the [0, 1) inter-
val (By Lemma 7). In turn, this implies that there would exist a node ¢ in N such that it has
higher priority than p to allocate TDMA bandwith and holds more than a 1/ \C§| portion of
the TDMA bandwidth. This node ¢ satisfies one of the following predicates: (i) base, > base,
(with base, = |C2|), or (ii) base, = base, A colory < color,. Case (i) is impossible because then
g would have allocated less bandwith than p (since it is more constrained than p, the upper
bound |C?| given to the g function is stricly lower than |C7|). Case (ii) is also impossible
because then ¢ would have allocated as much bandwith as p (since it is as constrained as p,
the upper bound |CZ| given to the g function is equal to |C7]). So, in any case, there remains
atnode p at least 1/ |C’§\ of the bandwith to consume. O

Lemma 9 The TDMA bandwith B,, that is allocated to p satisfies:

1
mnggl—ZBj
p JENp

19

Proof: The first part of the inequality is given by Lemma 8. The second part of the inequality
comes from Lemma 7. 0

It can be verified of R9-R11 that, at a fixed point, no node ¢ € Ng is assigned a time that
overlaps with interval(s) assigned to p; also, all available time is assigned (there are no left-
over intervals). A remaining practical issue is the conversion from intervals to a time slot
schedule: a discrete TDMA slot schedule will approximate the intervals calculated by g. We
do not address this issue of conversion in the paper.

7 Assembly

Given the component algorithms of Sections 2.4-6, the concluding statement of our result
follows.

Theorem 1 The composition of NO-N3 and R1-R11 is a probabilistically self-stabilizing solution
to T with O(1) expected local convergence time.

Proof: The infrastructure for neighborhood identification and shared variable propagation
NO-N2 contributes O(1) delay (partly by assumption on the CSMA /CA behavior), and N3
establishes neighborhood unique naming in expected O(1) time. For any node p, the leader
protocol layered above N3 assumes that [V, is constant, meaning that each neighbor of p has
a stable name. The convergence bound must account for the expected time that all names in
p’s neighborhood are stable. For each of ¢ € NN, the expected time to obtain a stable name is
O(1), and since | Np| = O(1), the expected time for the event of a stably named neighborhood
has an O(1) time bound. More generally, the size of extended neighborhood of p, say N2
also stabilizes within O(1) expected time.

The subsequent layers R1-R3, R4-R8, and R9-R11, each have O(1) convergence time, and
each layer is only dependent on the output of the previous layer. None of these layers is
randomized, depending only on the assumption of constant time shared variable propa-
gation for its expected convergence time. The hierarchical composition theorem (see [26])
implies overall stabilization, and the expected convergence time is the sum of the expected
convergence times of the components. O

8 Conclusion

Sensor networks differ in characteristics and in typical applications from other large scale
networks such as the Internet. Sensor networks of extreme scale (hundreds of thousands
to millions of nodes) have been imagined [14], motivating scalability concerns for such net-
works. The current generation of sensor networks emphasizes the sensing aspect of the

20

nodes, so services that aggregate data and report data have been emphasized. Future gener-
ations of sensor networks will have significant actuation capabilities. In the context of large
scale sensor/actuator networks, end-to-end services can be less important than regional
and local services. Therefore we emphasize local stabilization time rather than global stabi-
lization time in this paper, as the local stabilization time is likely to be more important for
scalability of TDMA than global stabilization time. Nonetheless, the question of global sta-
bilization time is neglected in previous sections. We speculate that global stabilization time
will be sublinear in the diameter of the network (which could be a different type of argu-
ment for scalability of our constructions, considering that end-to-end latency would be lin-
ear in the network diameter even after stabilization). Some justification for our speculation
is the following: if the expected local time for convergence is O(1) and underlying probabil-
ity assumptions are derived from Bernoulli (random name selection) and Poisson (wireless
CSMA /CA) distributions, then these distributions can be approximately bounded by ex-
ponential distributions with constant means. Exponential distributions define half-lives for
populations of convergent processes (given asymptotically large populations), which is to
say that within some constant time +, the expected population of processes that have not
converged is halved; it would follow that global convergence is O(lg n).

We close by mentioning two important open problems. Because sensor networks can be de-
ployed in an ad hoc manner, new sensor nodes can be dynamically thrown into a network,
and mobility is also possible, the TDMA algorithm we propose could have a serious disad-
vantage: introduction of just one new node could disrupt the TDMA schedules of a sizable
part of a network before the system stabilizes. Even if the stabilization time is expected to
be O(1), it may be that better algorithms could contain the effects of small topology changes
with less impact than our proposed construction. One can exploit normal notifications of
topology change as suggested in [5], for example.

In the protocols we considered, only the last protocol (that allocates time slots according to
the minimal distance two coloring) explicitly refers to a global time mechanism. So, another
interesting question is whether the assumption of globally synchronized clocks (often casu-
ally defended by citing GPS availability in literature of wireless networks) is really needed
for self-stabilizing TDMA construction; we have no proof at present that global synchro-
nization is necessary.

References

[1] D. Bertsekas and R. Gallager. Data Networks, Prentice-Hall, 1987.

[2] H. L. Bodlaender, T. Kloks, R. B. Tan, and]J. van Leeuwen. Approximations for \-
coloring of graphs. University of Utrecht, Department of Computer Science, Technical
Report 2000-25, 2000 (25 pages).

[3] C. Busch, M. Magdon-Ismail, F. Sivrikaya, and B. Yener. Contention-free MAC proto-
cols for wireless sensor networks. In Proceedings of 18th International Conference of Dis-

21

tributed Computing (DISC), Amsterdam, The Netherlands, October 4-7, 2004. Springer
Lecture Notes in Computer Science 3274, pp. 245-259.

[4] D. E. Culler,]J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo. A network-centric ap-
proach to embedded software for tiny devices. In Proceedings of Embedded Software, First
International Workshop EMSOFT 2001, Springer LNCS 2211, pp. 114-130, 2001.

[5] S. Dolev and T. Herman. Superstabilizing protocols for dynamic distributed systems.
Chicago Journal of Theoretical Computer Science, 3(4), 1997.

[6] M. Gairing, W. Goddard, S. T. Hedetniemi, P. Kristiansen, and A. A. McRae. Distance-
Two Information in Self-Stabilizing Algorithms. Parallel Processing Letters, 14(3), 387-
398, 2004

[7] S. Gandham, M. Dawande, and R. Prakash. Link scheduling in sensor networks: dis-
tributed edge coloring revisited. INFOCOM 2005 (to appear).

[8] S. Ghosh and M. H. Karaata. A self-stabilizing algorithm for coloring planar graphs.
Distributed Computing 7:55-59, 1993.

[9] M. Gradinariu and C. Johnen. Self-stabilizing neighborhood unique naming under un-
fair scheduler. In Euro-Par’01 Parallel Processing, Proceedings, Springer LNCS 2150, 2001,
pp- 458-465.

[10] M. Gradinariu and S. Tixeuil. Self-stabilizing vertex coloration of arbitrary graphs. In
4th International Conference On Principles Of DIstributed Systems, OPODIS 2000, 2000, pp.
55-70.

[11] M. Haenggi and X. Liu. Fundamental throughput limits in Rayleigh fading sensor net-
works. In submission, 2003.

[12] T. Herman. Models of self-stabilization and sensor networks. Fifth International Work-
shop on Distributed Computing (IWDC 2003), Springer Lecture Notes in Computer Sci-
ence LNCS 2918, December 2003, pp. 205-214.

[13] T. Herman and S. Tixeuil. A distributed tdma slot assignment algorithm for wireless
sensor networks. In Proceedings of the First Workshop on Algorithmic Aspects of Wireless
Sensor Networks (AlgoSensors’2004), number 3121 in Lecture Notes in Computer Science,
pages 45-58, Turku, Finland, July 2004. Springer-Verlag.

[14] J. Kahn, R. Katz, and K. Pister. Next century challenges: mobile networking for "smart
dust". In Proceedings of the Fifth Annual International Conference on Mobile Computing and
Networking (MOBICOM ’99), 1999.

[15] S. O. Krumke, M. V. Marathe, and S. S. Ravi. Models and approximation algorithms for
channel assignment in radio networks. Wireless Networks 7(6 2001):575-584.

22

[16] F. Kuhn and R. Wattenhofer. Constant-time distributed dominating set approximation.
In Proceedings of the Twenty-Second ACM Symposium on Principles of Distributed Comput-
ing, (PODC 2003), pp. 25-32, 2003.

[17] S.S. Kulkarni and U. Arumugam. Collision-free communication in sensor networks. In
Proceedings of Self-Stabilizing Systems, 6th International Symposium, Springer LNCS 2704,
2003, pp. 17-31.

[18] S.S.Kulkarni and U. Arumugam. Transformations for Write-All-With-Collision Model.
In Proceedings of the 7th International Conference on Principles of Distributed Systems
(OPODIS), Springer LNCS, 12/03. (Martinique, French West Indies, France).

[19] M. Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
Journal on Computing 15:1036-1053, 1986.

[20] M. Mizuno and M. Nesterenko. A transformation of self-stabilizing serial model pro-
grams for asynchronous parallel computing environments. Information Processing Let-
ters 66 (6 1998):285-290.

[21] S.Ramanathan. A unified framework and algorithm for channel assignment in wireless
networks. Wireless Networks 5(2 1999):81-94.

[22] S. Ramanathan and E. L. Lloyd. Scheduling algorithms for multi-hop radio networks.
IEEE/ACM Transactions on Networking, 1(2 1993):166-177.

[23] S.Shukla, D. Rosenkrantz, and S. Ravi. Developing self-stabilizing coloring algorithms
via systematic randomization. In Proceedings of the International Workshop on Parallel
Processing, pages 668-673, Bangalore, India, 1994. Tata-McGrawhill, New Delhi.

[24] S. Shukla, D. Rosenkrantz, and S. Ravi. Observations on self-stabilizing graph algo-
rithms for anonymous networks. In Proceedings of the Second Workshop on Self-stabilizing
Systems (WSS’95), pages 7.1-7.15, 1995.

[25] S. Sur and P. K. Srimani. A self-stabilizing algorithm for coloring bipartite graphs.
Information Sciences, 69:219-227, 1993.

[26] G. Tel. Introduction to Distributed Algorithms, Cambridge University Press, 1994.

[27] A. Woo and D. Culler. A transmission control scheme for media access in sensor net-
works. In Proceedings of the Seventh International Conference on Mobile Computing and Net-
working (Mobicom 2001), pp. 221-235, 2001.

[28] F. Zhao and L. Guibas (Editors). Proceedings of Information Processing in Sensor Networks,
Second International Workshop, IPSN 2003, Springer LNCS 2634. April, 2003.

23

A Model Emulation

The paper [18] is the first to consider various theoretical models commonly used in the lit-
erature of self-stabilization in the context of sensor network models. In fact, TDMA is one
technique proposed by [18], and one application of our mechanism is to provide a trans-
former that takes as input a traditional self-stabilizing algorithm (written for the shared
memory model with reliable atomic neighborhood communications) and gives as output a
self-stabilizing algorithm written for the wireless sensor network model with probabilisti-
cally unreliable communications for the same problem. The stabilization time would be the
same (up to a constant factor). This is to be compared with the alternative transformer by
Herman [12], that, although simpler, does not provide any bound of the cost of the induced
transformation.

Two possible implementations of this transformer with our algorithm are as follows. For
the distributed daemon (at each step, any subset of the activatable nodes is scheduled for
execution), we divide the TDMA schedule in two parts, the even parts and the odd ones.

—— ——
TDMA (even) overhead ~ TDMA (odd) overhead

The even parts of the TDMA are used to propagate shared variables between nodes. Since
our algorithms provide a collision-free mechanism, it is guaranteed that shared variables
are transmitted among neighboring nodes in one TDMA part. The odd parts of the TDMA
schedule are used to execute rules of the upper algorithm as if in the shared memory model.
Since shared variables are accurate at this point, the semantics of the original algorithm are
preserved, and the stabilization time is expanded to a constant factor of 2. Interestingly
enough, if nodes are able to execute the rules of the upper layer algorithm during the over-
head phase (as they require no communication), the stabilization time remains the same as
the original one.

For the locally central demon (at each step, a subset of non-neighboring nodes is scheduled
for execution), we divide the TDMA schedule in 2 x §? parts, and number TDMA parts
from 0 mod 2 x §2. The parts of the TDMA that are even mod 2 x ¢ are used to propagate
shared variables between nodes. The other parts of the TDMA schedule are used to execute
rules of the upper layer algorithm as if in the shared memory model. A node having color
c only executes at TDMA part 2 x ¢ + 1 mod 2 x §2. Since shared variables are accurate
each time a node executes its upper algorithm, the semantics of the original algorithm are
preserved. Since §2 is a constant, the stabilization time is expanded up to a constant factor.
Note that algorithms written in the shared memory model assuming the central demon (at
each step, a single activatable node is scheduled for execution) also perform correctly using
the locally central demon. Both transformers preserve the self-stabilizing properties of the
original algorithm, and its asymptotic stabilization time.

24

This scheme can be further refined if the algorithm to be transformed expects to be able
to read the shared variables of its neighborood up to distance k (whre k is some constant
greater than 1). For example, [6] shows that problems such as 2-packing can be solved in
a straighforward maneer if distance two information is available. We simply divide the
TDMA schedule in k£ + 1 parts. The first k parts are used to collect information k£ hops away,
and the k + 11 part is used to actually execute rules of the upper layer algorithm as if in a
distance £ shared memory model.

25

