
Tolerating Transient and Intermittent Failures1

Sylvie Delaët

and

Sébastien Tixeuil
Laboratoire de Recherche en Informatique, UMR CNRS 8623,

Université de Paris Sud, 91405 Orsay Cedex, France
E-mail: delaet@lri.fr, tixeuil@lri.fr

Version: January 18, 2002

Fault tolerance is a crucial property for recent distributed systems. We propose an
algorithm that solves the census problem (list all processor identifiers and their relative
distance) on an arbitrary strongly connected network.

This algorithm tolerates transient faults that corrupt the processors and communica-

tion links memory (it is self-stabilizing) as well as intermittent faults (fair loss, reorder,

finite duplication of messages) on communication media. A formal proof establishes its cor-

rectness for the considered problem. Our algorithm leads to the construction of algorithms

for any silent problems that are self-stabilizing while supporting the same communication

hazards.

Key Words: self-stabilization, unreliable communication, census

1. INTRODUCTION

We consider distributed systems that consist of a collection of processors linked
to each other by communication media that allow them to exchange messages.
As larger systems imply less reliability, several kinds of failures can be classified
according to their locality (processor or link) and their nature.

1. Permanent failures are failures that make one or several components of the
system stop running forever. In the case of a processor, it stops executing its
program forever. In the case of a communication link, this can be interpreted
as a definitive rupture of the communication service.

2. Intermittent failures are failures that make one or several components of the
system behave erratically from time to time. A processor can have a Byzantine
behavior, and a communication link may loose, duplicate, reorder or modify
messages in transit.

3. Transient failures are failures that place one or several components of the
system in some arbitrary state, but stop occurring after some time. For a
processor, such failures may occur following a crash and repair operation, or
temporary shutdown of its power supply. For a communication link, electro-
magnetic fields may lead to similar problems.

1An extended abstract of a preliminary version of this paper appeared in [13]. This work was
supported in part by the french STAR project.

1

The time organization of permanent, intermittent and transient failures is pre-
sented below, where � denotes a correct behavior of the system, and where �

denotes a failure of the system.

Permanent failures � � � � �����������������

Intermittent failures � �� � � ��� � � � ���� � � �����

Transient failures ���� �
time

−−→

1.1. Failure-tolerance in Distributed systems

Robustness is one of the most important requirements of modern distributed
systems. Two approaches are possible to achieve fault-tolerance: on the one hand,
robust systems use redundancy to mask the effect of faults, on the other hand,
self-stabilizing systems may temporarily exhibit an abnormal behavior, but must
recover correct behavior within finite time.

Robustness When a small number of the system components fail frequently
(this is the case for permanent and intermittent failures), robust systems should
always guarantee a correct behavior. Most often, such approaches make the hypoth-
esis of a limited number of faults, due to impossibility results even when communi-
cation links are reliable. A fundamental result (see [20]) shows that the Consensus
problem (all processors agree on a common initial value) is impossible to solve
deterministically in an asynchronous system even if the failure is permanent and
limited to a single processor. In the case of intermittent failures on communication
links, most works deal with transformation of unreliable links into reliable links (for
higher level messages). The case of fair loss was solved in [6, 27], but such con-
structions are impossible when links may duplicate (finitely) and reorder messages
(see [28]).

Self-stabilization Conversely, when all system components behave correctly
most of the time (this is the case with transient failures), one could accept tem-
porary abnormal service when that system suffers from a general failure, as long
as recovery to a correct behavior is guaranteed after finite time. This approach,
called self-stabilization, consists in always behaving as if all system components
were correct. At the contrary of fault-tolerance, self-stabilization does not make
any restriction of the subset of the system that is hit by the failure. Since its in-
troduction by Dijkstra (see [14]), a growing number of self-stabilizing algorithms
solving different problems have been presented (see [16]). In particular, several
recent publications prove that being able to start from any arbitrary configuration
is desirable as a property of fault tolerance. For example, [23] shows that processor
crashes and restarts may lead a system to an arbitrary global state, from which a
self-stabilizing algorithm is able to recover.

1.2. Related Work

Historically, research in self-stabilization over general networks has mostly cov-
ered undirected networks where bidirectional communication is feasible (the Up-
date protocol of [18], or the algorithms presented in [3, 19]). For example, the
self-stabilizing algorithms that are built upon the paradigm of local checking (see

2

[5]) use bidirectional communication to compare one node state with those of its
neighbors and check for consistency. The lack of bidirectional communication was
overcome in recent papers using strong connectivity (which is a weaker require-
ment than bidirectional) to build a virtual well known topology on which the self-
stabilizing algorithm may be run (a tree in [1]). As many self-stabilizing algorithms
exist for rings or trees in the literature, these constructions may be used to reuse
existing algorithms in general networks.

Several algorithms are self-stabilizing and tolerate a limited amount of processor
crash failures (see [4, 21, 9]). However, they are studied in a communication model
that is almost reliable (links are only subject to transient failures). Most related to
our problem is [25], where Masuzawa presents a self-stabilizing Topology Update
algorithm that also support, to a certain extent, permanent processor failures. In
[7], the authors consider the case of systems subject to crash failures for processors
and intermittent failures for links (only the loss case is considered). However, in
their approach, bidirectional communication link are assumed to provide a lower
level communication protocol that is reliable enough for their purpose. To some
extent, topology changes can be considered as permanent failures on links. In this
context, Super-stabilizing and Snap-stabilizing protocols (introduced in [18] and
[10], respectively) are self-stabilizing protocols that also tolerate limited topology
changes. In [2], Afek and Brown consider self-stabilizing algorithms along with
lossy communication links, but they assume bidirectional communications in order
to build an underlying self-stabilizing data-link protocol. Finally, [22] consider the
construction of wait-free objects in a self-stabilizing setting.

1.3. The Census Problem

The Census problem is derived from the Topology Update task by removing
the location information requirement. Informally, a self-stabilizing distributed al-
gorithm that solves the Census problem must ensure that eventually, the system
reaches a global state where each processor knows the identifiers of all processors
in the network and their relative distances to itself. Census information is suffi-
cient to solve many fundamental tasks, such as leader election (the processor with
minimum identifier is elected), counting all nodes in the system (the number of
processors in the Census list), or topological sort of ancestors. Typically, a Topol-
ogy Update algorithm would require each processor in the system to store each link
of the communication graph (inducing a Ω(N2) bits storage at each node, where N

is the size of the network), while a Census algorithm would require each processor
in the system to store each node of the communication graph along with its relative
distance (inducing a Ω(N × log2 N) bits storage at each node).

A self-stabilizing solution (although not presented as such) to the problem of
Topology Update has been proposed in [26]. Subsequent works on self-stabilization
and the Topology Update problem include [25, 15, 18], but none of the aforemen-
tioned protocols consider intermittent link failures. Those algorithm typically use
O(δ × N2) bits per node when links can be enumerated, where δ is the degree of
the node, and O(δ×N2× log2(k)) bits otherwise, where k is the number of possible
identifiers for nodes. These works share two common points: (i) communication
between neighboring nodes is carried out using reliable bidirectional links, and (ii)
node are aware of their local topology. In the context of directed networks, both
points (i) and (ii) are questionable:

1. If a bidirectional network is not available, then self-stabilizing data link proto-

3

cols (that are acknowledgment based, such as those presented in [2]) can not
be used to transform any of those works so that they perform in unreliable
message passing environments.

2. In directed networks, it is generally easy to maintain the set of input neighbors
(by checking who has ”recently” sent a message), but it is very difficult (if not
impossible) to maintain the set of output neighbors (in a satellite network,
a transmitter is generally not aware of who is listening to the information it
communicates).

Two algorithms [12, 8] were previously presented for the Census problem in uni-
directional networks. They are both self-stabilizing and assume the simple topology
of a unidirectional ring: [8] assumes reliable communications and supports the ef-
ficient cut-through routing scheme, while [12] supports fair loss, finite duplication,
and desequencing of messages.

1.4. Our Contribution

We extend the result of [12] from unidirectional rings, which are a small subset
of actual communication networks, to general strongly connected networks, that
are a proper superset of unidirectional rings and bidirectional networks. However,
we retain all link failure hypothesis of [12]: fair loss, finite duplication, reordering.
In more details, we present a self-stabilizing algorithm for the Census problem that
tolerates message loss, duplication and reordering both in the stabilizing phase and
in the stabilized phase. Our algorithm only assume that the input neighborhood
of each node is known, but not the output neighborhood, so that it can be used
in a large class of actual systems. Our algorithm requires O(N × (log2(k) + δ−i))
bits per node, where k is the number of possible identifiers for nodes, and where
δ−i is the input degree of node i. The stabilization time is O(D), where D is the
diameter of the network.

Using the scheme presented in [18] on top of our algorithm, we are then able
to solve any global computation task (i.e. any task that can be solved by a silent
system) in a self-stabilizing way, and still cope with unreliable communication links
even when stabilized.

Although we assume the system communication graph is strongly connected,
we do not use this information to build a well known topology (e.g. a ring) and
run a well known algorithm on it. Indeed, this approach could potentially lower
the performance of the overall algorithm, due to the fact that the communication
possibilities are not used to their full extent. As a matter of fact, when our distrib-
uted algorithm is run on a network that is not strongly connected, we ensure that
the collected information at each node is a topologically sorted list of its ancestors.
In DAG (directed acyclic graph) structured networks, such kind of information is
often wished (see [11]), and our approach makes it tolerant to link failures for free.

1.5. Outline

Section 2 presents a model for distributed systems we consider, as well as conve-
nient notations used in the rest of the paper. Section 3 describes our self-stabilizing
census algorithm on strongly connected networks, while Section 4 establishes its
proof of correctness. Concluding remarks are proposed in Section 5.

4

2. PRELIMINARIES

2.1. Distributed Systems

In order to present a formal proof of our algorithm, we introduce a few defini-
tions and notations that describe the model used in the rest of the paper.

A processor is a sequential deterministic machine that uses a local memory, a
local algorithm and input/output capabilities. Intuitively, such a processor executes
its local algorithm. This algorithm modifies the state of the processor memory, and
send/receive messages using the communication ports.

An unidirectional communication link transmits messages from a processor o

(for origin) to a processor d (for destination). The link is interacting with one
input port of d and one output port of o. Depending on the way messages are
handled by a communication link, several properties can be defined on a link. [24]
proposes a complete formalization of these properties. We only enumerate those
that are related to our algorithm. There is a fair loss when, infinitely messages
being emitted by o, infinitely messages are received by d. There is finite duplication
when every message emitted by o may be received by d a finite number of times:
however, a bound on the number of time a message was duplicated is not known to
the processors. There is reordering when messages emitted by o may be received
by d in a different order than that they were emitted. We also assume that any
message that is not lost is eventually received by d. In particular, if the origin node
o continuously send the same message infinitely, then this message is eventually
received by the destination node d.

A distributed system is a 2-uple S = (P,L) where P is a set of processors and L

is a set of communication links. A distributed system is represented by a directed
graph whose nodes denote processors and whose directed edges (or arcs) denote
communication channels (or links). The state of a processor can be reduced to the
state of its local memory, the state of a communication link can be reduced to its
contents, then the global system state can be simply defined as:

D��������� 1. A configuration of a distributed system S = (P,L) is the prod-
uct of the states of memories of processors of P and of contents of communication
links in L. The set of configurations is noted C.

Our system is not fixed once for all: it passes from a configuration to another
when a processor executes an instruction of its local algorithm or when a com-
munication link delivers a message to its destination. This sequence of reached
configurations is called a computation.

D��������� 2. A computation of S = (P,L) is a maximal sequence of configu-
rations of S noted C1, C2, . . . and such that for any positive integer i, the transition
from Ci to Ci+1 is done through execution of an atomic action of every element of a
non empty subset of P and/or L. Configuration C1 is called the initial configuration
of the computation.

In the most general case, the specification of a problem is by enumerating com-
putations that solve this problem. In the special case of the Census problem, where
a global deterministic calculus is done, the specification can be given in terms of a
set of system configurations.

D��������� 3. A configuration c satisfies the Census specification if and only
if for any i in P , i knows the name and distance of all other elements relatively to
itself in c.

5

A computation e satisfies the Census specification if and only if every config-
uration c in e satisfies the Census specification. A set of configurations B ⊂ C is
closed if for any b ∈ B, any possible computation of System S whose b is initial
configuration only contains configurations in B. A set of configurations B2 ⊂ C is
an attractor for a set of configurations B1 ⊂ C if for any b ∈ B1 and any possi-
ble computation of S whose initial configuration is b, the computation contains a
configuration of B2.

D��������� 4. A system S is self-stabilizing for a specification A if there exists
a non-empty set of configurations L ⊂ C such that:

Closure any computation of S whose initial configuration is in L satisfies A,

Convergence L is an attractor for C.

To show that a given system is self-stabilizing, it is sufficient to exhibit a particu-
lar non-empty subset of configurations of the system : the legitimate configurations.
Then it is to be shown that any computation starting from a legitimate configura-
tion satisfies the considered problem (closure property), and that from any possible
configuration of the system, any possible computation of the system leads to a
legitimate configuration (convergence property).

2.2. System Settings

Constants Each node knows its unique identifier, which is placed in non
corruptible memory. We denote this identifier as an italics Latin letter. Each
node i is aware of its input degree δ−i (the number of its incident arcs), which is
also placed in non corruptible memory. A node i arbitrarily numbers its incident
arcs using the first δ−i natural numbers. When receiving a message, the node i

knows the number of the corresponding incoming link (that varies from 1 to δ−i).

Local memory Each node maintains a local memory. The local memory of
i is represented by a list denoted by (i1; i2; . . . ; ik). Each iα is a non-empty list
of pairs 〈identifier ,colors〉, where identifier is a node identifier, and where colors
is an array of booleans of size δ−i . Each boolean in the colors array is either true
(denoted by •) or false (denoted by ◦). We assume that natural operations on
boolean arrays, such as unary not (denoted by ¬), binary and (denoted by ∧) and
binary or (denoted by ∨) are available.

The goal of the Census algorithm is to guarantee that the local memory of each
node contains the list of lists of identifiers (whatever the colors value in each pair
〈identifier ,colors〉) that are predecessors of i in the communication graph. For the
Census task to be satisfied, we must ensure that the local memory of each node i

can contain as many lists of pairs as necessary. We assume that a minimum of

(N − 1)×
(
log2(k) + δ−i

)
bits space is available at each node i, where N is the number of nodes in the system
and k is the number of possible identifiers in the system (see Lemma 4).

For example,
((j, [• ◦ ◦]; q, [◦ • ◦]; t, [◦ ◦ •])(z, [• • •]))

6

is a possible local memory for node i, assuming that δ−i equals 3. From the local
memory of node i, it is possible to deduce the knowledge that node i has about its
ancestors. With the previous example, node j is a direct ancestor of i (it is in the
first list of the local memory of i) and this information was carried through incoming
channel number 1 (only the first position of the colors array relative to node j is
true). Similarly, nodes q and t are direct ancestors of i and this information was
obtained through incoming links 2 and 3, respectively. Then, node z is at distance
2 from i, and this information was received through incoming links numbered 1, 2,
and 3.

Messages Each node sends and receives messages. The contents of a message
is represented by a list denoted by (i1; i2; . . . ; ik). Each iα is a non-empty list of
identifiers.

For example,
((i)(j; q; t)(z))

is a possible contents of a message. It means that i sent the message (since it appears
first in the message), that i believes that j, q, and t are the direct ancestors of i,
and that z is an ancestor at distance 2 of i.

Notations The distance from i to j is denoted by d(i, j), which is the minimal
number of arcs from i to j. We assume that the graph is strongly connected, so the
distance from i to j is always defined. Yet, since the graph may not be bidirectional,
d(i, j) may be different from d(j, i). The age of i, denoted by χi, is the greatest
distance d(j, i) for any j in the graph. The network diameter is then equal to

max
i

χi = D

3. SELF-STABILIZING CENSUS

3.1. Overview

Our algorithm can be seen as a knowledge collector on the network. The local
memory of a node then represents the current knowledge of this node about the
whole network. The only certain knowledge a node may have about the network
is local: its identifier, its incoming degree, the respective numbers of its incoming
channels. This is the only information that is stored in non-corruptible memory.

The algorithm for each node consists in updating in a coherent way (according
to its constant information, see Section 2.2) its knowledge upon receipt of other
processors’ messages, and communicating this knowledge to other processors after
adding its constant information about the network. More precisely, each informa-
tion placed in a local memory is related to the local name of the incoming channel
that transmitted this information. For example, node i would only emit messages
starting with singleton list (i) and then not containing i since it is trivially an an-
cestor of i at distance 0. Coherent update consists in three kinds of actions: the
first two being trivial coherence checks on messages and local memory, respectively.

Check Message Coherence Since all nodes have the same behavior, when a
node receives a message that does not start with a singleton list, the message
is trivially considered as erroneous and is ignored. For example, messages of
the form ((j; q; t)(k)(m; y)(p; z)) are ignored.

7

Check Local Coherence Regularly and at each message receiving, a node checks
for local coherence. We only check here for trivial inconsistencies (see the
problem() helper function): a node is incoherent if there exist at least one
pair 〈identifier, colors〉 such that colors= [◦ · · · ◦] (which means that some
information in the local memory was not obtained from any of the input
channels). If a problem is detected upon time-out, then the local memory is
reinitialized, else if a problem is detected upon a message receipt, the local
memory is completely replaced by the information contained in the message.

Trust Most Recent Information When a node receives a message through an
incoming channel, this message should contain an information that was con-
structed after its own and then more reliable. The node removes all previous
information obtained through this channel from its local memory. Then it
integrates new information and only keeps old information (from its other
incoming channels) that does not clash with new information.

Example Assume that a message mess = ((j)(k; l)(m)(p; q ; r; i)) is received
by node i through its incoming link 1 and that δ−i = 2. The following informations
can be deduced:

1. j is a direct ancestor of i (it appears first in the message),

2. k and l are ancestors at distance 2 of i and may transmit messages through
node j,

3. m is an ancestor at distance 3 of i,

4. p, q and r are ancestors at distance 4 of i, j obtained this information through
m.

These informations are compatible with a local memory of i such as:

((j, [•◦]; q, [◦•])(k, [•◦]; e, [◦•]; w, [◦•])(m, [◦•]; y, [••])(p, [•◦]; z, [◦•];h, [•◦]))

Upon receipt of message mess at i, the following operations take place: (i) the
local memory of i is cleared from previous information coming from link 1, (ii) the
incoming message is ”colored” by the number of the link (here each identifier α in
the message becomes a pair α, [•◦] since it is received by link number 1 and not by
link number 2), and (iii) the local memory is enriched as in the following (where
”←” denotes information that was acquired upon receipt of a message, and where
”→” denotes information that is to be forwarded to the node output links):

((q, [◦•]) (e, [◦•];w, [◦•]) (m, [◦•]; y, [◦•]) (z, [◦•]))

← ((j, [•◦]) (k, [•◦]; l, [•◦]) (m, [•◦])

(
p, [•◦]; q, [•◦];
r, [•◦]; i, [•◦]

)
)

→ ((j, [•◦]; q, [◦•])

(
k, [•◦]; e, [◦•];
w, [◦•]; l, [•◦]

)
(m, [••]; y, [◦•])

(
p, [•◦]; z, [◦•];
q, [•◦]; r, [•◦]

)
)

This message enabled the modification of the local memory of node i in the fol-
lowing way: l is a new ancestor at distance 2. This was acquired through incoming
link number 2 (thus through node j). Nodes m and y are confirmed to be ancestors

8

at distance 3, but mess sends information via nodes j and q, while y only transmits
its informations via node q. Moreover, q and r are part of the new knowledge of
ancestors at distance 4. Finally, although i had information about h (h, [•◦]) before
receiving mess, it knows now that the information about h is obsolete.

3.2. Communication issues

The property of resilience to intermittent link failures of our algorithm is mainly
due to the fact that each message is self-contained and independently moves towards
a complete correct knowledge about the network. More specifically:

1. The fair loss of messages is compensated by the infinite spontaneous retrans-
mission by each processor of their current knowledge.

2. The finite duplication tolerance is due to the fact that our algorithm is idem-
potent in the following sense: if a processor receives the same message twice
from the same incoming link, the second message does not modify the knowl-
edge of the node.

3. The desequencing can be considered as a change in the relative speeds of two
messages towards a complete knowledge about the network. Each message
independently gets more accurate and complete, so that their relative order
is insignificant. A formal treatment of this last and most important part can
be found in Section 4.

3.3. Helper Functions

We now describe helper functions that will enhance readability of our algorithm.
Those functions operate on lists, integers and pairs 〈identifier ,colors〉. The specifi-
cations of those functions use the following notations: l denotes a list of identifiers,
p denotes an integer, lc denotes a list of pair 〈identifier ,colors〉, Ll denotes a list of
lists of identifiers, and Llc denotes a list of lists of pairs 〈identifier ,colors〉.

We assume that classical operations on generic lists are available: \ denotes the
binary operator ”minus” (and returns the first list from which the elements of the
second have been removed), ∪ denotes the binary operator ”union” (and returns
the list without duplicates of elements of both lists), + denotes the binary operator
”concatenate” (and returns the list resulting from concatenation of both lists),

denotes the unary operator that returns the number of elements contained in the
list, and [] takes an integer parameter p so that l[p] returns a reference to the pth

element of the list l if p ≤ l (in order that it can be used on the left part of
an assignment operator ”:=”), or expand l with p − l empty lists and returns a
reference to the pth element of the updated list if p > l.

clean(lc, p)→ list of couples returns the empty list if lc is empty and a list of
pairs lc2 such that for each 〈identifier lc, colors lc〉 ∈ lc, if colors lc∧¬colors(p) �=
[◦ · · · ◦], then 〈identifier lc, colors lc ∧¬colors(p)〉 is in lc2, else 〈identifier lc, ∗〉
is not in lc2.

Example: assuming δ−i = 3,

clean((j, [◦ • ◦]; q, [◦ ◦ •]; k, [◦ • ◦]; e, [◦ ◦ •];w, [◦ ◦ •];m, [◦ ◦ •]; y, [◦ • •]; p, [◦ •
◦]; z, [◦ ◦ •];h, [◦ • ◦]), 2)

= (q, [◦ ◦ •]; e, [◦ ◦ •];w, [◦ ◦ •];m, [◦ ◦ •]; y, [◦ ◦ •]; z, [◦ ◦ •])

9

colors(p) → array of booleans returns the array of booleans that correspond to
the pth incoming link, i.e. the array that is such that [◦ · · · ◦︸ ︷︷ ︸

p−1 times

• ◦ · · · ◦︸ ︷︷ ︸
δ−
i
−p times

].

Example: assuming δ−i = 3, colors(2) = [◦ • ◦]

emit(i, Llc) sends the message resulting from (i)+identifiers(Llc) on every outgo-
ing link of i.

identifiers(Llc) →list of list of identifiers returns the empty list if Llc is empty
and returns a list Ll of list of identifiers (such that each pair 〈identifier,colors〉
in Llc becomes identifier in Ll) otherwise.

Example: assuming δ−i = 3,

identifiers((j, [◦•◦]; q, [◦◦•])(k, [◦•◦]; e, [◦◦•];w, [◦◦•])(q, [◦•◦])(k, [◦◦•]; p, [◦•
◦]; j, [◦ • ◦]))

= ((j; q)(k; e;w)(q)(k; p; j))

merge(lc, l, p)→ list of couples returns the empty list if lc and l are both empty
and ⋃

〈i,c〉∈lc
i∈l

(〈i, c ∨ colors(p)〉) ∪
⋃

〈i,∗〉/∈lc
i∈l

(〈i, colors(p)〉)

otherwise.

Example: assuming δ−i = 3,

merge((j, [◦ • ◦]; q, [◦ ◦ •]; k, [◦ • ◦]; e, [◦ ◦ •];w, [◦ ◦ •]), (q; k; p; j), 1)

= (j, [• • ◦]; q, [• ◦ •]; k, [• • ◦]; e, [◦ ◦ •]; w, [◦ ◦ •]; p, [• ◦ ◦])

new(lc, l)→ list of couples returns the empty list if lc is empty and the list of
pairs 〈identifier , colors〉 whose identifier is not in l otherwise.

Example: assuming δ−i = 3,

new((j, [◦ • ◦]; q, [◦ ◦ •]; k, [◦ • ◦]; e, [◦ ◦ •];w, [◦ ◦ •]), (i; j; e))

= (q, [◦ ◦ •]; k, [◦ • ◦]; w, [◦ ◦ •])

problem(Llc)→boolean returns true if there exist two integers p and q such that
p ≤ (Llc) and q ≤ (Llc[p]) and Llc[p][q] is of the form 〈identifier, colors〉
and all booleans in colors are false (◦). Otherwise, this function returns false.

3.4. The Algorithm

In addition to its local memory, each node makes use of the following local
variables when processing messages: α is the current index in the local memory
and message main list, i_pertinent is a boolean that is true if the αth element
of the local memory main list contains pertinent information, m_pertinent is a
boolean that is true if the αth element of the message main list contains pertinent
information, known is the list of all identifiers found in the local memory and
message found up to rank α, temp is a temporary list that stores the updated αth

element of the local memory main list.
We are now ready to present our Census Algorithm (noted CA in the remaining

of the paper). This algorithm is message driven: processors execute their code when

10

they receive an incoming message. In order to perform correctly in configurations
where no messages are present, Algorithm CA also uses a spontaneous action that
will emit a message.

Spontaneously, a node i runs the following code:

I� problem(local_memory) T��� local_memory := () E��I�

emit(i,local_memory)

Upon receipt of a message namedmessage from incoming link number p, a node
i whose local memory is denoted by local_memory runs the following code:

Check for local memory coherence:

i_pertinent := N�� problem(local_memory)

Check for message coherence:

m_pertinent := ((message[1]) = 1)

Update local memory:

α := 0;known:= (i);

W���� m_pertinent O� i_pertinent D�

α := α+ 1;temp:= ()

local_memory [α] := clean(local_memory [α], p)

I� i_pertinent T���

temp:= new(local_memory [α],known)

I� temp= () T��� i_pertinent :=F���� E��I�

E��I�

I� m_pertinent T���

I� message[α]\known= () T���

m_pertinent :=F����

E���

temp:= merge(temp,message[α]\known, p)

E��I�

E��I�

I� temp �= () T���

local_memory [α] := temp

known:=known∪ identifiers(temp)

E��I�

E��W����

Truncate local memory up to position α :

local_memory := (local_memory [1], . . . , local_memory[α])

Emit message along with identifier:

emit(i,local_memory)

11

4. PROOF OF CORRECTNESS

In this section, we show that Algorithm CA is a self-stabilizing Census algorithm.
In more details, independently of the initial configuration of network channels (non
infinitely full) and of the initial configuration of local memories of nodes, every
node ends up with a local memory that reflect the contents of the network, even if
unreliable communication media is used for the underlying communication between
nodes.

4.1. Overview

First, we define a formal measure on messages that circulate in the network and
on local memories of the nodes. This measure is either the distance between the
current form of the message and its canonical form (that denotes optimal knowledge
about the network), or between the current value of the local memories and their
canonical form (when a node has a perfect knowledge about the network). We use
this measure to compute the weight of a configuration.

Then, we show that after a set of emissions and receptions of messages, the
weight of a configuration decreases. An induction shows that this phenomenon
continue to appear and that the weight of a configuration reaches 0, i.e. a configu-
ration where each message is correct and where each node has an optimal knowledge
about the network. We also show that such a configuration (whose weight is 0) is
stable when a message is emitted or received. According to the previous definitions,
a configuration of weight 0 is a legitimate configuration after finite time.

These two parts prove respectively the convergence and closure of our algorithm,
and establish its self-stabilizing property.

4.2. Legitimate Configurations

The Census problem being static and deterministic, when we only consider
node local memories, there is a single legitimate configuration. This legitimate
configuration is when each node has a global correct knowledge about the network.
It is also the stable configuration the system would reach had it been started from
a zero knowledge configuration (where the local memory of each node is null, and
where no messages are in transit in the system).

In this legitimate configuration, all circulating messages are of the same kind,
and the only difference between legitimate configurations is the number of messages
in each communication link. This induces the following definitions of canonical
messages and canonical local memory.

D��������� 5. The canonical form of a message circulating on a link between
nodes j and i is the list of lists starting with the singleton list (j) followed by the
χj lists of ancestors of j at distance between 1 and χj .

D��������� 6. The canonical form of node i’s local memory is the list of lists
of pairs Llc of the χi lists of pairs 〈identifier ,colors〉 such that:

• identifiers(Llc) is the list of the χi lists of ancestors of i at distance 1 to χi.

• if a shortest path from node j to node i passes through the pth input channel of
i, then the boolean array colors associated to node j in Llc has colors [p] = •.

For the sake of simplicity, we will also call the αth list of a canonical message
or a canonical local memory a canonical list.

12

4.3. Closure

P���������� 1. The canonical form of node i’s local memory and that of its
incoming and outgoing channels are coherent.

Proof. If node i’s local memory is in canonical form (according to Definition 6),
then the emit action trivially produces a canonical message (according to Definition
5).

Conversely, upon receipt by node i of a canonical message through incoming link
j, the local memory of i is replaced by a new identical canonical memory. Indeed,
clean first removes from the αth list of i’s local memory all pairs 〈identifier, colors〉
such that colors= colors(p), yet by definition of canonical memory, each such iden-
tifier is that of a node such that the shortest path from identifier to i is of length
α and passes through j. Moreover, the list l used by merge is the list of nodes at
distance α− 1 of node i, so for any identifier appearing in l, two cases may occur:

1. There exists a path from identifier to i that is of length < α, then identifiers∈
known and it does not appear in the new list of rank α,

2. There exists a shorter path from identifier to i through j of length α, then
〈identifier, colors(p)〉 is one of the elements that were removed by clean and
this information is put back into node i’s local memory.

C�������� 1. The set of legitimate configurations is closed.

Proof. Starting from a configuration where every message and every local mem-
ory is canonical, none of the local memories is modified, and none of the emitted
message is non-canonical.

4.4. Configuration Weight

We define a weight on configurations as a function on system configurations
that returns a positive integer. As configurations of weight zero are legitimate,
the weight of a configuration c denotes the ”distance” from c towards a legitimate
configuration.

In order to evaluate the weight of configurations, we define a measure on mes-
sages and local memory of nodes as an integer written using D + 2 digits in base
3 (where D denotes the graph diameter). The weight of a configuration is then
the pair of the maximum weight of local memories, and the maximum weight of
circulating messages. For sake of clarity, a single integer will denote the weight of
the configuration when both values are equal. Note that since a canonical message
is of size ≤ D + 1, we have m_canonical [D + 2] = ().

D��������� 7. Let mess be a circulating message on a communication link
whose canonical message is denoted by m_canonical. The weight of mess is the
integer written using D + 2 base 3 digits and whose αth digit is:

• 0, if mess [α] = m_canonical [α],

• 1, if mess [α] � m_canonical [α],

• 2, if mess [α] � m_canonical [α].

13

Example : Assume that a link from j to i in a network of diameter 5 has a
canonical message of the form (j)(k; e;w)(q)(i; p). The following messages circulat-
ing on this channel will have the following weights:

(j) (k; e;w) (q) (i; p)
0 0 0 0 0 0 0

Overall a weight of 0

(j) (k; e;w) (q; d) (i; p) (z)
0 0 2 0 2 0 0

Overall a weight ≤ 35

(j)
0 1 1 1 1 0 0

Overall a weight ≤ 2× 35

(g) (h; t) (t) (i; d) (a) (a) (a)
2 2 2 2 2 2 2

Overall a weight of 37 − 1

Then, 3D+2−1 is the biggest weight for a message, and corresponds to a message
that is totally erroneous. At the opposite, 0 is the smallest weight for a message, and
corresponds to a canonical message, or to a message that begins with a canonical
message.

D��������� 8. Let memo be the local memory of a node i whose canonical
local memory is m_canonical. The weight of memo is the integer written using
D + 1 digits (in base 3) and whose αth digit is:

• 0, if memo[α] = m_canonical [α]

• 1, if memo[α] �= m_canonical [α] and identifiers(memo[α]) ⊆ identifiers(
m_canonical [α]) and for any 〈 identifier, colors1 〉 of memo[α], the associated
〈 identifier,colors2〉 in m_canonical [α] verifies: (colors1∧colors2) = colors1.

• 2, otherwise.

Then 3D+1 − 1 is the biggest weight of a local memory and denotes a totally
erroneous local memory. At the opposite, 0 is the smallest weight and denotes a
canonical local memory.

Let us notice that in both cases (weight of circulating messages and of nodes
local memories), the αth digit 0 associated to the αth list denotes that this particular
list is in its final form (the canonical form). The αth digit 1 means that the αth

list is coherent with the αth canonical list, but still lacks some information. On the
contrary, the αth digit 2 signals that the related αth position contains informations
that shall not persist and that are thus unreliable. The weight of a message indicates
how much of the information it contains is pertinent.

4.5. Convergence

After defining message weight and, by extension, configuration weights, we first
prove that starting from an arbitrary initial configuration, only messages of weight
lower or equal to 3D+1 − 1 are emitted, which stands for the base case for our
induction proof.

L�""� 1. In any configuration, only messages of weight lower than 3D+1 may
be emitted.

14

Proof. Any message that is emitted from a node i on a link from i to j is by
function emit. This function ensures that this message starts with the singleton
list (i). This singleton list is also the first element of the canonical message for this
channel. Consequently, the biggest number that may be associated to a message
emitted by node i starts with a 0 and is followed by D + 1 digits equal to 2. Its
overall weight is at most 3D+1 − 1.

L�""� 2. Assume α ≥ 1. The set of configurations whose weight is strictly
lower than 3α−1 is an attractor for the set of configuration whose weight is strictly
lower than 3α.

Proof. A local memory of weight strictly lower that 3α contains at most α

erroneous lists, and it is granted that it starts with D + 2− α canonical lists.
By definition of the emit function, each node i that owns a local memory of

weight strictly below 3α shall emit the singleton list (i) followed by D + 2 − α

canonical lists. Since canonical messages sent by a node and its canonical local
memory are coherent, it must emit messages that contain at least D + 2 − α + 1
canonical lists, which means at worst α − 1 erroneous lists. The weight of any
message emitted in such a configuration is then strictly lower than 3α−1.

It follows that messages of weight exactly 3α which remain are those from the
initially considered configuration. Hence they are in finite number. Such messages
are either lost or received by some node in a finite time. The first configuration
that immediately follows the receiving or loss of those initial messages is of weight
(3α (local memory), 3α−1 (messages)).

The receiving by each node of at least one message from any incoming channel
occurs in finite time. By the time each node receives a message, and according
to the local memory maintenance algorithm, each node would have been updated.
Indeed, the receiving of a message from an input channel implies the cleaning of all
previous information obtained from this channel. Consequently, in the considered
configuration, all lists in the local memory result from corresponding lists in the
latest messages sent through each channel. Yet, all these latest messages have a
weight strictly lower than 3α−1 and by the coherence property on canonical forms,
they present information that are compatible with the node canonical local memory,
up to index D+3−α. By the same property, and since all input channels contribute
to this information, it is complete. In the new configuration, each node i maintains
a local memory whose first D + 3 − α lists are canonical, and thus the weight of
its local memory is 3α−1. Such a configuration is reached within finite time and its
weight is (3α−1 (local memory), 3α−1 (messages)).

P���������� 2. The set of configurations whose weight is 0 is an attractor for
the set of all possible configurations.

Proof. By induction on the maximum degree of the weight on configurations.
The base case is proved by Lemma 1, and the induction step is proved by Lemma
2. Starting from any initial configuration whose weight is greater that 1, a con-
figuration whose weight is strictly inferior is eventually reached. Since the weight
of a configuration is positive or zero, and that the order defined on configura-
tions weights is total, eventually a configuration whose weight is zero is eventually
reached. By definition, this configuration is legitimate.

T�����" 1. Algorithm CA is self-stabilizing.

15

Proof. Consider a message m of weight 0. Two cases may occur: (i) m is
canonical, or (ii) m starts with a canonical message, followed by at least one empty
list, (possibly) followed by several erroneous lists. Assume that m is not canonical,
then it is impossible that m was emitted, since the truncate part of Algorithm
CA ensures that no message having an empty list can be emitted; then m is an
erroneous message that was present in the initial configuration.

Similarly, the only local memories that may contain an empty list are those
initially present (e.g. due to a transient failure).

As a consequence, after receipt of a message by each node and after receipt of
all initial messages, all configurations of weight 0 are legitimate (they only contain
canonical messages and canonical local memories).

By Proposition 2, the set of legitimate configurations is an attractor for the set
of all possible configurations, and Corollary 1 proves closure of the set of legitimate
configurations. Therefore, Algorithm CA is self-stabilizing.

4.6. Complexity

In this section, we investigate the memory space and time needed for the system
to stabilize into a legitimate configuration.

4.6.1. Space complexity

The space complexity result is immediately given by the assumptions made
when writing our algorithm. In the following, N denotes the number of nodes in
the system, and k denotes the number of possible identifiers for nodes. In practical
systems, log2(k) typically corresponds to a system word (32 or 64 bits).

L�""� 3. Each message m requires at least N × (log2(k)) bits space.

Proof. We compute the space needed by each message to hold all information in
the Census algorithm. We do not take into account the implementation dependent
list coding of a message information. Each identifier (of size bounded by log2(k))
is present exactly once in each message, and there are N such identifiers. Overall,
the required memory (in bits) at message m is bounded by:

N × (log2(k))

L�""� 4. Each node i requires at least

(N − 1)×
(
log2(k) + δ−i

)
bits space, where δ−i denotes the input degree of the node i.

Proof. We compute the space needed at node i to hold all information in the
Census algorithm. We do not take into account the implementation dependent list
coding of a node local information. Each identifier (that is bounded by log2(k))
in a pair is associated to an boolean array, that represents the incoming links that
transmitted the identifier. This array requires δ−i bits. In a correct configuration,
node i has a pair 〈identifier, colors〉 for any other node in the network (thus N − 1
pairs). Overall, the required memory (in bits) at node is bounded by:

(N − 1)×
(
log2(k) + δ−i

)
where δ−i denotes the input degree of the node i.

16

4.6.2. Time complexity

In the convergence part of the proof, we only assumed that computations were
maximal, and that message loss, duplication and desequencing could occur. In order
to provide an upper bound on the stabilization time for our algorithm, we assume
strong synchrony between nodes and a reliable communication medium between
nodes. Note that these assumptions are used for complexity results only, since our
algorithm was proven correct even in the case of asynchronous unfair computations
with link intermittent failures. In the following D denotes the network diameter.

L�""� 5. Assuming a synchronous reliable system S, the stabilization time of
algorithm CA is O(D).

Proof. Since the network is synchronous, we consider system steps as: (i) each
node receives all messages that are located at each of its incoming links and updates
its local memory according to the received information, and (ii) each node sends
as many messages as received on each of its outgoing links. Intuitively, within one
system step, each message is received by one processor and sent back. Within one
system step, all messages are received, and messages of weight strictly inferior to
that of the previous step are emitted (see the proof of Lemma 2). In the same time,
when a processor has received messages from each of its incoming links, its weights
is bounded by 3D+1−α, where D is the network diameter, and α is the number of
the system step (see the proof of Lemma 2). Since the maximal initial weight of
a message and of a local memory is 3D+2, after O(D) system steps, the weight of
each message and of each local memory is 0, and the system has stabilized.

5. CONCLUSION

When a distributed system is subject to various kinds of failures, various ways of
ensuring recovery from those failures are to be considered. We presented a global
approach that allows to solve the Census problem while tolerating two usually
distinguished kinds of failures: transient memory failures, and intermittent link
failures. Unlike previous work, we did not specifically address the problems related
to intermittent link failures. More precisely, in the proof of correctness, we presented
a global weight function, and showed that in any system computation, its value
was strictly decreasing up to the point when it reached 0. In this final stage, a key
property related to idempotency (the receipt of a correct message by a correct node
does not modify its state, a correct node always sends the same correct message)
hints at a possible general condition for tolerating both transient and intermittent
link failures.

We considered the Census problem in a strongly connected graph. However,
the very same algorithm can be used for different purposes. In [18], Dolev and
Herman show that starting from an algorithm that simply collects node unique
identifiers, communicating other local information as well as the node identifier
leads to solutions for any silent task (see [17]) using the same underlying Census
algorithm. For example, storing local topology information enables the construction
of a Topology Update algorithm. In our context, mixing the approach of [18] and
ours would lead to a self-stabilizing Topology Update algorithm that also supports
link intermittent failures.

Although we assume the system communication graph to be strongly connected,
we do not use this information to build a well known topology (e.g. a ring) and run

17

a well known algorithm on it. Indeed, this approach could potentially lower down
the performance of the overall algorithm, due to the fact that the communication
possibilities are not used to their full extent. As a matter of fact, when our distrib-
uted algorithm is run on a network that is not strongly connected, we ensure that
the collected information at each node is a topologically sorted list of its ancestors.
In DAG (directed acyclic graph) structured networks, such kind of information is
often wished (see [11]), and our approach makes it tolerant to link failures for free.

ACKNOWLEDGMENTS

We are grateful to the anonymous referees for helping us to improve this paper, both
in presentation and in technical correctness.

REFERENCES

[1] Y Afek and A Bremler. Self-stabilizing unidirectional network algorithms by power
supply. Chicago Journal of Theoretical Computer Science, 4(3):1—48, 1998.

[2] Y Afek and G M Brown. Self-stabilization over unreliable communication media.
Distributed Computing, 7:27—34, 1993.

[3] Y Afek, S Kutten, and M Yung. Memory-efficient self-stabilization on general net-
works. In WDAG90 Distributed Algorithms 4th International Workshop Proceedings,
Springer-Verlag LNCS:486, pages 15—28, 1990.

[4] E Anagnostou and V Hadzilacos. Tolerating transient and permanent failures. In
Proceedings of WDAG’93, LNCS 725, pages 174—188, 1993.

[5] B Awerbuch, B Patt-Shamir, and G Varghese. Self-stabilization by local checking
and correction. In IEEE, editor, Proceedings of the 32nd Annual Symposium on
Foundations of Computer Science, pages 268—277, San Juan, Porto Rico, October
1991. IEEE Computer Society Press.

[6] K A Bartlett, R A Scantlebury, and P T Wilkinson. A note on reliable full-duplex
transmission over half-duplex links. Communications of the ACM, 12(5):260—261,
May 1969.

[7] A Basu, B Charron-Bost, and S Toueg. Simulating reliable links in the presence of
process crashes. In Proceedings of the Tenth International Workshop on Distributed
Algorithms (WDAG’96), LNCS 1151, 1996.

[8] J Beauquier, AK Datta, and S Tixeuil. Self-stabilizing census with cut-through con-
straint. In Proceedings of the Third Workshop on Self-Stabilizing Systems (published
in association with ICDCS99 The 19th IEEE International Conference on Distributed
Computing Systems), pages 70—77. IEEE Computer Society, 1999.

[9] J Beauquier and Kekkonen-Moneta. Fault tolerance and self-stabilization: impossibil-
ity results and solutions using self-stabilizing failure detectors. International Journal
of Systems science, 28(11):1177—1187, november 1997.

[10] A Bui, A K Datta, F Petit, and V Villain. State-optimal snap-stabilizing pif in tree
networks. In Proceedings of the Fourth Workshop on Self-stabilizing Systems, pages
78—85, 1999.

[11] S K Das, A K Datta, and S Tixeuil. Self-stabilizing algorithms in dag structured
networks. Parallel Processing Letters, 9(4):563—574, December 1999.

[12] S Delaët and S Tixeuil. Un algorithme auto-stabilisant en dépit de communications
non fiables. Technique et Science Informatiques, 5(17), 1998.

[13] S Delaët and S Tixeuil. Tolerating transient and intermittent failures. In Proceedings
of OPODIS’2000, pages 17—36, December 2000.

18

[14] E W Dijkstra. Self-stabilization in spite of distributed control. Communications of
the ACM, 17(11):643—644, November 1974.

[15] S Dolev. Self-stabilizing routing and related protocols. Journal of Parallel and Dis-
tributed Computing, 42(2):122—127, May 1997.

[16] S. Dolev. Self-stabilization. The MIT Press, 2000.

[17] S Dolev, MG Gouda, and M Schneider. Memory requirements for silent stabilization.
In PODC96 Proceedings of the Fifteenth Annual ACM Symposium on Principles of
Distributed Computing, pages 27—34, 1996.

[18] S Dolev and T Herman. Superstabilizing protocols for dynamic distributed systems.
Chicago Journal of Theoretical Computer Science, 3(4), 1997.

[19] S Dolev, A Israeli, and S Moran. Self-stabilization of dynamic systems assuming only
read/write atomicity. Distributed Computing, 7:3—16, 1993.

[20] M J Fisher, N A Lynch, and M S Paterson. Impossibility of distributed consensus
with one faulty process. Journal of the ACM, 32(2):374—382, April 1985.

[21] A. S. Gopal and K. J. Perry. Unifying self-stabilization and fault-tolerance. In
Proceedings of PODC’93, pages 195—206, 1993.

[22] J-H. Hoepman, M. Papatriantafilou, and P. Tsigas. Self-stabilization of wait free
shared memory objects. In Proceedings of the WDAG’95, pages 273—287, 1995.

[23] M Jayaram and G Varghese. Crash failures can drive protocols to arbitrary states.
In PODC96 Proceedings of the Fifteenth Annual ACM Symposium on Principles of
Distributed Computing, pages 247—256, 1996.

[24] N A Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

[25] T Masuzawa. A fault-tolerant and self-stabilizing protocol for the topology problem.
In Proceedings of the Second Workshop on Self-Stabilizing Systems, pages 1.1—1.15,
1995.

[26] J M Spinelli and R G Gallager. Event driven topology broadcast without sequence
numbers. IEEE Transaction on Communications, 37(5):468—474, May 1989.

[27] N V Stenning. A data transfer protocol. Computer Networks, 1(2):99—110, September
1976.

[28] D-W Wang and L D Zuck. Tight bounds for the sequence transmission problem.
In Proceedings of the Eighth Annual ACM Symposium on Principles of Distributed
Computing (PODC’89), pages 73—83, August 1989.

SYLVIE DELAËT is Docteur en Sciences de l’Université Paris Sud, Orsay, France
since December 1995. Her Ph.D. was on self-stabilizing mutual exclusion. She has been
a Maître de conférences at the University Paris Sud since September 1996. From 1995
to 2001 she was doing research in the self-stabilizing area. Her research interests include
distributed computing, communication networks and fault tolerance.

SÉBASTIEN TIXEUIL received theMagistère d’Informatique Appliquée from the Uni-
versity Pierre and Marie Curie (France) in 1995, and his M.Sc and Ph.D. in Computer
Science from the University of Paris Sud (France) in 1995 and 2000, respectively. In
2000, he joined the faculty at the University Paris Sud. His research interests include
self-stabilizing and fault-tolerant distributed computing.

19

