Discovering Network Topology in
the Presence of Byzantine Faults

Mikhail Nesterenko!* and Sébastien Tixeuil®**

1 Computer Science Department, Kent State University Kent, OH, 44242, USA, mikhail@cs.kent.edu
2 LRI-CNRS UMR 8623 & INRIA Grand Large
Université Paris Sud, France, tixeuil@lri.fr

Abstract. We study the problem of Byzantine-robust topology discovery in an arbitrary asynchronous
network. We formally state the weak and strong versions of the problem. The weak version requires that
either each node discovers the topology of the network or at least one node detects the presence of a
faulty node. The strong version requires that each node discovers the topology regardless of faults.

We focus on non-cryptographic solutions to these problems. We explore their bounds. We prove that
the weak topology discovery problem is solvable only if the connectivity of the network exceeds the
number of faults in the system. Similarly, we show that the strong version of the problem is solvable
only if the network connectivity is more than twice the number of faults.

We present solutions to both versions of the problem. Our solutions match the established graph con-
nectivity bounds. The programs are terminating, they do not require the individual nodes to know either
the diameter or the size of the network. The message complexity of both programs is low polynomial
with respect to the network size.

Contact author: Mikhail Nesterenko, Department of Computer Science
Kent State University Kent, OH, 44242, USA
1 (330) 672-9109
mikhail@cs.kent.edu

* This author was supported in part by DARPA contract OSU-RF#F33615-01-C-1901 and by NSF CAREER Award
0347485.
** This author was supported in part by the FNS grants FRAGILE and SR2I from ACI “Sécurité et Informatique”.

1 Introduction

In this paper, we investigate the problem of
Byzantine-tolerant distributed topology discovery in
an arbitrary network. Each node is only aware of its
neighboring peers and it needs to learn the topology
of the entire network.

Topology discovery is an essential problem in dis-
tributed computing (e.g. see [18]). It has direct appli-
cability in practical systems. For example, link-state
based routing protocols such as OSPF use topology
discovery mechanisms to compute the routing tables.
Recently, the problem came to the fore with the in-
troduction of ad hoc wireless sensor networks, such as
Berkeley mote network [6], where topology discovery
is essential for routing decisions.

As reliability demands on distributed systems in-
crease, the interest in developing robust topology dis-
covery programs grows. One of the strongest fault
models is Byzantine [8]: the faulty node behaves arbi-
trarily. This model encompasses rich set of fault sce-
narios. Moreover, Byzantine fault tolerance has se-
curity implications, as the behavior of an intruder
can be modeled as Byzantine. One approach to deal
with Byzantine faults is by enabling the nodes to use
cryptographic operations such as digital signatures
or certificates. This limits the power of a Byzantine
node as a non-faulty node can verify the validity of
received topology information and authenticate the
sender across multiple hops. However, this option may
not be available. For example, wireless sensors may
not have the capacity to manipulate digital signa-
tures. Another way to limit the power of a Byzantine
process is to assume synchrony: all processes proceed
in lock-step. Indeed, if a process is required to send
a message with each pulse, a Byzantine process can-
not refuse to send a message without being detected.
However, the synchrony assumption may be too re-
strictive for practical systems.

Our contribution. In this study we explore the fun-
damental properties of topology discovery. We select
the weakest practical programming model, establish
the limits on the solutions and present the programs
matching those limits.

Specifically, we consider arbitrary networks of arbi-
trary topology where up to fixed number of nodes £ is
faulty. The execution model is asynchronous. We are
interested in solutions that do not use cryptographic
primitives. The solutions should be terminating and
the individual processes should not be aware of the
network parameters such as network diameter or its
total number of nodes.

We state two variants of the topology discovery
problem: weak and strong. In the former — either
each non-faulty node learns the topology of the net-
work or one of them detects a fault; in the latter —

each non-faulty node has to learn the topology of the
network regardless of the presence of faults.

As negative results we show that any solution to
the weak topology discovery problem can not ascer-
tain the presence of an edge between two faulty nodes.
Similarly, any solution to the strong variant can not
determine the presence of a edge between a pair of
nodes at least one of which is faulty. Moreover, the
solution to the weak variant requires the network to
be at least (k+41)-connected. In case of the strong vari-
ant the network must be at least (2k + 1)-connected.

The main contribution of this study are the al-
gorithms that solve the two problems: Detector and
Ezplorer. The algorithms match the respective lower
bounds. To the best of our knowledge, these are the
first asynchronous Byzantine-robust solutions to the
topology discovery problem that do not use crypto-
graphic operations. Explorer solves the stronger prob-
lem. However, Detector has better message complex-
ity. Detector either determines topology or signals
fault in O(6n?) messages where § and n are the max-
imum neighborhood size and the number of nodes in
the system respectively. Ezplorer finishes in O(n?)
messages. We extend our algorithms to (a) discover
a fixed number of routes instead of complete topol-
ogy and (b) reliably propagate arbitrary information
instead of topological data.

Related work. A number of researchers employ
cryptographic operations to counter Byzantine faults.
Avromopolus et al [2] consider the problem of secure
routing. Therein see the references to other secure
routing solutions that rely on cryptography. Perrig et
al [16] survey robust routing methods in ad hoc sensor
networks. The techniques covered there also assume
that the processes are capable of cryptographic oper-
ations.

A naive approach of solving the topology discov-
ery problem without cryptography would be to use
a Byzantine-resilient broadcast [3, 5,7, 15]: each node
advertises its neighborhood. However all existing solu-
tions for arbitrary topology known to us require that
the graph topology is a priori known to the nodes.

Let us survey the non-cryptography based ap-
proaches to Byzantine fault-tolerance. Most programs
described in the literature [1,9,10,13] assume com-
pletely connected networks and can not be easily ex-
tended to deal with arbitrary topology. Dolev [5] con-
siders Byzantine agreement on arbitrary graphs. He
states that for agreement in the presence of up to k
Byzantine nodes, it is necessary and sufficient that
the network is (2k + 1)-connected and the number
of nodes in the system is at least 3k + 1. However,
his solution requires that the nodes are aware of the
topology in advance. Also, this solution assumes the
synchronous execution model. Recently, the problem
of Byzantine-robust reliable broadcast has attracted

attention [3,7,15]. However, in all cases the topology
is assumed to be known. Bhandari and Vaidya [3] and
Koo [7] assume two-dimensional grid. Pelc and Peleg
[15] consider arbitrary topology but assume that each
node knows the exact topology a priori. A notable
class of algorithms tolerates Byzantine faults locally
[12,14,17]. Yet, the emphasis of these algorithms is on
containing the fault as close to its source as possible.
This is only applicable to the problems where the in-
formation from remote nodes is unimportant such as
vertex coloring, link coloring or dining philosophers.
Thus, local containment approach is not applicable to
topology discovery.

Masuzawa [11] considers the problem of topology
discovery and update. However, Masuzawa is inter-
ested in designing a self-stabilizing solution to the
problem and thus his fault model is not as general
as Byzantine: he considers only transient and crash
faults.

The rest of the paper is organized as follows. After
stating our programming model and notation in Sec-
tion 2, we formulate the topology discovery problems,
as well as state the impossibility results in Section 3.
We present Detector and FEzxplorer and formally prove
them correct in Sections 4 and 5 respectively. We dis-
cuss the composition of our programs and their exten-
sions in Section 6 and conclude the paper in Section 7.

2 Notation, Definitions and
Assumptions

Graphs. A distributed system (or program) consists
of a set of processes and a neighbor relation between
them. This relation is the system topology. The topol-
ogy forms a graph G. Denote n and e to be the number
of nodes® and edges in G respectively. Two processes
are neighbors if there is an edge in G connecting them.
A set P of neighbors of process p is neighborhood of
p. In the sequel we use small letters to denote sin-
gleton variables and capital letters to denote sets. In
particular, we use a small letter for a process and a
matching capital one for this process’ neighborhood.
Since the topology is symmetric, if ¢ € P then p € Q.
Denote d to be the maximum number of nodes in a
neighborhood.

A node-cut of a graph is the set of nodes U such that
G\ U is disconnected or trivial. A node-connectivity
(or just connectivity) of a graph is the minimum car-
dinality of a node-cut of this graph. In this paper we
make use of the following fact about graph connectiv-
ity that follows from Menger’s theorem (see [19]): if
a graph is k-connected then for every two vertices u
and v there exists at least k internally node-disjoint
paths connecting v and v in this graph.

3 We use terms process and node interchangeably.

Program model. A process contains a set of vari-
ables. When it is clear from the context, we refer to
a variable var of process p as var.p. Every variable
ranges over a fixed domain of values. For each vari-
able, certain values are initial. Each pair of neighbor
processes share a pair of special variables called chan-
nels. We denote C'h.b.c the channel from process b to
process c. Process b is the sender and c is the receiver.
The value for a channel variable is chosen from the do-
main of (potentially infinite) sequences of messages.

A state of the program is the assignment of a
value to every variable of each process from its corre-
sponding domain. A state is initial if every variable
has initial value. Each process contains a set of ac-
tions. An action has the form (name) : (guard) —
(command). A guard is a boolean predicate over the
variables of the process. A command is sequence of as-
signment and branching statements. A guard may be
a receive-statement that accesses the incoming chan-
nel. A command may contain a send-statement that
modifies the outgoing channel. A parameter is used to
define a set of actions as one parameterized action. For
example, let j be a parameter ranging over values 2, 5
and 9; then a parameterized action ac.j defines the set
of actions ac.(j = 2) [ac.(j =5) [ac.(j = 9). Either
guard or command can contain quantified constructs
[4] of the form: ({(quantifier){bound variables)
(range) : (term)), where range and term are boolean
constructs.

Semantics. An action of a process of the program
is enabled in a certain state if its guard evaluates to
true. An action containing receive-statement is en-
abled when appropriate message is at the head of
the incoming channel. The execution of the command
of an action updates variables of the process. The
execution of an action containing receive-statement
removes the received message from the head of the
incoming channel and inserts the value the message
contains into the specified variables. The execution of
send-statement appends the specified message to the
tail of the outgoing message.

A computation of the program is a maximal fair
sequence of states of the program such that the first
state sg is initial and for each state s; the state s;41
is obtained by executing the command of an action
whose state is enabled in s;. That is, we assume that
the action execution is atomic. The maximality of a
computation means that the computation is either in-
finite or it terminates in a state where none of the ac-
tions are enabled. The fairness means that if an action
is enabled in all but finitely many states of an infinite
computation then this action is executed infinitely of-
ten. That is, we assume weak fairness of action exe-
cution. Notice that we define the receive statement
to appear as a standalone guard of an action. This

means, that if a message of the appropriate type is at
the head of the incoming channel, the receive action is
enabled. Due to weak fairness assumption, this leads
to fair message receipt assumption: each message in
the channel is eventually received. Observe that our
definition of a computation considers asynchronous
computations.

To reason about program behavior we define
boolean predicates on program states. A program in-
variant is a predicate that is true in every initial
state of the program and if the predicate holds be-
fore the execution of the program action, it also holds
afterwards. Notice that by this definition a program
invariant holds in each state of every program com-
putation.

Faults. Throughout a computation, a process may be
either Byzantine (faulty) or non-faulty. A Byzantine
process contains an action that assigns to each lo-
cal variable an arbitrary value from its domain. This
action is always enabled. Observe that this allows a
faulty node to send arbitrary messages. We assume,
however, that messages sent by such node conform to
the format specified by the algorithm: each message
carries the specified number of values, and the values
are drawn from appropriate domains. This assump-
tion is not difficult to implement as message syntax
checking logic can be incorporated in receive-action
of each process. We assume oral record [8] of message
transmission: the receiver can always correctly iden-
tify the message sender. The channels are reliable: the
messages are delivered in FIFO order and without loss
or corruption.

Graph exploration. The processes discover the
topology of system by exchanging messages. Each
message contains the identifier of the process and its
neighborhood. Process p explored process ¢ if p re-
ceived a message with (¢, Q). When it is clear from
the context, we omit the mention of p. An explored
subgraph of a graph contains only explored processes.
A Byzantine process may potentially circulate infor-
mation about the processes that do not exist in the
system altogether. A process is fake if it does not exist
in the system, a process is real otherwise.

3 Topology Discovery Problem:
Statement and Solution Bounds

Problem statement.

Definition 1 (Weak Topology Discovery Prob-
lem). A program is a solution to the weak topology
discovery problem if each of the program’s computa-
tion satisfies the following properties: termination —
either all non-faulty processes determine the system
topology or at least one process detects a fault; safety

— for each non-faulty process, the determined topol-
ogy is a subset of the actual system topology; validity
— the fault is detected only if there are faulty pro-
cesses in the system.

Definition 2 (Strong Topology Discovery
Problem). A program is a solution to the strong
topology discovery problem if each of the program’s
computation satisfies the following properties: ter-
mination — all non-faulty processes determine the
system topology; safety — the determined topology
is a subset of the actual system topology.

According to the safety property of both problem
definitions each non-faulty process is only required to
discover a subset of the actual system topology. How-
ever, the desired objective is for each node to discover
as much of it as possible. The following definitions
capture this idea. A solution to a topology discovery
problem is complete if every non-faulty process always
discovers the complete topology of the system. A so-
lution to the problem is node-complete if every non-
faulty process discovers all nodes of the system. A
solution is adjacent-edge complete if every non-faulty
node discovers each edge adjacent to at least one non-
faulty node. A solution is two-adjacent-edge complete
if every non-faulty node discovers each edge adjacent
to two non-faulty nodes.

Solution bounds. To simplify the presentation of
the negative results in this section we assume more re-
strictive execution semantics. Each channel contains
at most one message. The computation is synchronous
and proceeds in rounds. In a single round, each pro-
cess consumes all messages in its incoming channels
and outputs its own messages into the outgoing chan-
nels. Notice that the negative results established for
this semantics apply for the more general semantics
used in the rest of the paper.

Theorem 1. There does not exist a complete solu-
tion to the weak topology discovery problem.

Proof: Assume there exists a complete solution to
the problem. Consider &k > 2 and topology G; that
is not completely connected. Let none of the nodes
in G be faulty. By the validity property, none of the
nodes may detect a fault in such topology. Consider
a computation s; of the solution program where each
node discovers G1. Let p € G1, ¢ # p, and r # p be
three nodes in G, with ¢ and r being non-neighbor
nodes in GG3. Since G is not completely connected we
can always find two such nodes.

We form topology G2 by connecting ¢ and r in Gj.
Let ¢ and r be faulty in G5. We construct a computa-
tion s which is identical to s;. That is, ¢ and r, being
faulty, in every round output the same messages as in

$1. Since sg is otherwise identical to sy, process p de-
termines that the topology of the system is G; # Ga.
Thus, the assumed solution is not complete. O

Theorem 2. There exists no node- and adjacent-
edge complete solution to the weak topology problem
if the connectivity of the graph is lower or equal to
the total number of faults k.

Proof: Assume the opposite. Let there be a node-
and adjacent-edge complete program that solves the
problem for graphs whose connectivity is k or less.
Let G and G2 be two graphs of connectivity k.

This means that G; and G5 contain the respective
cut node sets A; and Az whose cardinality is k. Re-
name the processes in Gy such that A; = As. By
definition A; separates (G1 into two disconnected sets
By and C}. Similarly, As separates G4 into By and
Cs. Assume that By € Bs. Since A3 = Ay we can
form graph Gs as A; U Bo U C].

Let s1 be any computation of the assumed program
in the system of topology G; and no faulty nodes.
Since the program solves the weak topology problem,
the computation has to comply with all the proper-
ties of the problem. By validity property, no fault is
detected in s;. By termination property, each node in
(1, including some node p € C1, eventually discovers
the system topology.

By safety property the topology discovered by p
is a subset of G;. Since the solution is complete the
discovered topology is G exactly. Let so be any com-
putation of the assumed program in the system of
topology G2 and no faulty nodes. Again, none of the
nodes detects a fault and all of them discover the
complete topology of G5 in so.

We construct a new computation sz of the assumed
program as follows. The system topology for sz is G3
where all nodes in A; are faulty. Each faulty node
q € Ay behaves as follows. In the channels connecting
q to the nodes of C7 C G3, each round ¢ outputs the
messages as in s;. Similarly, in the channels connect-
ing ¢ to the nodes of By C G3, g outputs the messages
as in s3. The non-faulty nodes of By and C; behave
as in s; and so respectively.

Observe that for the nodes of Bag, the topology and
communication is indistinguishable from that of ss.
Similarly, for the nodes of C; the topology and com-
munication is indistinguishable from that of s;. No-
tice that this means that none of the non-faulty nodes
detect a fault in the system. Moreover, node p € C
decides that the system topology is the subset of G;.
Yet, by construction, G; # Gs3. Specifically, By € Bs.
Moreover, none of the nodes in By are faulty. If this is
the case then either s3 violates the safety property of
the problem or the assumed solution is not adjacent-
edge complete. The theorem follows.]

Observe that for (k + 1)-connected graphs an
adjacent-edge complete solution is also node com-
plete.

Theorem 3. There does not exist an adjacent-edge
complete solution to the strong topology discovery
problem.

Proof: Assume such a solution exists. Consider sys-
tem graph G, that is not completely connected. Let
p € G1 be an arbitrary node. Let g # p and r # p be
two non-neighbor nodes of G;. We form topology G2
by connecting g and 7 in Gj.

We construct computations s; and so as follows.
Let s; and s5 be executed on G1 and G5 respectively.
And let ¢ be faulty in s; and r be faulty in so. Set
the output of ¢ in each round to be identical in sy
and sg. Similarly, set the output of r to be identical
in both computations as well. Since the output of ¢
and 7 in both computations is identical, we construct
the behavior of the rest of the nodes in s; and sy to
be the same.

Due to termination property, p has to decide on the
system topology in both computations. Due to the
safety property, in s; process p has to determine that
the topology of the graph is a subset of G;. However,
since the behavior of p in s, is identical to that in
s1, p decides that the topology of the system graph is
(G1 in s9 as well. This means p does not include the
edge between ¢ and r to the explored topology in ss.
Yet, one of the nodes adjacent to this edge, namely
q, is not faulty. An adjacent-edge complete program
should include such edges in the discovered topology.
Therefore, the assumed program is not adjacent-edge
complete. a

Theorem 4. There exists no node- and two-
adjacent-edge complete solution to the strong topol-
ogy problem if the connectivity of the graph is less
than or equal to twice the total number of faults k.

Proof: Assume that there is a program that solves
the problem for graphs whose connectivity is 2k or
less. Let G; and G2 be two different graphs whose
connectivity is 2k. Similar to the the proof of The-
orem 2, we assume that Gy = A; U By U Cy and
G2 = As U By U (5 where the cardinality of A; and
A are 2k, Ay = Ay, B1NCy =@, BoNCy = &, and
B1 g BQ. Form Gg = A1 U BQ @] Cl. Divide Al into
two subsets A} and A/ of the same number of nodes.

Construct a computation s; with system topology
G1 where all nodes in A are faulty; and another com-
putation s3 with system topology G'3 where all nodes
in A are faulty. The faulty nodes in s in the channels
connecting A} to C; communicate as the (non-faulty)
nodes of A} in s3. Similarly, the faulty nodes in s3 in
the channels connecting A7 to Cy communicate as
the nodes of A} in s;. Observe that s; and s3 are

indistinguishable to the nodes in C. Let the nodes
in C1, including p € C; behave identically in both
computations. According to the termination property
of the strong topology discovery problem every node,
including p has to determine the system topology in
both s; and s3. Due to safety, the topology that p de-
termines in s; is a subset of G1. However, p behaves
identically in s3.

This means that p decides that the system topology
in s3 is also a subset of G;. Since G # G3 (specifi-
cally, By € Bs), and that none of the nodes in By are
faulty, this implies that either ss violates the safety
property of the problem or the assumed solution is
not adjacent-edge complete. The theorem follows. O

4 Detector

Outline. Detector solves the weak topology discov-
ery problem for system graphs whose connectivity ex-
ceeds the number of faulty nodes k. The algorithm
leverages the connectivity of the graph. For each pair
of nodes, the graph guarantees the presence of at least
one path that does not include a faulty node. The
topology data travels along every path of the graph.
Hence, the process that collects information about an-
other process can find the potential inconsistency be-
tween the information that proceeds along the path
containing faulty nodes and the path containing only
non-faulty ones.

Care is taken to detect the fake nodes whose in-
formation is introduced by faulty processes. Since the
processes do not know the size of the system, a faulty
process may potentially introduce an infinite num-
ber of fake nodes. However, the graph connectivity
assumption is used to detect fake nodes. As faulty
processes are the only source of information about
fake nodes, all the paths from the real nodes to the
fake ones have to contain a faulty node. Yet, the graph
connectivity is assumed to be greater than k. If a fake
node is ever introduced, one of the non-faulty pro-
cesses eventually detects a graph with too few paths
leading to the fake node.

Detailed Description. The program is shown in
Figure 1. Each process p stores the identifiers of its im-
mediate neighbors. They are kept in set P. Each pro-
cess keeps the upper bound k on the number of faulty
processes. Process p maintains the following variables.
Boolean variable detect indicates if p discovers a fault
in the system. Boolean variable start guards the exe-
cution of the action that sends p’s neighborhood infor-
mation to its neighbors. Set TOP stores the subgraph
explored by p; TOP contains tuples of the form: (pro-
cess identifier, its neighborhood). In the initial state,
TOP contains (p, P).

Function path_number evaluates the topology of
the subgraph stored in TOP. Recall that a node u

is unexplored by p if for every tuple (s,S) € TOP,
s is not the same as u. That is u may appear in S
only. We construct graph G’ by adding an edge to
every pair of unexplored processes present in TOP.
We calculate the value of path_number as follows.
If the information of TOP is inconsistent, that is:

(Fu,v, U,V : ((u,U) € TOP) A ((v,V) € TOP) :
(weV)A(vgU))

then path_number returns 0. If there is exactly one
explored node in TOP, path_number returns k4 1.
Otherwise the function returns the minimum num-
ber of internally node disjoint paths between two ex-
plored nodes in G'. In the correctness proof for this
program we show that unless there is a fake node, the
path_number of G’ is no smaller than the connec-
tivity of G.

Processes exchange messages of the form (process
identifier, its neighborhood id set). A process contains
two actions: init and accept. Action init starts the
propagation of p’s neighborhood throughout the sys-
tem. Action accept receives the neighborhood data of
some process, records it, checks against other data al-
ready available for p and possibly further disseminates
the data. If the data received from neighbor ¢ about a
process r contradicts what p already holds about r in
TOP or if the newly arrived information implies that
G is less than (k+ 1)-connected p indicates that it de-
tected a fault by setting detect to true. Alternatively,
if p did not previously have the information about r,
p updates TOP and sends the received information
to all its neighbors.

Correctness proof. Observe that the propagation of
information about the neighborhood of a certain pro-
cess is independent of the information propagation of
another process. Thus, we will focus on the propaga-
tion of the information about a particular non-faulty
process a.

Let COR contain each process b such that b is not
faulty and TOP.b holds (a, A). Let a itself belong to
COR if start.a is false.

Lemma 1. The following predicate is an invariant of
Detector.

V non-faulty b,c: b € COR,c€ B :

ce€ COR)V

(a,A) € Ch.b.c)) Vv

3 non-faulty j : j € N : detect.j = true)

(1)

~ o~~~

The predicate states that unless one of the non-
faulty processes in the program detects a fault, if a
process b belongs to COR then each neighbor ¢ of b
either belongs to COR as well or the channel from b
to ¢ contains (a, A).

process p
const

P: set of neighbor identifiers of p
k: integer, upper bound on the number of faulty processes

parameter
q: P
var

detect : boolean, initially false, signals fault

start : boolean, initially true, controls sending of p’s neighborhood info

TOP : set of tuples, initially {(p, P)}, (process ids, neighbor id set)
received by p

ull

it start —
start := false,
(Vj:j € P:send (p,P) to j)
I
accept: receive (r, R) from ¢ —

if (35,5 :(s,8) € TOP:s=rANS#R)V
(path_number(TOP U {(r,R)}) < k+1)

then

detect := true

else

if (35,5 : (5,S) € TOP : s =r) then
TOP :=TOPU{(r,R)},

(Vj:j € P:send (r,R) to j)

Fig. 1. Process of Detector

Proof: To prove that Predicate 1 is an invariant of
the program, we need to show that it holds in the
initial state of any computation and it is closed under
the execution of actions of Byzantine as well as non-
faulty processes. The predicate holds initially as the
first disjunct is vacuously true.

Note that no action of a Byzantine process immedi-
ately affects the validity of the predicate. Observe also
that a non-faulty process can only set detect to true.
Thus, once this happens the predicate holds through-
out the rest of the computation. Suppose detect is
false in all processes of the program. Then the pred-
icate is violated only if there is a non-faulty pair of
neighbors b and ¢ such that b belongs to COR, ¢ does
not and there is no message (a, 4) in the channel from
b to c. Notice that a non-faulty process adds the first
value (r, R) to TOP and never changes it afterwards.
Thus, provided that detect = false, to violate the
predicate, a process has to join COR without send-
ing (a, A) to its neighbors or consume a message with
(a, A) without joining COR. Let us examine the ac-
tions of a non-faulty process and ensure that neither
of this happens.

Observe that init is only of interest in a. This ac-
tion sets start.a = false which, by definition, adds
a to COR. Also, init atomically sends (a, A) to all
neighbors of a. Thus, the predicate is not violated by
the execution of init.

Let us now comnsider accept in an arbitrary non-
faulty process u. Let the message received by u carry
(r,R). Observe that accept affects Predicate 1 only
if 7 = a. accept may make u join COR or consume
a message with (a, A). Notice, that if u is already
in COR the receipt of a message with (a, A) does
not violate the predicate. Also, v joins COR only if
it receives (a,A). Hence, the only case we have to
consider is when u does not belong to COR before
the execution of accept, u receives (a, A) and joins
COR.

The behavior of u in this case depends on whether
it has an element (s,S) in TOP.u such that s = a.
Since u ¢ COR, if (a,S) € TOP.u, then S differs
from A. In this case if u receives (a, A) then it sets
detect = true. This preserves the validity of the pred-
icate. Alternatively, if such an entry in TOP.u does
not exist, then the receipt of (a, A) causes u to join
COR and forward (a,A) to all its neighbors. This
preserves the predicate as well.

Thus, Predicate 1 holds in the initial state of every
computation of the program and is preserved by its
every action. Which means that this predicate is an
invariant of the program. O

Lemma 2. If a computation of Detector contains a
state where there is a process u that belongs to COR
that has a non-faulty neighbor v that does not, then
further in the computation, either some non-faulty
process sets detect = true or v joins COR.

Proof: According to Lemma 1, Predicate 1 is an in-
variant of the program. Hence, if u belongs to COR
and its non-faulty neighbor v does not, then channel
Ch.u.v contains a message with (a, A). Due to fair
message receipt assumption, (a, A) is received. Ob-
serve that if v is not in COR and it receives (a, A),
then either v sets detect = true or joins COR. a

Lemma 3. Every computation of Detector contains
a state where either detect = true in some non-faulty
process or every non-faulty process belongs to COR.

Proof: The proof is by induction on the number of
non-faulty processes in the program. As a base case,
we show that a itself eventually joins COR. Recall,
that we assume that a itself is not faulty. Observe that
the program starts in a state where start.a is true.
If this is so, init is enabled. Moreover, init is the only
action that sets start.a to false. Thus, init stays en-
abled until executed. By weak fairness assumption,
init is eventually executed. When this happens, a
joins COR.

Assume that COR contains i: 1 < i < n processes
at some state of a computation and there is a non-
faulty process that does not belong to COR. We as-
sume that the connectivity of the graph exceeds the
maximum number of faulty processes. Thus, there is
a non-faulty process v € COR that has a non-faulty
neighbor v ¢ COR. According to Lemma 2, this
computation contains a state where COR contains v.
Thus, every non-faulty process eventually joins COR.
O

Lemma 4. If a computation of Detector contains a
state where non-faulty process u explores a fake pro-
cess v, then this computation contains a state where
detect = true in some non-faulty process.

Proof: Observe that the only source of fake process
information is a Byzantine process. Hence, if u ex-
plores a fake process v, then every path to v leads
through a Byzantine process. Thus, in a graph with
a fake node, the maximum number of node-disjoint
paths between a real and a fake node is no more than
k.

According to Lemma 3, eventually, either detect =
true at a non-faulty process or u explores every non-
faulty process in the system. In this case u detects
that all paths to the fake node v lead through no
more than k processes and sets detect = true. O

Lemma 5. If the system does not have a faulty pro-
cess, then in every computation, for each process, the
path_number of the explored subgraph G’ is greater
than k.

Proof: Observe that if there are no faulty processes,
only correct topology information is circulated in the
system. Hence, for each process u, TOP.u contains

the subgraph of the system graph G. In this case,
G’.u is an arbitrary set of explored processes from G
and the unexplored members of their neighborhoods.
By the construction of G’.u, every pair of unexplored
processes is connected by an edge.

Fig. 2. Illustration for the proof of Lemma 5: construction
of path P’ C G’ on the basis of path P C G

Let v and w be an arbitrary pair of explored nodes
in G’.u. And let P be a path connecting v and w in G.
We claim that there exists a path P’ in G’.u connect-
ing v and w that is also a node-subset of P. That is,
every node that belongs to P’ also belongs to P. See
Figure 2 for the illustration. If P contains only the
nodes explored in G'.u, our claim holds since P’ = P.
Let P contain unexplored nodes as well. In general, P
contains alternating segments of explored and unex-
plored nodes. Let (z;,yi, -+ ,¥it1,%i+1) be any such
unexplored segment, where x;, x,4; are explored and
Yi,-+ ,Yi+1 are not. Observe that y; and y;41 have
explored neighbors — x; and x; 1 respectively. This
means that both y; and y;11 belong to G’.u. Since
y; and y;41 are unexplored, G’.u contains an edge
connecting them. We construct P’ to contain every
explored segment of P; we replace every unexplored
segment by the edge that links unexplored nodes in
G’.u. Observe that by construction, P’ € G'.u and P’
contains a subset of the nodes of P. Thus, our claim
holds.

Let P; and P> be two internally node disjoint paths
connecting v and w in G. According to the just proved
claim, there exist P/ and Pj belonging G’.u that con-
nect v and w. Moreover, P; contains a subset of nodes
of P, and P} contains a subset of nodes of P,. Since
Py, and P; are internally node disjoint, so are P; and
Pj.

Recall that G is assumed to be (k + 1)-connected.
This means that for every two vertices v and w there
exist k + 1 internally node disjoint paths between v
and w. Thus, the number of internally node disjoint
paths for v and w in G’.u is at least k + 1. Hence, the
path_number of G’.u is greater than k. a

Lemma 6. Any computation of a detector program
contains a state where a Byzantine process is detected
only if there indeed is a Byzantine process in the sys-
tem.

Proof: A non-faulty process sets detect to true if it
encounters divergent information about some node’s
neighborhood or when it detects that path_number
is less than k+ 1. However, a non-faulty process never
modifies the neighborhood information about other
processes. Hence, if the program does not have a
faulty process, all the information about a particu-
lar neighborhood that is circulated in the system is
identical. Also, according to Lemma 5 if there are
no faulty processes in the system, the path_number
never falls below k + 1. Hence, detect is set to true
only if indeed the system contains a faulty process. O

Theorem 5. Detector is an adjacent-edge complete
solution to the weak topology discovery problem in
case the connectivity of system topology graph ex-
ceeds the number of faults.

Proof: To prove the theorem we show that every
computation of Detector conforms to the properties
of the problem. We then show that the discovered
topology is adjacent-edge complete.

Termination property follows from Lemma 3, safety
— from Lemma 4, while validity follows from
Lemma 6. Notice that Lemma 3 states that unless
a fault is detected, the neighborhood of every non-
faulty process is added to COR. That is, edges adja-
cent to a non-faulty processes are detected by every
non-faulty processes. Thus, Detector is adjacent-edge
complete. Hence the theorem. O

Efficiency evaluation. Since we consider an asyn-
chronous model, the number of messages a Byzantine
process can send in a computation is infinite. To eval-
uate the efficiency of Detector we assume that each
process is familiar with the upper bound on the num-
ber of processes in the system and this upper bound
isin O(n). A non-faulty process then detects a fault if
the number of processes it explores exceeds this bound
or if it receives more than one identical message from
the same neighbor. We assume that the process stops
and does not send or receive any more messages if it
detects a fault.

In this case we can estimate the number of mes-
sages that are received by non-faulty processes before
one of them detects a fault or before the computation
terminates. To make the estimation fair, the assume
that the unit is log(n) bits. Since it takes that many
bits to assign unique process identifiers to n processes,
we assume that one identifier is exactly one unit of in-
formation. A message in Detector carries up to d + 1
identifiers, where ¢ is the maximum number of nodes
in the neighborhood of a process. Observe that a pro-
cess can receive at most n messages from each incom-
ing channel. Thus, the total number of messages that
can be sent by Detector is 2en, where e is the number
of edges in the graph. The message complexity of the

program is in O(2end). If e is proportional to n?, then
the complexity of the program is in O(dn?).

5 Explorer

Outline. The main idea of Explorer is for each pro-
cess to collect information about some node’s neigh-
borhood such that the information goes along more
than twice as many paths as the maximum number of
Byzantine nodes. While the paths are node-disjoint,
the information is correct if it comes across the ma-
jority of the paths. In this case the recipient is in pos-
session of confirmed information. It turns out that the
topology information does not have to come directly
from the source. Instead it can come from processes
with confirmed information. The detailed description
of Explorer follows.

To simplify the presentation, we describe and prove
correct the version of Explorer that tolerates only one
Byzantine fault. We describe how this version can be
extended to tolerate multiple faults in the end of the
section.

Description. Since we first describe the 1-fault toler-
ant version of Explorer we assume that the graph is 3-
connected. The program is shown in Figure 3. Similar
to Detector, each process p in Explorer, stores the ids
of its immediate neighbors. Process p maintains the
variable start, whose function is to guard the execu-
tion of the action that initiates the propagation of p’s
own neighborhood. Unlike Detector, however, p main-
tains two sets that store the topology information
of the network: wTOP and ¢T'OP. Set uTOP stores
the topology data that is unconfirmed; ¢T'OP stores
confirmed topology data. Set uT'OP contains the tu-
ples of neighborhood information that p received from
other nodes. Besides the process id and the set of its
neighbor ids, each such tuple contains a set of process
identifiers, that relayed the information. We call it
visited set. The tuples in ¢cT'OP do not require visited
set.

Processes exchange messages where, along with the
neighbor identifiers for a certain process, a visited set
is propagated. A process contains two actions: init
and accept. The purpose of init is similar to that in the
process of Detector. Action accept receives the neigh-
borhood information of some process r, its neighbor-
hood R which was relayed by nodes in set S. The
information is received from p’s neighbor — q.

First, accept checks if the information about r is
already confirmed. If so, the only manipulation is to
record the received information in uT'OP. Actually,
this update of uT'OP is not necessary for the correct
operation of the program, but it makes the its proof
of correctness easier to follow.

If the received information does not concern already
confirmed process, accept checks if this information

differs from what is already recorded in uT'OP either
in 7 or in R. In either case the information is broadcast
to all neighbors of p. Before broadcasting p appends
the sender — ¢ to the visited set S.

If the information about 7 and R has already been
received and recorded in uTOP, accept checks if the
previously recorded information came along an inter-
nally node disjoint path. If so, the information about r
is added to ¢I"OP. In this case, this information is also
broadcast to all p’s neighbors. Note, however, that p
is now sure of the information it received. Hence, the
visited set of nodes in the broadcast message is empty.

Correctness proof. Just like for the Detector pro-
gram we are focusing on the propagation of the neigh-
borhood information A of a singular non-faulty pro-
cess a. Notice that we use A to denote the correct
neighborhood info. We use A’ for the neighborhood
information of a that may not necessarily be correct.

To aid us in the argument, we introduce an axillary
set SENT to be maintained by each process. Since
this set does not restrict the behavior of processes, we
assume that the Byzantine process maintains this set
as well. SENT contains each message sent by the pro-
cess throughout the computation. Notice that «TOP
records every message received by the process in the
computation. Hence, the comparison of uT'OP and
SENT allows us to establish the channel contents.

Since, a message cannot be received without being
sent and vice versa, the following lemma states the
invariant of the predicate that affirms it.

Lemma 7. The following predicate is an invariant of
the Ezxplorer program.

Vb, non-faulty ¢, A’,V :c€ B :
((a, A, V) € Ch.b.c)V
(a, A",V U{b}) € uTOP.c)) &
(a,4',V) € SENT.b))

(
E @
(

The predicate states that for any process b and
its non-faulty neighbor ¢ the information about the
neighborhood of a is recorded in SENT.b if and only
if this information is en route from b to ¢ or is recorded
in uT'OP.c with b appended to the sequence of visited
nodes V.

Before we proceed with the correctness argument
we have to introduce additional notation. We say that
some process ¢ confirms (a, A’) if it adds this tuple to
c¢T'OP.c. We view the propagation of A’ as construc-
tion of a tree of processes that relayed A’. This tree
carries A'. A tree contains two types of nodes: a root
and non-root. If process ¢ is non-root, then for some
V, (a,A",V) € SEND.c and (a, A", V) € vTOP.c.
That is, a non-root is a process that forwarded the
information received from elsewhere without alter-
ation. If ¢ is a root, then (a, A’,V) € SEND.c but

(a, A", V) & uTOP.c. Node ¢’s ancestor in a tree is
the node that lies on a path from ¢ to the root.

Observe that the root of a tree can only be the pro-
cess a itself, the Byzantine node or a node that con-
firms (a, A’). Notice also that since each non-faulty
process ¢ sends a message about a’s information at
most twice, ¢ can belong to at most two trees. More-
over, ¢ has to be the root of one of those trees.

The below lemma follows from Lemma 7.

Lemma 8. If some process d is the ancestor of
another process ¢ in a tree carrying (a,A’) and
(a, A", V) € uTOP.c, then d € V.

Lemma 9. If a non-faulty node ¢ confirms (a, A’),
then A’ = A and a is real.

Proof: Let us first suppose that a is real. Further,
suppose c is the first non-faulty process in the system,
besides a, to confirm (a, A’). To add (a, A") to cT'OP.c
any process ¢ # a has to contain (a, A’, V) € uTOP.c
and receive a message from one of its neighbors b
carrying (a, A’, V') such that VNV’ C {a}. In our
notation this means that ¢ belongs to a tree that car-
ries (a, A’) and receives a message from b (possibly
belonging to a different tree) that carries the same
information: (a, A’). Let us consider if b and ¢ belong
to the same or different trees.

Suppose b and ¢ belong to the same tree. If this is
the case the messages that ¢ receives have to share
nodes in the visited sets V and V'. However, for ¢ to
confirm (a, A’) the intersection of V and V’ has to
be a subset of {a}. That is, the only common node
between the two sets is a. Observe that a does not
forward the information about its own neighborhood
if it receives it from elsewhere. Thus, if a belongs to
a tree then a is its root. In this case A’ = A.

Suppose b and ¢ belong to different trees. Recall
that for ¢ to confirm (a, A"), both of these trees have
to carry (a, A’). However, if A’ # A then the root of
the tree is either the faulty node or another node that
confirmed (a, A"). Yet, we assumed that ¢ is the first
node to do so. Thus, if ¢ receives a message from b,
the only tree that carries the information (a, A") such
that A’ # A is rooted in the faulty node. Thus, even
if b and ¢ belong to different trees, A’ = A.

Similarly, if a is fake, unless another node confirms
(a, A") there is only one tree that carries (a, A’) and
it is rooted in the faulty node. In this case, no other
node confirms (a, A"). O

Lemma 10. Every computation of FExplorer con-
tains a state where each non-faulty process belongs
to at least one tree carrying (a, A).

Proof: We prove the lemma by induction on the
number of nodes in the system. To prove the base
case we observe that the init action is enabled in a in

process p
const

P, set of neighbor identifiers of p

parameter
q: P
var

start : boolean, initially true, controls sending of p’s neighbor ids
cT'OP : set of tuples, initially {(p, P)},

(process id, neighbor id set) confirmed topology info
uTOP : set of tuples, initially &,

(process id, neighbor id set, visited id set)

unconfirmed topology info

ull

nat: start —
start := false,
(Vj:j € P:send (p, P,@) to j)
I
accept: receive (r, R, S) from ¢ —

if (Vt,T: (t,T) € cTOP :t #r) then
if (V¢,T,U : (¢t,T,U) €e uTOP : t #r VT # R) then
(Vj:j5 € P:send (r,R,SU{q}) to j)
elsif (3t,T,U : (,T,U) € uTOP :
L= r AR=TA((UN(SU{gh)) C {r})

then

cTOP :=cTOPU{(r,R)},
(Vj:j€ P:send (r,R,9) to j)
uTOP :=uTOPU{(r,R,SU{q})}

Fig. 3. Process of Ezplorer

the beginning of every computation. This action stays
enabled unless executed. Thus, due to weak-fairness
of action execution assumption, init is eventually ex-
ecuted in a. When it is executed, a forms a tree car-
rying (a, A).

Let us assume that there are i: 1 < i < n non-faulty
nodes that belong to trees carrying (a, A). Since the
network is at least 3-connected, there exists a non-
faulty process c that does not belong to such a tree
but has a neighbor b that does.

If b belongs to a tree carrying (a, A) then SEND.b
contains an entry (a,A,V) for some set of visited
nodes V. If ¢ does not belong to such a tree then, by
definition, (a, A,V’) & uTOP.c. In this case, accord-
ing to Lemma 7, Ch.b.c contains (a, A, V). Similar
argument applies to the other neighbors of ¢ that be-
long to trees carrying (a, A). That is, ¢ has incoming
messages from every such neighbor.

According to the fair message receipt assumption,
these messages are eventually received. We can as-
sume, without loss of generality, that ¢ receives a
message from b first. Since ¢ does not contain an en-
try (a, A, V') in uTOP.c, upon receipt of the message
from b, ¢ sends a message with (a, A, VU{b}), attaches
this message to SEN D.c and includes it in uT'OP.c.
This means that ¢ joins the tree carrying (a, A).

10

Thus, every non-faulty node eventually joins a tree
carrying correct neighborhood information about a.
O

A branch of a tree is either a subtree without the
root or the root process alone. The following lemma
follows from Lemma 7.

Lemma 11. If a computation of Explorer contains
a state where a non-faulty node ¢ and its neighbor b
either belong to two different trees carrying the same
information (a, A) or to two different branches of the
tree rooted in a, then this computation also contains
a state where ¢ confirms (a, A).

Lemma 12. Every non-faulty process ¢ eventually
confirms (a, A).

Proof: The proof is by induction on the number of
nodes in the system. The base case trivially holds as a
itself confirms (a, A) in the beginning of every compu-
tation. Assume that ¢ non-faulty processes have (a, A)
in cI'OP, where 1 < i < n. We show that if there
exists another non-faulty process ¢, it eventually con-
firms (a, A). Two cases have to be considered: there
exists only one tree carrying (a, A), and there are mul-
tiple such trees.

Let us consider the first case. Notice, that in every
computation there eventually appears a tree rooted in

a. In this case, we may only consider a tree so rooted.
Since the network is at least 3-connected, there exists
a simple cycle containing a and not containing the
faulty process. According to Lemma 10, every process
in the cycle eventually joins this tree. Observe that, by
our definition of a tree branch, there always is a pair
of neighbor processes b and ¢ that belong to different
branches of a tree rooted in a and carrying (a, A).
In this case, according to Lemma 11, one of the two
nodes eventually confirms (a, A).

Let us now consider the case of multiple trees carry-
ing (a, A). Again, according to Lemma 10, each non-
faulty process in the system joins at least one of these
trees. Since the network is at least 3-connected there
exists a non-faulty process ¢ belonging to one tree
that has a neighbor b belonging to a different tree. In
this case, according to Lemma 11, ¢ confirms (a, A).

By induction, every non-faulty process in the sys-
tem eventually confirms (a, A). a

Theorem 6. Ezplorer is a two-adjacent-edge com-
plete solution to the strong topology discovery prob-
lem in case of one fault and the system topology graph
is at least 3-connected.

Proof: FExplorer conforms to the termination and
safety properties of the problem as a consequence of
Lemmas 12 and 9 respectively.

Observe that a non-faulty node may potentially
confirm incorrect neighborhood information about a
Byzantine node. That is, an edge reported by the
faulty process is either missing or fake. However, due
to the two above lemmas, if two nodes are non-faulty
the information whether there is an adjacent edge be-
tween them is discovered by every non-faulty node.
Hence FExplorer is two-adjacent-edge complete. O

Modification to Handle k£ > 1 faults. Ob-
serve that Fzxplorer confirms the topology informa-
tion about a node’s neighborhood, when it receives
two messages carrying it over internally node disjoint
paths. Thus, the program can handle a single Byzan-
tine fault. The explorer can handle k > 1 faults, if it
waits until it receives k+1 messages before it confirms
the topology info. All the messages have to travel
along internally node disjoint paths. For the correct-
ness of the algorithm, the topology graph has to be
(2k 4 1)-connected.

Proposition 1. Explorer is a two-adjacent-edge
complete solution to the strong topology discovery
problem in case of k faults and the system topology
graph is at least (2k 4 1)-connected.

Efficiency evaluation. Unlike Detector, Explorer
does not quit when a fault is discovered. Thus, the
number of messages a faulty node may send is arbi-
trary large. However, we can estimate the message

11

complexity of Fzplorer in the absence of faults. Each
message carries a process identifier, a neighborhood of
this process and a visited set. The number of the iden-
tifiers in a neighborhood is no more than d, and the
number of identifiers in the visited set can be as large
as n. Hence the message size is bounded by d +n + 1
which is in O(n).

Notice, that for the neighborhood A of each process
a, every process broadcasts a message twice: when it
first receives the information, and when it confirms
it. Thus, the total number of sent messages is 4e - n
and the overall message complexity of Ezplorer if no
faults are detected is in O(n?).

6 Composition and Extensions

Composing Detector and Explorer. Observe that
Detector has better message complexity than Fax-
plorer if the neighborhood size is bounded. Hence,
if the incidence of faults is low, it is advantageous
to run Detector and invoke Fxplorer only if a fault
is detected. We assume that the processes can dis-
tinguish between message types of Explorer and De-
tector. In the combined program, a process running
Detector switches to Ezxplorer if it discovers a fault.
Other processes follow suit, when they receive their
first Explorer messages. They ignore Detector mes-
sages henceforth. A Byzantine process may poten-
tially send an Fzplorer message as well, which leads
to the whole system switching to Ezplorer. Observe
that if there are no faults, the system will not invoke
Ezxplorer. Thus, the complexity of the combined pro-
gram in the absence of faults is the same as that of
Detector. Notice that even though Detector alone only
needs (k4 1)-connectivity of the system topology, the
combined program requires (2k + 1)-connectivity.

Message Termination. We have shown that De-
tector and Explorer comply with the functional ter-
mination properties of the topology discovery prob-
lem. That is, all processes eventually discover topol-
ogy. However, the performance aspect of termination,
viz. message termination, is also of interest. Usually
an algorithm is said to be message terminating if all
its computations contain a finite number of sent mes-
sages.

However, a Byzantine process may send messages
indefinitely. To capture this, we weaken the definition
of message termination. We consider a Byzantine-
tolerant program message terminating if the system
eventually arrives at a state where: (a) all channels
are empty except for the outgoing channels of a faulty
process; (b) all actions in non-faulty processes are dis-
abled except for possibly the receive-actions of the
incoming channels from Byzantine processes, these
receive-actions do not update the variables of the pro-
cess. That is, in a terminating program, each non-

faulty process starts to eventually discard messages it
receives from its Byzantine neighbors.

Making Detector terminating is fairly straightfor-
ward. As one process detects a fault, the process
floods the announcement throughout the system.
Since the topology graph for Detector is assumed
(k + 1)-connected, every process receives such an-
nouncement. As the process learns of the detection, it
stops processing or forwarding of the messages. Notice
that the initiation of the flood by a Byzantine node
itself, only accelerates the termination of Detector as
the other processes quickly learn of the faulty node’s
existence.

The addition of termination to Fxplorer is more in-
volved. To ensure termination, restrictions have to be
placed on message processing and forwarding. How-
ever, the restrictions should be delicate as they may
compromise the liveness properties of the program.

By the design of Explorer, each process may send at
most one message about its own neighborhood to its
neighbors. Hence, the subsequent messages can be ig-
nored. However, a faulty process may send messages
about neighborhoods of other processes. These pro-
cesses may be real or fake. We discuss these cases
separately.

Note that each process in Fzplorer can eventually
obtain an estimate of the identities of the processes
in the system and disregard fake process informa-
tion. Indeed, a path to a fake node can only lead
through faulty processes. Thus, if a process discovers
that there may be at most k internally node disjoint
paths between itself and a certain node, this node
is fake. Therefore, the process may cease to process
messages about the fake node’s neighborhood. Notice,
that since the system is (2k + 1)-connected, messages
about real nodes will always be processed. Therefore,
the liveness properties of Fzplorer are not affected.

As to the real processes, they can be either Byzan-
tine or non-faulty. Recall that each non-faulty process
of Explorer eventually confirms neighborhoods of all
other non-faulty processes. After the neighborhood of
a process is confirmed, further messages about it are
ignored.

The last case is a Byzantine process u sending a
message to its correct neighbor v about the neighbor-
hood of another Byzantine process w. By the design
of Explorer, v relays the message about w provided
that the neighborhood information about w differs
from what previously received about w. As we dis-
cussed above, eventually v estimates the identities of
all real processes in the system. Therefore, there is a
finite number of possible different neighborhoods of w
that u can create. Hence, eventually they will be ex-
hausted, and v starts ignoring further messages form
u about w.

Thus, FEzplorer can be made terminating as well.

12

Other extensions. Observe that Ezplorer is de-
signed to disseminate the information about the com-
plete topology to all processes in the system. However,
it may be desirable to just establish the routes from
all processes in the system to one or a fixed number of
distinguished ones. To accomplish this Ezplorer needs
to be modified as follows. No, neighborhood informa-
tion is propagated. Instead of the visited set, each
message carries the propagation path of the message.
That is the order of the relays is significant.

Only the distinguished processes initiate the mes-
sage propagation. The other processes only relay the
messages. Just as in the original Ezxplorer, a process
confirms a path to another process only if it receives
2k+1 internally node disjoint paths from the source or
from other confirming nodes. Again, like in Fxplorer,
such process rebroadcasts the message, but empties
the propagation path. In the outcome of this program,
for every distinguished process, each non-faulty pro-
cess will contain paths to at least 2k+ 1 processes that
lead to this distinguished node. Out of these paths, at
least k + 1 ultimately lead to the distinguished node.

In Explorer, for each process the propagation of its
neighborhood information is independent of the other
neighborhoods. Thus, instead of topology, Explorer
can be used for efficient fault-tolerant propagation of
arbitrary information from the processes to the rest
of the network.

7 Conclusion
In conclusion, we would like to outline a couple of
interesting avenues of further research.

The existence of Byzantine-robust topology discov-
ery solutions opens the question of theoretical lim-
its of efficiency of such programs. The obvious lower
bound on message complexity can be derived as fol-
lows. Every process must transmit its neighborhood
to the rest of the nodes in the system. Transmitting
information to every node requires at least n mes-
sages, so the overall message complexity is at least
dn?. If k processes are Byzantine, they may not re-
lay the messages of other nodes. Thus, to ensure that
other nodes learn about its neighborhood, each pro-
cess has to send at least k + 1 messages. Thus, the
complexity of any Byzantine-robust solution to the
topology discovery problem is at least in 2(6n2k).

Observe that Explorer and Detector may not ex-
plicitly identify faulty nodes or the inconsistent view
of the their immediate neighborhoods. We believe
that this can be accomplished using the technique
used by Dolev [5]. In case there are 3k + 1 non-faulty
processes, they may exchange the topologies they col-
lected to discover the inconsistencies. This approach,
may potentially expedite termination of Explorer at
the expense of greater message complexity: if a cer-
tain Byzantine node is discovered, the other processes
may ignore its further messages.

References

1. Hagit Attiya and Jennifer Welch. Distributed Comput-

ing: Fundamentals, Simulations, and Advanced Top-
ics. McGraw-Hill Publishing Company, New York,
May 1998. 6.

. Ioannis C. Avramopoulos, Hisashi Kobayashi, Randy
Wang, and Arvind Krishnamurthy. Highly secure and
efficient routing. In Proceedings of INFOCOM: The
Conference on Computer Communications, joint con-
ference of the IEEE Computer and Communications
Societies, Hong Kong, March 2004.

. Vartika Bhandari and Nitin H. Vaidya. On reli-
able broadcast in a radio network. In Proceedings of
the Twenty-Fourth Annual ACM SIGACT-SIGOPS
Symposium on Principles of Distributed Computing
(PODC 2005), page to appear, Las Vegas, Nevada,
July 2005.

. Edsger W. Dijkstra and Carel S. Scholten. Predicate
Calculus and Program Semantics. Springer-Verlag,
Berlin, 1990.

. D. Dolev. The Byzantine generals strike again. Jour-
nal of Algorithms, 3(1):14-30, 1982.

. J.L. Hill and D.E. Culler. Mica: A wireless plat-
form for deeply embedded networks. IEEE Micro,
22(6):12-24, November/December 2002.

. Chiu-Yuen Koo. Broadcast in radio networks toler-
ating byzantine adversarial behavior. In PODC ’04:
Proceedings of the twenty-third annual ACM sympo-
sium on Principles of distributed computing, pages
275-282, New York, NY, USA, 2004. ACM Press.

. Leslie Lamport, Robert Shostak, and Marshall Pease.
The byzantine generals problem. ACM Transactions
on Programming Languages and Systems, 4(3):382—
401, July 1982.

. D. Malkhi, M. Reiter, O. Rodeh, and Y. Sella. Effi-
cient update diffusion in byzantine environments. In
The 20th IEEE Symposium on Reliable Distributed
Systems (SRDS ’01), pages 90-98, Washington - Brus-
sels - Tokyo, October 2001. IEEE.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

D. Malkhi, Y. Mansour, and M.K. Reiter. Diffusion
without false rumors: on propagating updates in a
Byzantine environment. Theoretical Computer Sci-
ence, 299(1-3):289-306, April 2003.

T Masuzawa. A fault-tolerant and self-stabilizing pro-
tocol for the topology problem. In Proceedings of the
Second Workshop on Self-Stabilizing Systems, pages
1.1-1.15, 1995.

Toshimitsu Masuzawa and Sébastien Tixeuil. A
self-stabilizing link-coloring protocol resilient to un-
bounded byzantine faults in arbitrary networks. Tech-
nical Report 1396, Laboratoire de Recherche en Infor-
matique, January 2005.

Yaron Minsky and Fred B. Schneider. Tolerating ma-
licious gossip. Distributed Computing, 16(1):49-68,
2003.

Mikhail Nesterenko and Anish Arora. Tolerance to
unbounded byzantine faults. In Proceedings of 21st
IEEE Symposium on Reliable Distributed Systems,
pages 22-29, 2002.

A. Pelc and D. Peleg. Broadcasting with locally
bounded byzantine faults. Information Processing
Letters, 93:109-115, 2005.

Adrian Perrig, John Stankovic, and David Wagner.
Security in wireless sensor networks. Communications
of the ACM, 47(6):53-57, June 2004.

Yusuke Sakurai, Fukuhito Ooshita, and Toshimitsu
Masuzawa. A self-stabilizing link-coloring protocol re-
silient to byzantine faults in tree networks. In Proceed-
ings of the 2004 International Conference on Princi-
ples of Distributed Systems (OPODIS’2004), Lecture
Notes in Computer Science. Springer-Verlag, Decem-
ber 2004.

J. M. Spinelli and R. G. Gallager. Event-driven
topology broadcast without sequence numbers. IEEE
trans. on commun., COM-37, 5:468-474, 1989.

Jay Yellen and Jonathan L. Gross. Graph Theory &
Its Applications. CRC Press, 1998. ISBN: 0-849-
33982-0.

