Distributed Computing manuscript No.
(will be inserted by the editor)

Joffroy Beauquier - Sylvie Delaét - Shlomi Dolev - Sébastien Tixeuil

Transient Fault Detectors

Received: date / Accepted: date

Abstract We present fault detectors for transient faults, (i.e.
corruptions of the memory of the processors, but not of the
code of the processors). We distinguish fault detectors for
tasks (i.e. the problem to solve) from failure detectors for
implementations (i.e. the algorithm that solves the problem).

The aim of our fault detectors is to detect a memory cor-
ruption as soon as possible. We study the amount of mem-
ory needed by the fault detectors for some specific tasks,
and give bounds for each task. The amount of memory is
related to the size and the number of views that a processor
has to maintain to ensure a quick detection. This work may
give the implementation designer hints concerning the tech-
niques and resources that are required for implementing a
task.

Keywords Distributed Systems - Transient Faults - Fault
Detectors - Self-stabilization

1 Introduction

In a system that may experience transient faults it is impos-
sible for the processors to “know” that the system is cur-
rently in a consistent state: assume that every processor has
a boolean variable that is true whenever the processor knows
that the system is in a consistent state and is false otherwise.
The value of this variable may not reflect the situation of

An extended abstract of this paper was presented in the 12th Inter-
national Symposium on DIStributed Computing (DISC’98). Shlomi
Dolev is partly supported by the Israeli ministry of science and arts
grant #6756195. Part of this research was done while Shlomi Dolev
was visiting the Laboratoire de Recherche en Informatique (LRI),
Univ. Paris Sud.

Univ. Paris Sud, LRI-CNRS 8623, INRIA Grand Large, FR91405 Or-
say, France, E-mail: jb@Iri.fr - Univ. Paris Sud, LRI-CNRS 8623,
FR91405 Orsay, France, E-mail: delaet@lri.fr - Department of Math-
ematics and Computer Science, Ben-Gurion University, Beer-Sheva,
84105, Israel, E-mail: dolec@cs.bgu.ac.il - Univ. Paris Sud, LRI-
CNRS 8623, INRIA Grand Large, FR91405 Orsay, France, E-mail:
tixeuil @lri.fr

the system since it is subject to transient faults. This is the
reason why the processors in self-stabilizing systems must
continue the execution of the algorithm forever and never
know for sure that the system is stabilized.

In this paper we propose a tool for identifying the in-
consistency of a system, namely a transient fault detector.
Identification of a transient fault can be coupled with a self-
stabilizing reset procedure to obtain a self-stabilizing algo-
rithm from an existing non self-stabilizing algorithm (See
e.g., [9,11]). The requirement that every processor will know
whether the system is in a consistent state is relaxed, instead
we require that at least one processor identifies the occur-
rence of a fault when the system is in an inconsistent state.
Moreover, the transient fault detector is unreliable since it
can detect inconsistent state as a result of a transient fault
that corrupts the state of the fault detector itself. The only
guarantees we have is that when the system is not in a con-
sistent state a fault is detected, and when both the system and
the fault detector are in a consistent state no fault is detected.

Our focus in this paper is in the implementation of fault
detectors and not in the operations invoked as a result of de-
tecting a fault; we just mention two such possible operations,
namely: resetting (e.g., [4]) and repairing (e.g., [13,19,1]).

In this paper we present fault detectors that detect tran-
sient faults, i.e. corruption of the system state without cor-
rupting the program of the processors. We distinguish task
which is the problem to solve, from implementation which
is the algorithm that solves the problem. A task is specified
as a desired output of the distributed system. The mechanism
used to produce this output is not a concern of the task but
a concern of the implementation. We study transient fault
detectors for tasks and for implementations, separately. De-
signing fault detectors for tasks (and not for a specific imple-
mentation) gives the implementation designers the flexibility
of changing the implementation without modifying the fault
detector.

In addition we are able to classify both the distance lo-
cality and the history locality property of tasks. The distance
locality is related to the diameter of the system configuration

Beauquier, Delaét, Dolev, and Tixeuil

that a processor has to maintain in order to detect a transient
fault. The history locality is related to the number of consec-
utive system configurations that a processor has to maintain
in order to detect a transient fault.

Both the distance and the history locality of a task may
give the implementation designer hints concerning the tech-
niques and resources that are required for implementing the
task.

Then we turn to investigate fault detectors for a specific
implementation — specific algorithm. Obviously, one may
use a fault detector for the task of the algorithm without con-
sidering the data structures and techniques used by the algo-
rithm. However, we are able to show that in many cases the
amount of resources required is dramatically reduced when
we use fault detector for a specific implementation and not a
fault detector for the task.

Related work: The term “failure detector” was introduced
in a different context in [6], where an abstract failure detec-
tor is used for coping with asynchrony and solving consen-
sus. In the context of self-stabilizing systems checking the
consistency of a distributed system was used in [20] where
a snapshot of the system is repeatedly collected. Fault de-
tectors, called observers, that are initialized correctly and
are not subject to state corruption are used in [22]. Moni-
toring consistency locally for a restricted set of algorithms
has been suggested in e.g., [3,2,17,8,18,7]. A local moni-
toring scheme for every on-line and off-line algorithm has
been presented in [1]. The local monitoring technique of [1]
is a general technique that monitors the consistency of any
algorithm. The method of [1] uses pyramids of snapshots
and therefore the memory requirement of each processor is
related to the size of the system. In this work we present a
hierarchy of fault detectors for tasks and algorithms that is
based on the amount of information used by the fault de-
tector. It is interesting that different distributed rasks require
different amounts of memory for detecting transient faults.
We note that a transient fault detector that is designed for a
particular algorithm may use the variables of the algorithm
for fault detection.

The rest of the paper is organized as follows: The system
is described in Section 2, fault detectors for asynchronous
silent tasks are considered in Section 3 and for synchronous
non silent tasks in Section 4, respectively. Fault detectors
for implementation (algorithms) are presented in Section 5.
Implementation details of transient fault detectors appear in
Section 6 and concluding remarks are presented in Section
7.

2 The System

Distributed system Our system settings are similar to the
one presented in [14]. We consider an asynchronous system
of n processors, each processor resides on a distinct node of
the system’s communication graph G(V,E), where V is the

set of vertices and E is the set of edges. Two processors that
are connected by an edge of G are neighbors. Communica-
tion among neighboring processors is carried out by com-
munication registers. In the sequel we use the term registers
for communication registers. An edge (i, j) of G stands for
two registers r; ; and r;;. P; (P;) can write in r;; (r;,;, re-
spectively) and both processors can read both registers. The
registers in which a processor P, writes are the registers of
P.

Let u and v be two nodes of the communication graph,
Dist(u,v) denotes the number of edges on a shortest path
from u to v (if such a path exists). Let MaxDist(u) be the
maximal value of Dist(u,v) over all nodes v in the system.
A node u is a center of G if there is no node v such that
MaxDist(u) > MaxDist(v). The radius, r, of G is the value
of MaxDist(u) for a center node u of G. The diameter, D,
of G is the maximal value of MaxDist(v) over all nodes v in
the system. Let i be an integer, Ball(u,i) denotes the set B of
nodes b € B such that Dist(u,b) < i.

Configurations and runs Each processor is a finite state ma-
chine whose program is composed of steps. Processors have
unique identifiers. The state of a processor consists of the
values of its internal variables and its communication reg-
isters i.e., the registers to which it writes. Let S; be the set
of states of the processor P;. A configuration, ¢ € (S X Sz X
---S,) is a vector of the states of all the processors.

An asynchronous run of the system is a finite or infinite
sequence of configurations R = (cy,¢z,--+) such that ¢;y is
reached from c; by a step of one processor. In such a step, a
processor may execute internal computations followed by a
read or write operation. This scheduling policy is known as
the read-write atomicity model. We use the cycle complexity
(See [15,13,10]) to measure time in asynchronous system.
The first cycle of a run is the minimal prefix of the run in
which each processor reads the registers of all its neighbors
and writes to its registers. The second cycle is the first cycle
of the rest of the run, and so on. In an asynchronous run,
time i relates to the i™ cycle.

A synchronous run of the system is a finite or infinite
sequence of configurations R = (cy, ¢z,) such that ¢;y is
reached from c¢; by the following steps of the processors:
first every processor reads the register of its neighbors, once
every processor finishes reading the processors change state
and write into their registers. In a synchronous run, time i
relates to the i configuration.

Specifications and fault detectors An abstract run is a run
in which only the values of a subset of the state variables,
called the output variables are shown in each configuration.
The specification P of a task T for a given system . is a
(possibly infinite) set of abstract runs of .. For example,
the mutual exclusion task is defined by a set of abstract runs,

Transient Fault Detectors

such that in each run in this set at most one processor exe-
cutes the critical section at a time and every processor exe-
cutes the critical section infinitely often — it is assumed that
an output boolean variable that indicates whether the proces-
sor is executing the critical section exists.

< is self-stabilizing (in fact pseudo self-stabilizing [5])
with relation to P if and only if each of its runs has a suffix
in P.

The goal of a transient fault detector is to check if a
particular run of the system .%” matches the specification P.
More precisely, a fault detector is assimilated to a boolean
variable that obtains the value true if and only if the spec-
ification is satisfied. Our fault detectors use the concept of
views and histories, that are defined for a specification P.

Definition 1 (View) The view ”//id at distance d from a pro-
cessor P; contains: (i) the subgraph of the system communi-
cation graph G containing the nodes in Ball(i,d), and (ii) the
set of output variables that are associated with those nodes
for a specification P.

Definition 2 (History) The history %[1...s] at distance d
from a processor P; is a sequence of s consecutive views at
distance d from P,.

The history element #;%[j], for a given index j, is the
view at distance d from P; at time j. View 7,4[1] is associated
to present time, while view #;%[s] is associated to s — 1 time
units in the past.

The fault detectors that we consider in this paper are dis-
tributed in the sense that they can be invoked by each of the
system processors and give a different response to each of
them. However, we assume that the response of a fault de-
tector to a processor is uniquely determined by the history of
the invoking processor. More precisely, the response of the
oracle is true if and only if a predicate on the history of the
calling process (induced by the specification of the task) is
also true.

Definition 3 (Fault detector at a processor) The fault de-
tector .Z &3 (P;) at processor P; is an oracle that can be in-
voked by P; and whose binary response is uniquely deter-
mined by the local history #[1...s] of P,.

The result of .# 23 (P;) can be used in any configuration
c; of a system run. The result of the oracle .# 23 (P;) in con-
figuration ¢; is denoted by .% 2} (P, c;).

Definition 4 (Fault detector in a configuration) The dis-
tributed result .7 27 (P;,c;) of a fault detector in a config-
uration c; is the conjunction of the .7 Z3(F;,c;) results for
each processor P, in the system.

Intuitively, if in a given system configuration, the task
specification is satisfied, then every oracle invocation at ev-
ery processor must return frue. In the case of a system con-
figuration where the task specification is not satisfied, at least
one of the fault detectors at a processor must return false to
the invoking processor.

Task classification A task is (d,s)—local if and only if there
exists a fault detector that uses s consecutive views at dis-
tance d and is correct for this task, while there exist no cor-
rect fault detector for this task that use at most s — 1 consecu-
tive views or views at distance at most d — 1. More formally,
the following conditions are verified:

1. For each configuration ¢ of any system .’ and for all 1 <
i <n % Z5(P,c) returns true if ¢ is correct (i.e. matches
the task specification), and there exists anindex 1 <i<n
such that .# 23 (P, ¢) returns false if ¢ is incorrect (i.e.
does not match its specification).

2. For any fault detector in .# Z5_,(P;,c), there exists a
configuration ¢ of a particular system . that is correct
(i.e. matches the task specification) and index k such
that .Z 29_ (P, c) returns false or there exists an in-
correct configuration ¢’ in which for every 1 <k <n
F DY (By,c) returns true.

3. For any fault detector in .# @Z*I(Pi,c), there exists a
configuration ¢ of a particular system . that is correct
(i.e. matches the task specification) and index k such
that .7 2% (P, c) returns false or there exists an in-
correct configuration ¢’ in which for every 1 <k <n
F 2% (P,) returns true.

Locality criteria It turned out that the fault detection capa-
bilities of a fault detector is related to the amount of informa-
tion it stores. We distinguish two parameters that are related
to the storage used by a fault detector:

— Distance — the distance d of #[l..s], where d is be-
tween O and r+ 1, and r is the radius of the system.
— History — the number s of views in %,%[1..s].

The two locality criteria that we consider for tasks refer
to the ease that transient faults will be trigerred. The smaller
the distance or time locality, the less information oracles use
to give a correct response.

Roughly speaking, if the result of the oracle at a pro-
cessor P; uses a history where only P,’s output variables are
present, the predicate that is evaluated by the oracle is pure
local: it is independent from the neighborhood of F;. In the
particular case when the distance d of the history of each
P; equals 1, the oracle’s predicate is local. If d = r+ 1, the
predicate is global.

Beauquier, Delaét, Dolev, and Tixeuil

3 Fault Detectors for Silent Tasks

In this section we study fault detectors for silent tasks ([12])
where the output variables remain fixed from some point of
the run. Since silent tasks are O—history local, in the fol-
lowing, we assume that the locality property only refers to
distance locality. Therefore, we use #;¢ instead of ¥/4[1] to

denote the history of P, and .% % instead of . 2 ‘11.

We now list several silent tasks, present their specifi-
cation, and identify the minimal distance required for their
fault detectors.

3.1 Leader Election, Center Determination and Number of
Nodes

In this section we present a class of tasks that requires that at
least one processor has a view of the entire system. In Sec-
tion 2, we assumed that the “//I.d views contain the commu-
nication graph description up to distance d from P,. There
are two possible basic assumptions about the communica-
tion graph information that is stored in the 7, views:

Assumption 1 (Links included) The edge identifiers of the
network are stored in the “//id views. In other words ”//l-d con-
tains the information about the identity of the processors in
distance d + 1 that are connected to each processor in dis-
tance d from P,.

Assumption 2 (Links not included) The edge identifiers of
the network are not stored in the ¥ views. In other words
”Vid does not contain the information about the identity of
the processors in distance d + 1.

Let us see how these assumptions influence the informa-
tion that can be deduced from the view of a processor (not
knowing the actual radius of the communication graph):

1. If Assumption 1 holds, then the view ¥;” (where r is the
radius of the communication graph of the system) of a
node of the communication graph is sufficient to con-
clude that P, is (or not) a center. Indeed, if each edge in
¥;" is connected to exactly two nodes, then P, is a center,
otherwise, it is not.

2. If Assumption 2 holds, then the view ;" is insufficient
to conclude that P; is (or not) a center, because it is im-
possible to distinguish the following two cases:

(a) the radius of the network is r and ;" contains a com-
plete knowledge of the network,

(b) the radius of the network is 4 1 and ;" misses in-
formation about at least one node.

Note that if the view of P; is ”f/i’“, where r is the radius

of the system, it is possible to conclude that P, is a center

by checking whether there are processors in distance r+

1 from itself.

Now we are ready to consider the first task which is the
leader election task.

Leader election, task specification Each processor P; main-
tains a local output boolean variable .%; that is set to true if
the node is elected and false otherwise. There is exactly one
node P, with local variable . set to true.

Lemma 1 If Assumption 1 holds, the leader election task is
r distance local.

Proof We first present an impossibility result for the exis-
tence of a fault detector for this task in .#2,_; and then
present a fault detector in the set of .% 2, for the task.

Let us consider a system .# such that its communication
graph G = (V,E) verifies: 3x € V, dy € V, Dist(x,y) = 2r —
1, where r is the radius of G. For example, a chain graph
of 2r nodes verifies this property. Then, for any node v in
this graph, either (i) Ball(v,r — 1) contains x but not y, or (ii)
Ball(v,r — 1) does not contain x. Indeed, it is impossible that
Ball(v,r — 1) contains both x and y, since Dist(x,y) = 2r —
1 by hypothesis, which is incompatible with the following

Dist(x,y) < Dist(x,u)+ Dist(y,u)
derivation: s r=ler=d
) < 2r-2
< 2r—1

Let us consider the following three configurations:

¢ in which x is elected and all other nodes are not,

¢2 in which y is elected and all other nodes are not, and
c3 in which no node is elected.

Suppose there exists a .# %, for the leader election
task. The result of .% 2,_1 in ¢ and ¢, must be true at ev-
ery node, since the configuration satisfies the leader election
specification; on the other hand, in c3, at least one failure
detector at a node node must respond false.

We now consider every node v in c3. If Ball(v,r — 1)
contains x but not y (case (i)), then “I/V”1 is the same in
configurations ¢| and c3, thus .% 2" (v,c3) returns true. If
Ball(v,r — 1) does not contain x (case (i), then %! is the
same in configurations ¢; and c3, thus .# 95_1 (v,c3) returns
true. Hence, .# 9,_ responds frue in c¢3 in which there is
no leader.

This completes the proof that the leader election task is
not r — 1 distance local.

We now present a fault detector in the set . &, for the
leader election task. By the definition of r—distance local,
every view ¥#;" of processor P; contains the part of configu-
ration including P, and its neighbors at distance r. According
to Assumption 1, .# Z2,(P;) can check whether it knows the
entire system, that is whether or not P, is a center of the com-
munication graph. If P, is not a center, % 2,(P;) returns true
(does not detect a fault). If P, is a center, F Z,(P;) checks
in its r—view whether there is exactly one processor P, with
2 =true. F 9,(PB;) detects a fault if and only if the above
condition is false.

Transient Fault Detectors

Next we present a similar proof for the case in which
the view does not include the identity of the processors to
which a link is connected, unless the link belongs to a path
of length d — 1 from a processor. Namely, using Assumption
2.

Lemma 2 [f Assumption 2 holds, the leader election task is
(r+ 1)—distance local.

Proof We first present an impossibility result for the ex-
istence of a fault detector for this task in .% %, and then
present a fault detector in the set of % &, for the task. By
the definition of r—distance local, every view ¥#;" of proces-
sor P; contains the portion of the configuration that includes
P, and its neighbors at distance r.

Consider the system .#] of radius r with (4r — 2) pro-
cessors represented in Figure 1. Consider a configuration of
this system in which all variables .%; are set to false. At least
one fault detector at a processor must detect a fault, it is easy
to see that, because all other processors have a partial view
of the system, only .# Z,(A) and .% 2,(B) can possibly do
that.

Now consider a second system .7, of 4r processors (with
the same radius value r), represented in Figure 1. In .75, all
variables .%; are set to false, but the variable of C, which is
set to true (so that a unique leader is elected). In both sys-
tems, the views at distance r of B are identical. Thus, in both
systems, .# 2,(B) must decide the same. Because in sys-
tem .%5, % 9,(B) does not detect a fault, it does not detect
a fault either in .¥]. By considering a dual system, one can
conclude that, in .}, % 2,(A) cannot detect a fault as well.

The contradiction is complete since, in %, no proces-
sors detect a fault. Hence, there exists no fault detector in
F 9, for the leader election task.

We now present a fault detector in the set .# &, for the
leader election task. By the definition of (r+ 1)—distance
local every view “//l-’*l of processor P, contains the part of
configuration including P; and its neighbors at distance (r +
1). Thus % P,11(P;) can check whether it knows the en-
tire system, that is whether or not P; is a center. If P, is not
a center, .# %,.1(P;) never detects a fault. If P, is a cen-
ter, # Z,41(P) checks in its (r+ 1)—view whether there
is exactly one processor F; with its variable .%] set to true.
F Dyrs1(P;) detects a fault if and only if the above condition
is false.

Observation 1 For every task whose specification is a pred-
icate on the global system configuration, there is a fault de-
tector in F Do\ (resp. F D,) for this task if Assumption 2
(resp. Assumption 1) holds. Namely, the fault detector that
uses the centers to check whether the global predicate is true
in their (r+ 1)—views (resp. r—views) while the other pro-
cessors return true.

In the rest of the paper, we will assume that Assumption
2 holds.

Next, we consider the center determination task.

Center determination, task specification Each processor P;
maintains a local output boolean variable .#; which is true if
and only if the processor is a center of the system.

Lemma 3 The center determination task is r—distance lo-
cal.

Proof The proof that there is no fault detector in % Z,_; for
the center determination task is by presenting two systems
A and ¥ depicted in Figure 2. The configuration that we
consider for both systems is that where only the .# variable
of Cis true.

System .7 is in a correct configuration, where centers
are correctly identified, so each transient fault detector re-
sponds true in this configuration. System .73 is in an incor-
rect configuration, because E is incorrectly identified as a
non-center.

Now every view of every node in the N branch is the
same in systems .#] and .%%, so each transient fault detec-
tor at these nodes responds ¢rue. Then every node in the W
branch in ., has the same view as its counterpart node in
the N branch, so each transient fault detector at these nodes
responds true. Finally every node in the E branch in .%5 has
the same view in systems .#] and .%%, so each transient fault
detector at these nodes responds true. Consequently, no fault
is detected in .%.

Now we construct a fault detector in .% 2, for the center
determination task as follows:

1. if .Z; = true (P; claims it is a center) then the fault detec-
tor at P; responds false iff:
(a) 7;" contains a processor P; that is a center in #;" and
such that .%; = false,
(b) ¥;" contains a processor P; that is not a center in 7"
and such that .%; = true.
2. if .Z; = false (P; claims it is not a center) then the fault
detector at P; responds false iff:
(a) ¥/ contains only processors Py such that .7 = false,
(b) ¥;" contains two processors P; and P, such that .#; =
true and Dist(j, k) > r+1in 7.

If the system is correct, any center P; has its .%; variable
set to true and any non-center P; has its .#; variable set to
false. Then none of the centers can detect an inconsistency
in its view (that covers the whole network). Any non cen-
ter is at distance at most r from a center (by definition of a
center) in any view, so no fault detector returns false.

If the system is not correct, this means that one of the
following two cases occurred: there exists a non center P;
such that .# i = true, or there exists a center P such that
. = false. This leads to three kinds of configurations:

1. There exists a center Py such that .%; = true: then P, can
detect a fault because its view includes the whole net-
work.

Beauquier, Delaét, Dolev, and Tixeuil

<. A and B are centers

Fig. 1 Leader Election

A1: C is a center

OO
OO

Fig. 2 Center Determination

2. There exists no node P; such that .%; = true, then all fault
detectors respond false.

3. For any center P, ., = false, and there exists a non
center P; such that .%; = true. Then P has the whole
network in its view. By definition of a non center, there
exists a processor P; in the network such that Dist(j,i) >
r+ 1. So P, has in its view two nodes at distance more
than r and one of them claims it is a center, thus it detects
a fault.

It may be surprising that the center determination prob-
lem is r-local while the leader election problem is (r+ 1)-
local under the same hypothesis, while the transient fault de-
tector that we presented for leader election checks if the in-
voking processor is a center of the graph to build its decision.

The reason is the following: to check if the leader elec-
tion problem is solved using only leader election output vari-
ables, a view at distance r 4 1 is needed; to check if the
leader election problem is solved using both the leader elec-
tion and center output variables, a view at distance r is suffi-
cient. However, the resulting failure detector is not a failure
detector for the leader election task, but a failure detector for
the center determination and leader election task.

Number of Nodes Each processor P, maintains a variable
Number; containing the number of nodes in the system.

Lemma 4 The number of nodes task is (r+ 1)—distance lo-
cal.

Proof According to Observation 1, it suffices to prove that
there is no fault detector in .% 2, for the number of nodes

% B is not a center

S:Cand E are centers

task. Suppose the contrary holds and consider the system .7
of (4r —2) processors and radius r, placed in a configuration
in which each processor P, has its variable Number; set to
4r, which is the number of processors in the system .7, see
Figure 1 on page 6. Each processor P; different from A and
B (not being a center) has less than (4r —4) processors in its
view at distance r.

Fig. 3 Number of Nodes

It is easy to build a system .7 (i) with 4r processors for
each such P, with a processor having the same r—view as P,
for any system configuration. For example, see Figure 3 for
nodes at the left of A in .%/}. Thus .% Z,(P;) cannot detect a
fault. Hence only .# 2,(A) and .% 2,(B) (the centers) can
possibly detect a fault in system .#|. But A has the same
view at distance r in . and .%;. Thus % 2,(A) does not
detect a fault neither in .¥] nor in .%. For similar reasons,
F 9,(B) does not detect a fault either, a contradiction.

Transient Fault Detectors

3.2 Rooted Tree, Hamiltonian Circuit, Eulerian Circuit and
x—Tree Partition

In this subsection we first present the rooted tree construc-
tion task that is [n/4]—distance local.

Rooted tree construction, task specification Each processor
P; maintains a variable &; with a pointer to one of its neigh-
bors, chosen to be its parent in the tree. A single processor
in the system, P, which we call the root, has a hardwired nil
value in Z2,, while the value of the variables of the other
processors define a tree rooted at P,.

Lemma 5 The rooted tree construction task is | § | —distance
local.

Proof The proof is by presenting a fault detector in the set
of 9 1 and proving impossibility result for the existence
of a fault detector for this task that is in # & ra1-1. The fault
detector in every non-root processor will check whether a
cycle exists or there is an evidence that the tree that is con-
nected to the root does not include some processor. The fault
detector of the root will check whether the subtree connected
to it does not include some processor. Obviously, no fault is
detected when the system encodes a tree rooted at P,. If a
processor P; which is not the root has no parent, this is de-
tected immediately using ¥; ! Then only the case in which
a partial tree is rooted at the root and where the other nodes
belong to a cycle has to be considered.

A fault detector that uses views of radius [| can detect
cycles that are up to 2 x [4] nodes long. Consequently, a cy-
cle with 2 x [7]+ 1 processors cannot be detected. Consider
a graph that has such a cycle and a subtree rooted at the root
node. This subtree contains at most n — 2 X fﬂ — 1 nodes,
so its diameter is at most n —2 x [] —2. Let B be the set
of nodes that are in the subtree connected to the root or are
direct neighbors of a node in this subtree. The diameter of
the part of the communication graph that connects the nodes
in B (the graph in which only the edges connecting nodes of

B appear) is at most n —2 x []. If a center P. of the B set

n—2x[14

has a view at distance [#L it can view all nodes in B.

Since f%} < 41, all the nodes of B are included in

the view of P..

Now, if all nodes that are direct neighbors of a proces-
sor in the subtree (but do not belong to the subtree) have
not chosen their parent among the subtree nodes, then the
transient fault detector at the center processor can detect a
fault appropriately, since it detected processors that are not
connected to the root.

To prove that the task is not ([§] — 1) —local we con-
sider a system configuration ¢ in which a chain of [n/2]
processors are connected to the root and the rest of the pro-
cessors form a cycle. In such a configuration, at least one

transient fault detector at a processor must detect a fault,
we prove that every such possible detector will also detect
a fault in a configuration that encodes a tree.

Assume that the communication graph of the system in
which a cycle exists includes in addition to the above chain
and cycle a (non-tree) edge between a processor in the chain
and a processor in the cycle (thus it is possible to have a tree
spanning the graph).

Assume that a fault detector .7 Z,4(P;) at processor P; in
the cycle identifies a faultin ¢ (i.e. % 2,4(P;, c) returns false).
Then there exists at least one processor P; in the cycle that
is not included in #; (where d = ([#] — 1)). There exists a
configuration ¢/, that includes an additional edge from P; to
the root, P; may have chosen this edge to be a tree edge and
therefore no cycle exists in ¢/, but P; will still have the same
view 7 in ¢ and therefore .7 2,4(P;) will detect a fault in
' (i.e. F9D4(P;,c) returns false).

If the fault detector that indicates a fault is at a proces-
sor P, on the chain that is connected to the root, then there
is at least one processor, P;, on the chain and one processor
P, on the cycle that are not included in #;¢. Thus, ¥ 2,(P,)
will indicate a fault when the system is in another configu-
ration, one in which there are no cycles since P; and P, are
connected by an edge and P; chooses F; as its parent.

Hamiltonian circuit construction (in a Hamiltonian system)
Each processor P, has distinguished one incoming (in(7)) and
one outgoing (out(i)) edge, that globally induce a Hamilto-
nian circuit.

Lemma 6 The Hamiltonian circuit construction task is [n/4]
— distance local (n is the number of nodes).

Proof Note first that a fault detector at a processor that does
not have distinguished exactly one incoming and one outgo-
ing edge can detect a fault. If the structure globally induced
by the variables in(i) and out (i) is not a Hamiltonian circuit,
it has necessarily several circuits covering the system (each
processor is in one circuit). But one of the circuits has no
more than n/2 processors and each processor in this circuit
has the entire circuit in its view at distance [n/4]. Thus a
fault can be detected by any fault detector at these proces-
sors.

Now, for proving that the task has no fault detector in
F D (n/4)-1, consider the two systems .1 and ., presented
in Figure 4.

In both .#] and .#%, processor A has the same ¥ [n/4]-1
thus 7 Py, /41-1(A) cannot detect a fault in ;. Since the
system is symmetric, no fault detector can detect a fault in
%, where no Hamiltonian circuit is built.

Beauquier, Delaét, Dolev, and Tixeuil

anzi ; i ; i ; i jnmz

.1 Incorrect System

Fig. 4 Hamiltonian Circuit

Eulerian circuit construction (in an Eulerian system) Each
processor P, has §;/2 variables (6; being the degree of node
i in which P; resides). Each variable /; contains a pair of
indices of edges attached to P, such that these edges appear
one immediately after the other in the Eulerian circuit.

Lemma 7 The Eulerian circuit construction task is [n/4)
— distance local (n is the number of nodes).

Proof Note first that a fault detector at a processor P; having
an edge appearing in two different /; can detect a fault.

Then to prove that there is exactly one circuit, we follow
the same proof as in the Hamiltonian circuit construction
proof, considering the two systems in Figures 5 and 6.

(A o@

D
n/4]1-1

-/

%

Fig. 5 No Eulerian Circuit

Processors A and B have the same ¥/ in both sys-
tems, thus neither of their fault detectors can detect a fault in

O L. O
&
o U O

N

Fig. 6 Eulerian Circuit

% Correct System

Since the system is symmetric, no transient fault detec-
tor can detect a fault in the first system, where no Eulerian
circuit is built.

Next we show that there is a class of tasks that require
fault detector of radius i (where i is not related to n) for every
integer i.

x—Tree partition, task specification Each processor P; main-
tains a boolean variable %;; for every of its attached links
(i,). For any two neighbor nodes i and j, %;; = %j;. The
edges with %8;; = true are called the border edges. If the
border edges are which are disconnected then the Tree is par-
titioned into connected components of diameter of no more
than x, where x is a positive integer smaller than n (See [16]).

Lemma 8 The x—Tree partition is | 5| -distance local.

Proof The proof is by proving there exists no fault detec-
tor for the x-Tree partition task in the % @L% |—1 set and by

showing the existence of a fault detector in the # 2 |3 set.

The impossibility result is by considering the two sys-
tems .¥] (which is correct) and .%5 (which is incorrect) pre-
sented in Figure 7 and by showing that if a fault detector
responds frue in the first system, it also responds true in
the second system. In the two systems, thicker edges denote
borders.

We consider p = | 5] (so that x = 2 x p if x is even and
x=2x p+1ifxisodd). Suppose that in .7}, the processor
C has a view at distance p — 1. Then .# Z,_;(C) does not
see processors P> and Ps. Since the first system is correct, no
transient fault detector detects a fault. Now in .%%, processors
C1, C; and C3 have the same view as processor C in .%]. All
other nodes in .%5 have the same view as in .}, so neither
of the fault detectors at these processors can detect a fault.
As a result, no detector detects a fault in .%.

Now we construct a transient fault detector for the x—Tree
partition task that is in % & |3 at processor P,. This fault de-
tector responds frue except in the following two cases:

1. % contains j and k such that B # %x;.

2. “//ip contains x nodes i1, iy, ..., iy such that for any j in
[1..x], B i.., = false.

Jij+1

Transient Fault Detectors

1 1
. <P2> [c P

71 Correct System

(=
Fig. 7 x-Tree partition

If the configuration is correct, then for any two nodes j
and k, we have % = %y, so rule 1 does not apply. Also,
since any chain such that any process F; in the chain has one
of its ;. set to false is of length less than the diameter of a
connected component, it is also less than x, thus rule 2 does
not apply either. As a consequence, in a correct configura-
tion, the fault detector responds true.

If the configuration is not correct, it means that either two
neighboring nodes j and k do not agree on a common border
edge, or that there exists a connected component of diameter
strictly greater that x. The first case is trivially solved by rule
1. The second case can be rewritten as there exists a chain of
x+ 1 processors P, ,P,.,....P; ,, such that for any j in [1..x],
%’i_,-ij .1 = false. By definition, a center node c of this chain
has in its view 7/ all processors By, P, ... P and by rule
2, .F Pp(c) can detect a fault.

3.3 Maximum Independent Set, Coloring and Topology
Update

Maximum independent set, task specification Each proces-
sor P, maintains a local boolean variable .#.7;. No two neigh-
bors may have their variable set to frue. In addition every
processor P, with .#.%; = false has at least one neighbor P;
with /.7 ; = true.

Lemma 9 The maximum independent set task is 1 —distance
local.

Proof The proof is by presenting a fault detector in the set
of .# 2, and proving impossibility result for the existence
of a fault detector for this task in .# 9.

By the definition of 1—distance local .# & (P;) can ver-
ify that: if .#.%; = true, then Vj € Neighbors;, 9.7 ; #
S S, and if I = false, then 3j € Neighbors;, I ./ #
&% ;. The fault detector at P; will indicate the occurrence of
a fault in case any of the above properties doesn’t hold. The
above test ensures that the value of all the .#.% variables
constructs a maximum independent set.

By the definition of 0—distance local, no fault is detected
in a configuration in which the .#.; variable of every pro-
cessor P, holds true.

A similar proof holds for the coloring task that we now
present.

#: Incorrect System

Coloring, task specification Each processor P, maintains a
variable %; representing its color. In addition for every two
neighboring processors P; and P; it holds that 6; # €.

Lemma 10 The coloring task is 1—distance local.

Proof The proof is by presenting a fault detector in the set of
F 2 and proving the impossibility result for the existence
of a fault detector for this task in .# 9.

By the definition of 1—distance local, .# 2, (F;) can ver-
ify that:

Vj € Neighbors;, ¢; # €},

The fault detector at P; notices the occurrence of a fault in
case the above property doesn’t hold.

By the definition of 0—distance local, no fault is detected
in a configuration in which the %; variable of every processor
P: holds the same value €.

Topology update, task specification Each processor P, main-
tains a local variable .7, containing the representation of the
communication graph, say by using neighboring matrix or
the list of the communication graph edges.

Lemma 11 The topology update task is 1 —distance local.

Proof The proof is by presenting a fault detector in the set
of .# 2, and proving the (obvious) impossibility result for
the existence of a fault detector for this task in .% 9.

By the definition of 1—distance local, .# 2, (F;) can ver-
ify that .7; = .7 for every neighboring processor P;. The
fault detector at P; notices the occurrence of a fault in case
there exists a neighbor for which the above equality does not
hold. The above test ensures that the value of all the .7 vari-
ables is the same. In addition the fault detector at P, checks
whether the local topology of P; (that is included in 7] 1) ap-
pears correctly in ;. This test ensures that the (common
identical) value of .7 is correct, since every processor iden-
tified its local topology in 7.

By the definition of 0—distance local, no fault is detected
in a configuration in which the .7; variable of every proces-
sor P; holds the local topology of P, i.e. P; and its neighbors
without the rest (non empty portion) of the system.

10

Beauquier, Delaét, Dolev, and Tixeuil

4 Fault Detectors for Non-silent Tasks

In this section we consider the set of non-silent tasks. Unlike
the previous section that consider fault detectors for asyn-
chronous (as well as synchronous) systems, in this section
we consider fault detectors for synchronous systems. We
present tasks that are s—history local, with s > 1. Here, s
defines the size of the history #;%[1..5] of each processor P;.
The system is synchronous and each view in 7/4[1..s] is re-
lated to a different time. This array is thereafter referred as
the local history of processor P;. Each “//id is a view on every
component of the system up to distance d from P,.

We now list several non-silent tasks, present their spec-
ification, and identify the minimal history required for their
fault detectors. We start with a trivial bounded privilege task.

4.1 Bounded Privilege

Bounded privilege, task specification Each processor P; main-
tains a local boolean variable &riv;. For each processor P,
Priv; is set to true exactly once (another variant is at least
once) in every ¢ synchronous steps (¢ > 2).

Lemma 12 The bounded privilege task is O—distance local,
c—history local.

Proof A local history of ¢ — 1 views such that in each view
the output variable Zriv; is false does not give an indication
on task violation. On the other hand it is clear that a local
history of ¢ views is sufficient for fault detection.

4.2 Bounded Privilege Dining Philosophers

Bounded privilege dining philosophers, task specification
Each processor P; maintains a local boolean variable Zriv;.
For each processor P, Zriv; is set to true at least once in
every ¢ synchronous steps (¢ > 2). In addition for every two
neighboring processors P, and P; if Zriv; = true then

Privj = false

Lemma 13 The bounded privilege dining philosophers task
is 1—distance local, c—history local.

Proof First we prove that there exists no 0O-distance local
fault detector for the bounded privilege dining philosophers
task.

If there existed such a fault detector, it could not possibly
detect that two neighbors P; and P; have Priv; = Priv; =
true simultaneously.

Then we prove that there exists no (¢ — 1)-history local
fault detector for the bounded privilege dining philosophers
task.

If ¢ =2, a (¢ — 1)-history local fault detector would use
only the current view to detect a fault. Then consider two
possible runs e and e; of a system consisting in two proces-
sors P; and P», as depicted in Figure 8. In run e;, &riv| and
Privy are alternatively set to true every two time units, so
this run is correct. Obviously, run e; is incorrect since Zriv,
is never set to true. Now the 1-history in any configuration
C, of e, is the same as the 1-history in configuration C,, of
e1. Since the fault detector must respond ¢rue in any config-
uration of ey, it must respond ¢rue in any configuration of ey,
which is an incorrect run, thus this fault detector is unable to
detect a fault.

If ¢ > 3, then consider a system containing two proces-
sors P; and P> and consider 2 runs of this system as de-
picted in Figure 9. Runs e; and e; consist in a repeated pat-
tern of size c. In runs e; and e;, processors P; and P, have
their Priv variable set to frue every c configurations. In ad-
dition, in each configuration of these runs, we never have
Privy = Privy = true. Consequently, runs e¢; and e, are
correct, so the fault detectors at P; and P> respond frue in
any of the configurations of these runs. Now consider run ey
of the same system as depicted in Figure 10. Run e consists
in a repeated pattern of size 2 X ¢. In this pattern, the first ¢
configurations are the same as in e, while the next ¢ config-
urations are the same as in e;. Inrun ey, Privy is set to true
every ¢ configurations, but &riv; is alternatively set to true
every ¢ + 1 configurations, and every ¢ — 1 configurations,
SO run ey is incorrect.

In configurations Cj to C,y1 of run ey, the (¢ — 1)-history
of both P; and P, is the same as in configuration C; to Ce4 1
of run e, so both fault detectors respond #rue in these con-
figurations of e;. In configurations C; to Cax41 of run ey,
the (¢ — 1)-history of both P, and P, is the same as in con-
figuration C.15 to Crx 11 Of 1run e3, so both fault detectors
respond frue in these configurations of ey.

Using the same reasoning, the (¢ — 1)-histories of P; and
P, in configurations C(;_1)xc12 t0 Cixc+1 Of run ey are the
same as those in run e; if k is odd and those in run e; if k is
even. Since the histories in run e could be those of correct
runs, no fault is detected in any configuration of ey, which is
an incorrect run.

On the other hand it is clear that a local history of ¢ views
is sufficient for detection of the first predicate of the task
specification. In addition to ensure that no two processors are
privileged simultaneously a view of diameter 1 is sufficient.

4.3 Deterministic Non-interactive Tasks

In a synchronous run (assuming a synchronous scheduler
that activates all enabled processors at each synchronous

Transient Fault Detectors

11

FiF

e is a correct run

Fig. 8 P; and P, should be privileged every 2 configurations

¢ configurations

FEIES

c-2 configurations

5068 55088 &

c-3 configurations

Fig. 9 Runs ¢; and e; are correct runs

c configurations

SRS

c-2 configurations

c configurations

Fig. 10 Run ey is incorrect

step) of a non-randomized, non-interactive, bounded space
algorithm some configurations must be reached more than
once, and thus the system must repeat its actions infinitely
often, in every infinite run. Therefore, there is a bounded
repetition pattern that can be identified, where the actions of
the processors are repeated.

Each processor can have a local history that includes all
the views of the repetition pattern in the order they should be
repeated. The processor repeatedly send to their neighbors
their local history and detect inconsistency if two views that
are related to the same time do not agree, or the current value
of the output variables are not correct. The distance of the
views is a function of the task. Note that in fact, when the
distance of views is equal to the diameter of the system, the
above fault detectors may serve as an implementation of the
task.

$3:

e, 18 an incorrect run

c configurations

c configurations

4.4 Fair Privilege

Fair privilege, task specification Each processor P, main-
tains a local boolean variable Zriv;. For each processor P;
Priv; is set to true infinitely often in every infinite syn-
chronous run.

Lemma 14 For any integers d and [, there exists no d-dis-
tance local, l-history local transient fault detector for the
fair privilege task.

Proof Assume that there exist two integers d and [such that
there exists a d-distance local, /—history local transient fault
detector for the fair privilege task.

Consider a system where in each synchronous run, pro-
cessors get the same privilege status (for any processor P,

12

Beauquier, Delaét, Dolev, and Tixeuil

and any configuration ¢, all riv; variables are equal). A
run of this system is given by the successive values of Zriv;,
the variable of a single processor P,. We consider two runs
R; (which is correct) and R, (which is incorrect) and prove
that if the /—history local transient fault detector responds
true in Ry, it also responds true in Ry, and thus does not
detect the faulty run.

Ry, = false,..., false true true,...
—_—
[times
Ry = false,..., false, false, false,...
—_—

[times

In run Ry, the Priv; variable is set to true infinitely of-
ten, so this run is correct. Therefore the transient fault detec-
tor at processor P, must return ¢rue in any configuration.

In run R,, the Priv; variable is never set to true, so this
run is incorrect. Therefore the transient fault detector must
respond false in at least one configuration at node P,.

Configurations ¢y to ¢;_; are equal in Ry and R», so the
histories #/°[1..] are equal in those configurations. Since
the transient fault detector responded #rue in configurations
co-..cj—1 in Ry (which is correct), it also responds frue in
configurations cyp...c;—; in R,. Note that in configuration
c;—1 of either R; or Ry, the variable “//io[l..l] equals

false, ..., false
| —

[times

Now consider configuration c; of Ry, with k > /. In con-
figuration ¢, #/°[1..1] equals false, ..., false, thus the tran-
—_—

[times
sient fault detector must respond ¢rue in configuration cy.

Since for any configuration of R;, the [—history local
fault detector responds true, it does not detect any fault in
R», which is an incorrect run.

5 Transient Fault Detectors for Algorithms

Unlike the case of fault detectors for tasks the fault detec-
tors for algorithms (implementation of tasks) may use the
entire state of the processors (and not only the output that is
defined by the task). For example, in an implementation of
the spanning tree construction in which every processor has
a variable with the distance from the root the fault detector
may use the distance variable to detect inconsistency: if ev-
ery processor has a distance that is greater than one from its
parent distance, and the root has no parent then the system
is in a consistent state.

A monitoring technique that can be used as a fault detec-
tor is presented in [1]. The monitoring technique can detect
inconsistency of every on-line or off-line algorithm. Since
the monitoring technique is universal it is possible to design

a more efficient (in terms of memory) fault detectors for spe-
cific sets of algorithms.

Hierarchy for fault detectors of algorithms can be de-
fined analogously to the definition of the fault detectors for
tasks. In fact, the predicates that were previously defined for
the task can be replaced by new predicates for invariants
that are preserved by the algorithm in every execution. The
choice of the algorithm that implements a task influences the
fitting fault detector. For instance, one may suggest to use
a topology update algorithm to implement the above silent
tasks. A topology update algorithm provides each proces-
sor with the information concerning the entire system, thus
every processor may perform local computations using this
information to elect a leader, to elect an identifier, or to count
the nodes in the system. Clearly, the above choice of imple-
mentation results in using much more memory than other
possible implementations. On the other hand, it is possible
to monitor the consistency of this particular implementation
by a fault detector in F %.

6 Implementing Transient Fault Detectors

In this section, we give a possible implementation for using
and maintaining the local variables of the fault detectors,
namely the local view (for silent algorithms) and the local
history (for non-silent algorithms) variables.

6.1 Updating the local views

The updating policy for the processor views is the follow-
ing. Each processor P, communicates (repeatedly in asyn-
chronous systems, at each pulse in synchronous systems) to
every of its neighbors, P; the portion of ¥ that is shared
with ”//jd. In other words P; does not communicate to P; the
view on the system components that are of distance d + 1
from P; (according to the communication graph portion in
”I/id). When P, receives the view "//j‘l from its neighbor P;, P;

checks whether the shared portions of ”//id and “I/jd agree. P
outputs a fault indication if these portions do not agree.

It is easy to see that the above test ensures that every pro-
cessor has the right view on the components up to distance d
from itself. Assume that the view of P; is not correct concern-
ing the variable of some processor F;. Let P, Pj1,Pj, -+, P
be the processors along a shortest path (of length not greater
than d) from P, to Fy. Let Pj; be the first processor in this path
for which #}; and ¥; hold non equal values for a variable of
Py.. Note that there must exists such processor since P; and
P, holds different values for the variables of Fy. Clearly, P;;
and P;(;_p) identifies the inconsistency.

Transient Fault Detectors

13

6.2 Updating the local histories

We define the updating policy of the local histories only
for synchronous systems. In each synchronous step the last
view 7,4[s] becomes the first view, each other view #,4[j] is

copied into #[j+1],1 < j <s.

6.3 Towards self-stabilization

The last issue in implementing the fault detector is the action
taken upon inconsistency detection. Although it is out of the
scope of the paper, we mention the reset (e.g., [20], [4]) and
the repair operations (e.g., [1], [21]), both should result in a
consistent state of the system and the fault detector. The fault
detector is not activated until the reset or the repair actions
terminate. In particular, to collect a new view up to distance
d the update algorithm [10,13] can be used for d rounds
(using a synchronizer, in the case of asynchronous system)
and only then will the fault detector be activated.

7 Concluding remarks

In this paper, we investigated the amount of resources re-
quired for implementing transient fault detectors for tasks
and algorithms. We presented a hierarchy of transient fault
detectors that detect the occurrence of faults in a single asyn-
chronous round (in an asynchronous system) or a single syn-
chronous round (in a synchronous system). The benefits of
our approach are twofold:

1. It gives the task implementer a formal framework to anal-
yse the expected “cost” of the task, or even the imple-
mentation of the task (considered as a refined task), in
terms of resources that are required for transient fault
detection.

2. It provides a measure of the informal notion of locality,
from a transient fault detection point of view (i.e. two
tasks or two tasks implementations can now be com-
pared based on the locality of their respective transient
fault detectors). This is complementary to the usual no-
tion of locality in distributed computing [23] which re-
lates to the amount of resources needed to solve the task.

We suggest two interesting open problems:

1. While this paper concentrated on defining the notion of
locality based on the effort needed to detect transient
faults, an analogous definition based on the effort for
reparing would be of great interest.

2. The transient fault detectors that we present in this paper
could actually be used to detect arbitrary deviation from
the specification, not just transient faults. However, the
possible transient fault detector implementation that we

give in this paper may only be subject to transient faults.
Designing detectors that can cope with arbitrary (i.e. ma-
licious) failures would turn our solution into a universal
predicate detector mecanism.

Acknowledgements We are grateful to the anonymous reviewers that
permitted to improve the contents and presentation of this paper.

References

1.
2.

10.

13.

15.

16.

17.

19.

20.
21.
22.

23.

Afek, Y., Dolev, S.: Local stabilizer. J. Parallel Distrib. Comput.
62(5), 745-765 (2002)

Afek, Y., Kutten, S., Yung, M.: Memory-efficient self stabilizing
protocols for general networks. In: J. van Leeuwen, N. Santoro
(eds.) WDAG, Lecture Notes in Computer Science, vol. 486, pp.
15-28. Springer (1990)

Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-stabilization by
local checking and correction (extended abstract). In: FOCS, pp.
268-277. IEEE (1991)

Awerbuch, B., Patt-Shamir, B., Varghese, G., Dolev, S.: Self-
stabilization by local checking and global reset (extended ab-
stract). In: G. Tel, PM.B. Vitdnyi (eds.) WDAG, Lecture Notes
in Computer Science, vol. 857, pp. 326-339. Springer (1994)
Burns, J.E., Gouda, M.G., Miller, R.E.: Stabilization and pseudo-
stabilization. Distributed Computing 7(1), 35-42 (1993)
Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable
distributed systems. J. ACM 43(2), 225-267 (1996)

Delaét, S., Ducourthial, B., Tixeuil, S.: Self-stabilization with r-
operators revisited. Journal of Aerospace Computing, Informa-
tion, and Communication (2006)

Delaét, S., Tixeuil, S.: Tolerating transient and intermittent fail-
ures. Journal of Parallel and Distributed Computing 62(5), 961—
981 (2002)

Dijkstra, E.W.: Self-stabilizing systems in spite of distributed con-
trol. Commun. ACM 17(11), 643-644 (1974)

Dolev, S.: Self-stabilizing routing and related protocol. J. Parallel
Distrib. Comput. 42(2), 122-127 (1997)

. Doleyv, S.: Self-Stabilization. MIT Press (2000)
12.

Doleyv, S., Gouda, M.G., Schneider, M.: Memory requirements for
silent stabilization. Acta Inf. 36(6), 447-462 (1999)

Dolev, S., Herman, T.: Superstabilizing protocols for dynamic dis-
tributed systems. Chicago J. Theor. Comput. Sci. 1997 (1997)
Doleyv, S., Israeli, A., Moran, S.: Self-stabilization of dynamic sys-
tems assuming only read/write atomicity. Distributed Computing
7(1), 3-16 (1993)

Dolev, S., Israeli, A., Moran, S.: Analyzing expected time by
scheduler-luck games. IEEE Trans. Software Eng. 21(5), 429439
(1995)

Dolev, S., Kranakis, E., Krizanc, D., Peleg, D.: Bubbles: adaptive
routing scheme for high-speed dynamic networks (extended ab-
stract). In: STOC, pp. 528-537. ACM (1995)

Ducourthial, B., Tixeuil, S.: Self-stabilization with r-operators.
Distributed Computing 14(3), 147-162 (2001)

. Ducourthial, B., Tixeuil, S.: Self-stabilization with path algebra.

Theoretical Computer Science 293(1), 219-236 (2003). Extended
abstract in Sirrocco 2000

Ghosh, S., Gupta, A., Herman, T., Pemmaraju, S.V.: Fault-
containing self-stabilizing algorithms. In: PODC, pp. 45-54
(1996)

Katz, S., Perry, K.J.: Self-stabilizing extensions for message-
passing systems. Distributed Computing 7(1), 17-26 (1993)
Kutten, S., Patt-Shamir, B.: Time-adaptive self stabilization. In:
PODC, pp. 149-158 (1997)

Lin, C., Simon, J.: Observing self-stabilization. In: PODC92 Pro-
ceedings of the Eleventh Annual ACM Symposium on Principles
of Distributed Computing, pp. 113-123 (1992)

Peleg, D.: Distributed Computing: A Locality-Sensitive Ap-
proach. SIAM Monographs on Discrete Mathematics and Appli-
cations (2000)

