An overview of space lower bounds for graph exploration via
reduced automata*

Pierre Fraigniaud® David Ilcinkas® Sergio Rajsbaum?
CNRS LRI Instituto de Matematicas
LRI, Univ. Paris Sud Univ. Paris Sud Univ. Nacional Auténoma de México
pierre@Iri.fr ilcinkas@Iri.fr rajsbaum@math.unam.mx

Sébastien Tixeuil*
LRI & INRIA Grand Large
Univ. Paris-Sud
tixeuil@Iri. fr

July 26, 2005

Abstract

We consider the task of exploring graphs with anonymous nodes by a team of non-cooperative
robots modeled as finite automata. These robots have no a priori knowledge of the topology of
the graph, or of its size. Each edge has to be traversed by at least one robot. We first show that
a robot requires Q(n) memory bits to be able to explore all n-sized graphs. We then extend
the result to any set of ¢ non-cooperative K-state robots, so that each robot requires Q(log%)
memory bits (the proof also implies that there exists a graph of size O(¢K) that no robot of
this set can explore, which improves the O(K (@) bound by Rollik (1980)). Our main result is
an application of this improvement. It concerns exploration with stop, in which one robot has
to explore and stop after completing exploration. For this task, the robot is provided with a
pebble, that it can use to mark nodes. We prove that exploration with stop requires Q(logn)
bits for the family of graphs with at most n nodes.

Keywords: Graph exploration, finite automaton, robot, mobile agent.

$Supported by the INRIA project “Grand Large”, and the projects “PairAPair” of the ACI “Masses de Données”,
and “FRAGILE” of the ACI “Sécurité et Informatique”.

tSupported by LAFMI and PAPIIT projects. Part of this work was done while visiting LRI.

fSupported by the INRIA project “Grand Large”. Additional support from the project “FRAGILE” of the ACI
“Sécurité et Informatique”.

*This paper is based on the SIROCCO’05 conference version [8].

1 Introduction

The problem of exploring an unknown environment occurs in a variety of situations, like robot
navigation, network maintenance, resource discovery, WWW search, etc. In these situations the
mobile agent performing exploration can be either a physical robot or a software agent. The
environment is modeled as a graph where one or more mobile agents, called robots in this paper,
are trying to collectively traverse every one of its edges.

Graph exploration is also strongly related to complexity theory, and in particular to the undi-
rected st-connectivity (USTCON) problem (cf., e.g., [4]). Given an undirected graph G and two
vertices s and ¢, the problem is to decide whether s and ¢ are in the same connected component of
G. USTCON is complete in SL, the class of problems solvable by non-deterministic symmetric log-
space algorithms. Reingold [9] recently answered a very challenging question in this field by proving
SL=L, where L denotes the class of problems solvable by deterministic log-space computations.

The robot is modeled as a finite deterministic automaton. There is a large body of work, that
considers several variants of the problem. Graph exploration by a finite automaton was introduced
in 1951 by Shannon [11]. Directed ([1, 2]) as well as undirected graphs ([3, 5, 6, 7]) are considered
in the literature.

In this paper we are interested in exploration of undirected graphs where nodes are not uniquely
labeled. Besides the theoretical interest of understanding when or at what cost such graphs can
be explored, this situation can occur in practice, due to e.g. privacy concerns, limited capabilities
of the robots, or simply anonymous edge intersections. We do assume that a robot can identify
the edges incident to a node through unique port labels. Our main goal is to compute complexity
bounds on the amount of memory needed by a set of robots as a function of the size of the graphs
that they can explore.

A robot moves from one node to another along the edges. When in a node, it (deterministically)
decides on the port number of an incident edge to move to the node at the other end of the
corresponding edge. It is easy to see that a robot can traverse all edges of some graphs, say a cycle,
but that it cannot recognize when it has visited a node twice, so it explores all the graph but never
stops. Thus we consider also robots that can mark nodes; as in previous work e.g. [1, 2, 6] the
robot can drop a pebble in a node and later identify it and pick it up. In this case the robot can
explore a graph and stop.

1.1 Collective Exploration

A graph that a set of robots cannot explore when they all start from some given node (or set of
nodes) is said to be a trap for them. The first trap for a finite state robot is generally attributed to
Budach [3] (the trap is actually a planar graph). The trap constructed by Budach is of large size. A
much smaller trap was described in [7]: for any K-state robot, there exists a trap of at most K + 1
nodes. In [10], Rollik proved that no finite set of finite locally-cooperative robots, i.e., automata
that exchange information only when they meet at a node, can explore all graphs. In the proof
of this result, the author uses as a tool a trap for a set 1?f q non-cooperative K-state robots. This

latter trap is of size O(K°@) nodes. The size* O(KK), with 2¢ + 1 levels of exponential, of the
trap constructed for cooperative robots depends highly on the size of a trap for non-cooperative
robots.

*The O notation hides logarithmic factors.

In this paper, we show (cf. Theorem 5) that for any set of ¢ non-cooperative K-state robots,
there exists a 3-regular graph G, and two pairs {u, '} and {v,v'} of neighboring nodes, such that
any robot of the set, starting from w or v/, fails to traverse the edge {v,v'}. The graph G has
O(qK) nodes, thus improving the O(K°@) bound of Rollik (cf. Corollary 2). By simply plugging
this new trap for non—coopera}ﬁive robots in the trap for locally-cooperative robots by Rollik, we

get a new trap of size O(KK), with ¢+ 1 levels of exponential, thus smaller than the one in [10]
(cf. Corollary 4).

1.2 Exploration by a Single Robot

Theorem 5 has a significant impact on the space complexity of graph exploration by a single robot.
We distinguish the two types of exploration mentioned above perpetual exploration and exploration
with stop, where the robot has to stop once exploration is completed.

In acyclic graphs, exploration with stop is strictly more difficult than perpetual exploration. In
particular, it is shown in [5] that exploration with stop in n-node bounded degree trees requires a
robot with memory size Q(logloglogn), whereas perpetual exploration requires O(1) bits.

As mentioned above, when exploration with stop is required, the robot is provided with a pebble.
We prove (cf. Theorem 6) that exploration with stop requires a robot with Q(logn) bits for the
family of graphs with at most n nodes. Note that, in arbitrary graphs, perpetual exploration and
exploration with stop are not comparable because even if perpetual exploration is a simpler task
than exploration with stop, in the latter case the robot is given a pebble. Therefore, even if the
existence of a trap of at most K 4+ O(1) nodes for any K-state robot implies an 2(logn) bits lower
bound for the memory size of a robot that performs perpetual exploration in all graphs with at
most n nodes, our Q(logn) lower bound for exploration with stop is not a consequence of the first
result about perpetual exploration.

1.3 Organization of the paper

We start with Section 2, where we first define the basic model considered, consisting of one or more
robots traversing a graph, and what we mean by a trap for them. In this paper, for lower bounds,
we actually concentrate on a subclass of graphs, called homogenous: edge-colored and regular.
For such graphs, a robot can be described by a very simple automaton, whose transition function
consists of a graph formed by a directed path followed by a directed cycle. We also introduce in
this section the idea of a reduced robot, which is crucial for the results in the rest of the paper.
Roughly speaking, a reduced robot has the property that when it is in some node v of a graph, if
it traverses an edge {v,u} its next move will not be traversing the edge back to v. This property
is achieved by transforming a robot into a reduced robot whose transition function never has two
consecutive edges with the same label. We construct traps directly from the transition function of
a reduced robot.

In Section 3 we use the technique of reducing a robot to construct a degree 3 trap for a K-state
robot of size K + 13. A similar result was presented in [7], but the trap there is better: of size
K + 1, planar and valid for graphs of any degree. We include this result in our paper because the
proof is different and somewhat simpler, and moreover, it illustrates the technique used to prove our
results in the following sections. In Section 4 we present our new results about traps for collective
exploration by a set of robots. Finally, in Section 5 we present our lower bound for exploration
with stop.

2 Preliminaries

In Section 2.1 we define formally what we mean by a robot exploring a graph. In Section 2.2 we
describe basic properties of a robot. In Section 2.3 we show how to simplify the structure of a
robot, for the proofs of the following sections.

2.1 Graphs, Robots and Traps

A robot considered in this paper traverses a graph by moving from node to node along the edges
of the graph. We first describe the basic model of a robot traversing a graph, and what we mean
by a trap, namely a graph that a robot cannot explore. To construct a trap for a robot, we first
design a graph that the robot cannot leave, called a trap core, and then we add to it edges that the
robot does not explore. We explain how the description of a robot is simplified when traversing a
more symmetric kind of graph, called homogenous. The simpler description will be crucial in the
rest of the paper.

The basic model of a robot traversing a graph

In a graph where nodes have no identifiers, two nodes are indistinguishable to the robot, unless
they have different degree. However, edges have local port numbers, so the robot can distinguish
two different edges incident to a node. In more detail, each edge has two labels, each one associated
to one of its two endpoints. The labels of the edges incident to a node v are arbitrary and pairwise
disctinct in the set {0,...,d, — 1}, where ¢, denotes the degree of v. When a robot is in a node,
it sees only the labels at the endpoints of the edges incident to the node. This allows the robot to
distinguish the edges incident to the node through their unique labels, called local port numbers.
Notice that an edge may have different port numbers in its two endpoints. We refer to those graphs
as port-labeled graphs.

A robot is an automaton with a single initial state; at the beginning, it is placed on some node
of the graph in this state. When a robot is in a node u and traverses an edge {u,v} to get to v, it
learns the label at v’s endpoint of the edge once it enters v. The robot decides which edge to take
to leave v based on this label, as well as on the degree of v , and of course, based on its local state.
We do not define formally such a robot because we will study its behavior only on a special class of
graphs, called homogenous, for which a very simple representation of a robot is possible, that we
will define formally. In Section 5 we will consider an extended definition of a robot that can drop
a pebble in a node and pick it up when it returns to the node to drop it somewhere else.

A trap for a set of robots is a pair (G,U), where G is a port-labeled graph and U is a set of
nodes of (G, such that if all the robots are placed in nodes u € U, each in its initial state, then
there will be an edge {u, v} that is never traversed by the robots. To make our lower bound results
stronger, sometimes we present a simple trap, namely with no parallel edges and self-loops.

Homogenous graphs and trap cores

We will study the behavior of a robot in a graph where both port numbers of an edge coincide.
In such a graph a robot can be described by a very simple automaton, as we shall see next. A
d-homogenous undirected graph is a graph that is §-regular and d-edge-colored. A graph is §-reqular
if each of its nodes has degree ¢, and it is d-edge-colored if each edge is labeled with one of the

integers in the set A ={0,1,...,d — 1} in a way that no two edges incident to the same node have
the same color. In this paper, we focus on graphs with maximum degree three.

When a robot traverses a 3-homogenous graph, each time it arrives to a node the local environ-
ment looks exactly the same as in any other node: all nodes are equal and in each node all local
ports are 0, 1, or 2. Thus, the robot decides which edge to take to exit the node based only on its
current state. Formally, a robot is an automaton A = (A,S, f, §), with a finite set of states S, an
initial state § € S, and a transition function f: S — S x A. For a state s € S with f(s) = (¢, 1),
denote fs(s) = s’ and fy(s) = 4. The robot A moves on a 3-regular graph as follows. Initially A is
placed on a node of the graph in state §. If A is in a node v in state s then A moves to the node
v" such that the edge {v, v} is labeled fy(s), and changes to state fq(s).

When considering the formal definition of a robot for homogenous graphs, one can construct a
trap by first defining a graph G that is edge-colored, but not necessarily 3-regular, and then adding
some edges and nodes to obtain a trap, as in Figure 1.

Figure 1: A trap and its core

We do not demand that G is 3-homogenous as long as a robot never tries to take an edge that
is not defined in the graph. Formally:

Definition 1 A trap core for a set of robots is a pair (G,U), where G is a 3-edge-colored graph
and U is a set of nodes of G, such that if all the robots are placed in nodes u € U, each in its initial
state, then each time a robot A = (A, S, f,§) is in some node u in some state s, if fy(s) =i then
an edge {u,v} labeled i must be in G.

From a trap core to a trap

Once we have built a trap core (G, U) it is not difficult to construct a trap (G',U), by adding to it
some edges and a constant number of nodes. Notice that if (G,U) is a trap core for a set of robots,
then (G',U) is a trap for the same set of robots, because G is a strict subgraph of G’ that the
robots never leave. We first show how to construct G’ from a 3-edge colored graph G, by adding at
most 2 nodes, and adding edges that guarantee that every node of G has degree exactly 3, and we
define local port labels for the newly added edges. Thus, as in Figure 1, edges that were originally

in G have the same port labels in both endpoints (e.g. {v,w} in the figure), while newly added
edges may have different port labels (e.g. {u,w} in the figure).

Definition 2 Given a 3-edge-colored graph G = (V, E), the labeled graph G' = (V' E'), |[V'| <
|[V| + 3, obtained from G in the following construction is called the simple trap extension of G.

To construct G’ first we can assume that there are at most 2 nodes of degree less than 3.
Otherwise, there are two nodes of degree less than 3 that are not connected by an edge, and we
may add an edge connecting them, with appropriate local port labels. Now, we add at most 2
new nodes. Each time we add a new node, we connect it to nodes with degree less than 3, with
appropriate local port labels. If all nodes of G have now degree exactly 3, we are done, else we
add a new node and repeat the procedure. At the end we obtain the desired 3-edge colored graph
G’, where all original nodes have exactly degree 3, while the new nodes have degree at most 3.
Moreover, G’ is a simple graph.

We can construct a trap extension G from G that is homogenous, by adding a few more
nodes.

Definition 3 Given a 3-edge colored graph G = (V, E), the graph G"™ = (V' E"), |V'| < |V|+13,
obtained from G in the following construction is called the homogenous extension of G.

Add to each node of G of degree i less than 3, 3 — i pending “half-edges” colored differently
from each other and from the colors of edges incident to the node. For ¢ = 0,1, 2, let parity({) be
the parity of the number of pending half-edges labeled ¢ in the resulting grapht G'.

Claim 1 For any ¢,¢' € {0,1,2}, parity(¢) = parity(¢').

Proof. An edge of G’ can be considered as two non-pending half-edges. For ¢ € {0, 1,2}, let t; be
the total number of half-edges of G’ labeled ¢, and py, resp. npg, be the number of pending, resp.
non-pending, half-edges of G’ labeled ¢. All nodes in G’ are exactly of degree 3 and are incident to
one half-edge of each label. Thus ¢ty = t; = t2, and this is equal to the number of nodes in G’, |G’|.
In G, if a half-edge is not pending, then it forms an edge with another non-pending edge with the
same label. Therefore, all the np,’s are even. Since t; = py + npy, ty and py have the same parity,
and thus all the p,’s have the same parity. [|

We now construct the desired homogenous graph G™™. Let ¢ be the parity of the number of
pending half-edges of a given label in G’. If ¢ is odd, then we add to G’ a node connected to one
of the half-edges, labeled say ¢, and add two half-edges pending from this node, labeled ¢’ # ¢ and
" ¢ {0,0'}. As a consequence, o becomes even. Now, we pair the half-edges with identical labels,
and connect them to form one edge. Parallel edges can be avoided, unless for some ¢ there are
only two pending half-edges with label ¢, and these are incident to the same edge. In this case the
pair is connected by the gadget displayed in Figure 2, where £ = 0. By labeling the edges of every
gadget appropriately (as in the figure), we obtain a 3-homogenous graph G"*™,

Claim 2 G"™ has at most 13 nodes more than G.

Proof. We added at most 1 node to correct the parities, and at most 3 gadgets to avoid parallel
edges, each one with 4 nodes. Thus the total number of nodes added is at most 13. [|

TWe will use this notion of “graph” with “half-edges” several times in this paper.

Figure 2: The gadget for connecting half-edges

2.2 Basic Properties

Consider a robot A = (A,S, f,§). The transition function f defines a directed labeled graph
G(A) = (8, F) with node set S and arc set F, such that the arc (s,t) € F iff fy(s) = t, and the arc
has label fy(s). Notice that the labeled graph G(A) together with the starting node § completely
determine the robot A. We assume in the rest of the paper that every state s € S of A is reachable
from §; unreachable states do not affect the behavior of A and can be ignored. Namely, there is in
G(A) a directed path from § to every other node.

Each node of G(A) has out-degree 1 because f is a function. It follows that G(A) consists of a
simple, possibly empty path starting in § and ending in some node s1, followed by a simple cycle
starting and ending in s;. This is because we assume that A has no unreachable states and S is
finite. Thus, the arc labels of the path define a path word Wy over A, |[Wy| > 0, and the arc labels
of the cycle define a cycle word W over A, |W| > 1. Clearly, |WoW| = |S|. The footprint of A is
fp(A) = WoW*. When A is placed on a node of a homogenous graph G in state §, fp(A) is the
sequence of labels of edges traversed by A.

The next lemma says that once A reaches a node x of the graph in some state s that belongs
to the cycle of G(A), the path that A follows in G is a closed path that includes z; moreover, A
returns to z in the same state s. A configuration (x,s) denotes the fact that A is in node z in state
s. Also, if fo(s) =&, fi(s) =i, and the label of the edge {x, 2’} is i then we write (z,s) — (2/,5).

Lemma 1 Consider a robot A with path and cycle words Wy, W traversing a graph G. Let x be a
node reached by A after at least |Wy| steps, and assume A is in state s when it is in x. Then A
will eventually be back in (x,s).

Proof. Assuming A is in state s when it is in z, consider the sequence of configurations starting
with (z,s)
(z0,80) — (z1,81) — -+~

where (z,s) = (x0, s0). The sequence of configurations must contain two equal configurations, say
(i, 8;) = (Tisk, Sivk), for some k > 1, because both G and A are finite. Assume k is as small as
possible. If i = 0 we are done, so suppose i > 0. We will prove that (z;—1, $i—1) = (Titk—1, Si+k-1),
which implies that (zg, s9) = (zk, si), and the lemma follows.

Notice that A moves from z;_; to z; along the edge labeled fy(s;—1). Now, when A eventually
returns to the same configuration (z;4x, s;+r), the state s;1,—1 = s;—1 (all the states considered are
in the cycle of G(A) because the state s belongs to the cycle of G(A)). Thus, fi(si—1) = fe(Sirk—1)-
It follows that the edge {x;ik_1,%;1} must be labeled fy(s;—1). Finally, z;1x1 = x;_1 since
Zi+r = x; and G is edge-colored. []

2.3 Reduced Robots

A robot A is irreducible if G(A) satisfies two properties: (i) for any two consecutive (distinct) arcs
s — 81 — 82, it holds fy(s) # fe(s1), and (ii) for two arcs with the same end-node s — s1, s3 — $1,
it holds fy(s) # fi(s2). We show here how to obtain an irreducible robot A’ from a robot A. The
behavior of A and of A’ on a graph will not be exactly the same, but will be related in the sense
that the region of a graph traversed by A cannot be much larger than the region traversed by A’.

Let G(A) be the undirected graph corresponding to G(A). Roughly speaking, we want the robot
to be irreducible to construct a graph based on G(A) on which the robot will be moving. Since the
constructed graph must be edge-colored, G(A) must be edge-colored. Then we can place A at the
beginning of the path of G(A) and it will never try to go out of G(A). To obtain an irreducible
robot A’ from A we perform a series of reduction steps that modify its transition function and
reachable states. When A and A’ are placed on the same node of a graph, the path traversed by
A’ is contained in the path traversed by A; essentially A’ skips some closed walks of A. These
reductions are formally defined next.

A reduction step is the operation consisting of transforming a robot A = (A, S, f, §) into another
robot A’ = (A, 8, f',§), &' C S, where one of the above properties (i) or (ii) is enforced for two
arcs. There are two types of reduction steps, corresponding to the two properties. The idea is to
repeat type-i steps until no more are possible, and hence the robot satisfies property (i), and then if
property (ii) is not satisfied, do a single type-ii step to enforce property (ii). Only type-i reductions
change the path traversed by the robot.

Type-i Reduction.

A type-i reduction step is applicable if G(A) has two consecutive distinct arcs s — s1 — sg with
fe(s) = fe(s1). The basic idea is illustrated in Figure 3. In (a) there is a segment of G(A) with

Figure 3: A type-i reduction

the two consecutive arcs labeled 1, and in (b) there is the corresponding segment of G(A’) after
the reduction. In this example s has only one in-neighbor, ¢, and hence s becomes unreachable.
This is the basic idea behind the type-i reduction, but in the formal definition below we need to
consider several special cases depending on the number of in-neighbors of s, and on where is the
initial state .

The properties of a type-i reduction that we need are illustrated in Figure 3(c) and (d), where
the path traversed by A and A’ resp. is depicted in dotted arrows. If A is in node w of G in state
t, it moves to node v in state s, and then it moves to v/, change to state s;, and move back to v,
in state sy (since fy(s) = fy(s1) = i, where {v, v’} is colored i; in the figure 7 = 1). Thus, it is easy
to check that a type-i reduction eliminates this v,v’,v loop from the path traversed by the robot

in the graph, and makes no other changes to the path; that is, if the path arrives to v from w and
then proceeds to w’ after traversing the v,v’,v loop, after the type-i reduction the robot will go
from w to v and then directly to w’. Therefore, before the reduction step, the robot explores a
node at distance at most 1 from the nodes explored by the robot after the reduction.

Formally, a type-i reduction transforms A into A’ by doing the following changes to f and by
defining & (f'(-) = f(-) and & = § unless specified otherwise below). We consider four cases:

Case s = s9: In this case the cycle is of length 2 with the same labels. Assume w.l.o.g. that s has
no other in-neighbor besides s; (it is impossible that both s and s; have 2 in-neighbors). Let
f'(s1) = (s1,1), where i = fy(s1). If s = § then & = s;.

Otherwise, if s # s9, it is possible that s has 0, 1, or 2 in-neighbors.
Case s # s2, s has 0 in-neighbor: In this case s = 5. Let § = so.

Case s # s2, s has 1 in-neighbor: Let ¢ be the in-neighbor (¢ # s1), with f(t) = (s,7). Then let
f(t) = (s2,4). If s =5 then let §' = s5.

Case s # so, s has 2 in-neighbors: Assume they are t1,ts, with f(t1) = (s,7), f(t2) = (s,7).
Then s # 5. Let f'(t1) = (s2,4) and f'(t2) = (s2,7)-

After doing these modifications, A’ is obtained by removing any unreachable states. Notice that
for each one of the previous 3 cases at least one unreachable state is removed, namely s. Thus, at
most K — 1 type-i reductions are possible, starting from a K-state robot.

Lemma 2 Let A’ be the robot obtained from A = (A, S, f,) by applying a type-i reduction on arcs
s — 81 — s9 with fy(s) = fo(s1). Then

1. The node s together with s — s1 does not appear in A’.

2. If A and A’ start at the same node u of a graph in the same state s that belongs to their cycle,
when A and A’ are back in state s, they are placed in the same node v and A has traversed
at most one edge more than A’.

Proof. The first part of the lemma holds because state s becomes unreachable in A’. We now
prove the second part of the lemma. We thus consider that A and A’ are both started from a node
xg in a state tg that belongs to their cycle.

Assume a type-i reduction is applied to G(A) on the arcs s — s1 — sg with fy(s) = fe(s1), to
obtain A’. When s has one in-neighbor ¢, with f(t) = (s,4), and s # §, A’ is equal to A except that
f(t) = (s2,1) (and hence s becomes unreachable)

(

Consider the sequence of configurations of G(A) when starting in a node x,

(wo,t0) — (w1,t1) — -+~
where tg = §. Then the sequence of configurations of G(A’) is the same, except that each time A
gets to state t, say in the i-th step
s = (@, 1) = (T, tir) — (Tig2, tive) — o

where t; = ¢, and hence t;13 = so with z;41 = z;+3 (since fy(ti+1) = fe(ti+2)), then the sequence
of G(A') is
o= (@, t) = (T, tigs) —

Therefore, the original path in the graph
L0, L1y -+ vy Tiy Lit1y Li42y Li43, - -

becomes
Ly L1y vy Liy Ty 3y .-

and the loop i1, %y, Tits (i1 = xi43) traversing the edge {x;41,2;12} back and forth is
eliminated from the path. [|

Type-ii Reduction.

Once a type-i reduction step is not applicable in G(A), a single type-ii reduction can be used.
A type-ii reduction step is applicable if G(A) has two states such that f(s) = f(s1), that is, G(A)
has two arcs with the same end-node s — t, s1 — ¢, and fi(s) = fe(s1). See Figure 4 where
fe(s) = fe(s1) = 1; in part (a) there is G(A), and in part (b) there is G(A’) after the reduction.
A type-it reduction transforms A into A’ by doing the following changes to f and by defining &'

te . <«
N N
f \ \
S‘I ‘ ‘
1 . O
— > 000 >0 /'/ J
(0] s
t, s t c— . _ .
(a) (b)

Figure 4: A type-ii reduction

(f'(:) = f(-) and & = § unless specified otherwise below). Exactly one of s,s; must be in the
cycle of G(A), let’s say s1. So there is a path from t to s;. This path is of length at least 1,
because otherwise ¢t = s and there is a loop from ¢ to itself labeled f;(s), and a type-i reduction
is applicable. Recall that fp(A) = WoW*. Let W’ be the longest common postfix of Wy and W*;
|[W’'| > 0 by the type-ii assumption. Let t5 be the node just before W’ starts in the cycle of G(A).
In Figure 4, W’ = 21. We consider two cases, in both cases A’ is obtained from A by the following
modifications, and removing any unreachable states:

Case |[Wp| > [W’|: That is, W' is a strict postfix of Wy; let ¢; be the in-neighbor of the node just
before W' starts in the simple path of G(A). Thus fo(fst(t1)) = fe(t2) is the first letter of

W' Let f'(t1) = (t2, fe(t2)).
Case |Wy| = [W'|: Let § = to.

The following lemma is straightforward.

Lemma 3 Let A" = (A,S', f',§) be the robot obtained from A = (A,S, f,8) by applying a type-ii
reduction on arcs s — t, s — t, with fy(s) = fe(s1), and sy in the cycle of G(A). Then

1. The node s together with s — t does not appear in A'. Moreover, a type-ii reduction is not

applicable to G(A').

10

2. If A and A’ start at the same node of a graph, they both traverse the same path.

3. If a type-i reduction is not applicable to G(A) then it is not applicable to G(A’).

Using Lemma 2 and Lemma 3 it is easy to prove the following, summarizing the procedure to
obtain an irreducible robot.

Lemma 4 Let A" = (A, S, f',§) be the robot obtained from A = (A,S, f,8) through the longest
possible sequence of type-i reductions followed by a type-ii reduction (if applicable). Let k be the
number of reduction steps in this sequence.

1. A’ is irreducible.
2. |8+ k<|S].

3. If A and A’ start at the same node u of a graph in the same state s that belongs to their cycle,
when A and A’ are back in state s, they are placed in the same node v and A has traversed
at most k edge more than A’.

Proof. The first part of the lemma follows from Lemma 2(1) and from Lemma 3(1,3): if there
are two arcs violating property (i), then a type-i reduction can be applied, and at least one state
is removed in the process. Also, if there are two arcs violating property (ii) after all arcs satisfy
property (i), then a type-ii reduction will eliminate the situation, without creating arcs that violate
property (i).

The second part of the lemma follows because each type-i and type-ii reduction eliminates at
least one state, as observed in Lemma 2(1) and Lemma 3(1).

The third part of the lemma follows from Lemma 2(2) and Lemma 3(2), by induction on k. ®

3 A Trap for a Single Robot

In this section, we focus on graph exploration by a single robot. We present a trap for a K-state
robot of size O(K). As explained in the Introduction, a similar result was presented in [7]. We
consider a robot and an irreducible version of it. First we show how to construct a trap for the
irreducible robot, and then how to extend it to a trap for the original robot.

A Trap for an Irreducible Robot

Let A = (A, S, f,8) be an irreducible robot with footprint fp(g) = WoW*, WoW| = K. Recall
that its graph of state transitions G(A\) consists of a directed path starting in the initial state §,
followed by a directed cycle. Thus, the corresponding undirected graph, G’(g), consists of a path
P connected to a cycle C; let £ be the initial node of P. If C is of length at least 3 then C_?(ﬁ) is
a simple edge-colored graph (no parallel edges and no self-loops), and it serves as a trap for A If
C is of length less than 3 we modify it a little to make it a simple edge-colored graph that is also

a trap for A, denoted G (A).
We construct the simple, edge-colored graph G (ﬁ) from G’(ﬁ) as follows:

11

0 . 1
0
ey, el
s t \ °
(@)

Figure 5: Eliminating parallel edges

e Assume the directed cycle of G(A) is of length 2, with states s,t, as in Figure 5(a), where
W = 10. Then the undirected cycle in Gl(A) will have 4 edges, labeled WW, adding two
new nodes as in Figure 5(b). The path is P, as in G(A).

e Assume the directed cycle of G(A) is of length 1 with state s, as in Figure 6(a), where W = 1.
Then the undirected cycle in (_}1(21\) will have 4 edges, labeled abab, where a is equal to the
single letter of W and b is different from a and from the last letter of Wy (if any), as in Figure
6(b), where abab = 1010. The path is P, as in G(A).

Notice that the only node of Gl(A\) of degree 3 is the node where the path and the cycle are joined.
Thus, it is not homogenous, and if we place a robot in one of its nodes, it could try to take an
edge that does not exist in the graph. Clearly, this does not happen if we place A at 2. Namely,
starting at &, G (A) with any edge added is a p-trap for A, with at most 3 nodes more than G(A)
We have the following straightforward lemma.

Lemma 5 The graph G1(A) is simple and_edge-colored, with at most |S| + 3 nodes. Moreover,
G1(A) with any edge added is a p-trap for A when starting at .

Figure 6: Eliminating a self-loop

A Trap for the Original Robot

We present two different constructions of a trap for A. In both cases we use the graph Gy (21\) of
Lemma 5, where A is an irreducible robot obtained from A. The first method, described in Theorem
1, produces a smaller trap than the second, described in Theorem 2, but the second method will
be useful in the following section.

Theorem 1 For any robot A = (A, S, f,so) there exist a trap (G,U) of at most |S| + 13 nodes.
Proof. Let A be an irreducible robot obtained from A, and consider its undirected graph C_}(ﬁ)
By Lemma 5 the modified graph Gl(A) is simple and edge-colored. Also, A can be placed in the

first node & of the path P of Gy (A) in its initial state, and it never tries to take an edge not in the
graph. Now, place A in Z in its initial state. Each time A wants to take an edge with some label

12

not in the graph, we add the edge (with the label) to the graph. By Lemma 2 the paths traversed
by A (and not by 21\) are trees where A stays in states eliminated by the series of type-i reductions.
Thus, the added edges form trees, and the nodes added correspond to the eliminated states, so we
get back a graph with |S| nodes. Now, A never tries to take an edge not in the graph. Consider
the homogenous extension G of this graph, as in Definition 3. This is a trap (G, &) for A with at

most 13 additional nodes. []

The second way of constructing a trap uses the K -tower method. Assume an homogenous graph
H is given, together with one of its edges, say {v,v'}. Cut the edge to produce two pending half-
edges e, e/. Add a “tower” of height K + 1 connected to e, €', and a gadget closing the tower as in
Figure 7. The two internal nodes of the gadget at the top of the tower are denoted by v and v].
Add labels to the tower and the gadget to make the whole graph edge-colored, and denote it G.

\ i ‘\“

k+1

Figure 7: The tower method
Thus, G is homogenous.
Theorem 2 For any robot A = (A,S, f, so) there exist a trap (G,U) of at most 3|S| + 22 nodes.

Proof. Let A be an irreducible robot obtained from A, and consider its undirected graph C_?(ﬁ)
By Lemma 5 the modified graph Gl(A\) is simple and edge-colored. Also, A can be placed in the
first node # of the path P of G1(A) in its initial state, and it never tries to take an edge not in
the graph. Consider the homogenous extension H of Gy (ﬁ), as in Definition 3, with at most 13
additional nodes. Pick any of the new edges added to H, say {v,v'}, and add a tower of height
K+1, K = |S]|, as described above, to obtain G. Now, place A in x¢ in its initial state. Notice that
as G is homogenous, A never tries to take an edge not in the graph. Finally, the edge {v1,v]} is not
traversed by A. This is because A does not traverse the edge {v,v'}, and hence it does not enter
the tower. By Lemma 4, the trajectory of A is never at distance greater than K (where K = |S|)
from the trajectory of A. Thus, since the tower is of height K + 1, A never reaches the top of the
tower. Therefore, A does not traverse the edge {v1,v]}, and (G, Z) is a trap for A.

It remains to count the number of nodes of G. The graph G(A) has at most K nodes, G1(A)
has at most K + 3 nodes. Then, H has at most K + 16 nodes. The tower has 2K + 6 nodes, so the
total is at most 3K + 22 nodes.]

Corollary 1 A robot that explores all graphs of size n requires at least Q(logn) memory bits.

Using a different proof argument, [7] proves a lower bound that depends on the diameter and the
maximum degree of the graph, rather than just the number of nodes. It is, nevertheless, possible
to use the trap core proof method to obtain a similar result. We recall the theorem from [7]:

Theorem 3 A robot that explores all graphs of diameter D and maximum degree § requires at least
Q(Dlogd) memory bits.

13

4 A Trap for a Team of Non-Cooperative Robots

In this section, we focus on graph exploration by a team of non-cooperative robots. Our main
result is the construction of a trap of size O(¢K) for any set of ¢ non-cooperative K-state robots.
This result is stated in Theorem 5.

4.1 Trapping an Irreducible Robot

In this section we prove an auxiliary result for Theorem 5. Assume an irreducible K-state robot
A= (A, S, f,8) is placed at a node xg of a graph G in its initial state §, and we want to create
a p-trap for A by extending G at a given edge {v,v'}, and moreover, the extension should be of
size O(K). (Obviously, if A does not traverse the edge, then G is already a trap for A and there

is nothing to be done.) See Figure 8. The extension is by cutting {v,v'} to create two pending

G __-------- -—— Hi _—------- ——— Hi —-------- ---
/ AN /
a I \ I T)
x> v X, v"# VXg e
(a) (b) ()

Figure 8: Extending a graph at a single edge to trap a robot

half-edges (Figure 8(b)); the node v is connected to a pending half-edge e and v’ is connected to
a pending half-edge €’. The resulting graph is Hy. A graph G’ of O(K) nodes is glued to e and €
(Figure 8(c)), such that A does not traverse at least one of its edges. The resulting graph is called
H. Actually, it turns out that the extension added to GG is pretty simple: either adding a path
connected to a cycle (based on G(A)) as illustrated in Figure 8(c), or connecting e and ¢’ by (an
appropriately labeled) path.

Consider the footprint of E, fp(ﬁ) = WoW*, [WoW| = K, where p; is the i-th letter in fp(ﬁ)
Consider the sequence of configurations of A

(x0,50) = (z1,51) = -~

where so = §. Let pi11 = fo(s;). Assume A traverses {v,v'} for the first time at step i, i > 1; i.e.,
when going from (z;_1,s,-1) to (z;,s;); assume w.l.o.g. it traverses it at this time from v to v/,
i.e., x;—1 = v and z; = v’. Thus, p; is the label of {v,v'}. In other words, if we cut the edge to
obtain the two pending half-edges e, ¢/, then A traverses e.

We consider two cases depending on when A traverses e, during the simple path of G(A\) or

-~

during the cycle of G(A).

Case 1. Assume A traverses e at step @ < |Wp|. Thus, p; belongs to Wy. In this case we can use
the undirected graph of A\, G (/T), and construct the version with no parallel edges and self-loops,
G’S(E), as in Lemma 5, adding at most 3 new nodes. We glue the part of G*(A) that starts after
p; to e. Namely, we connect to e a path of length |Wy| — i whose extremity is denoted by w. The
edges of this path are labeled pj1, ..., pjuy|- At w, we add the ring of G’S(A\). The other half-edge
e’ is completed into an edge by adding to it one new node, and the graph obtained is H. Notice
that we added at most K + 4 new nodes.

Case 2. If A traverses ¢ at step ¢ > |Wpy|, then it traverses e to get into some state s of the cycle

-~

in G(A); assume this is the j-th state of the cycle (recall that the cycle is assumed to start in

14

the last state of the path of G(ﬁ)) That is, after traversing e, A would traverse edges labeled
DIWo|+5> PIWol+j+15 - - -

Let = be the node of H; reached by A after |Wo!| steps, let W~ be the sequence W written
in reverse order, and let Al _be the robot that traverses edges labeled (W=1)*. Thus, when A~!
starts at = and A reaches T, AL proceeds as A _but backwards. Let A* be the robot that traverses

edges labeled W*, i.e. the robot derived from A by removing states and transitions that involved
Wo.

Claim 3 Starting from =z, Al eventually traverses one of the half-edges pending at v or v'.

Proof. Assume for contradiction that A~1 does not traverse any of the half-edges pending at v or
v'. By Lemma 1, A~! returns to z in the same state, and hence its path in H; is a closed path.
This path traversed backwards is exactly what A* traverses from z. So A* does not traverse any

of the half-edges pending at v or v'. Thus, A also does not traverse them, a contradiction. o

By Claim 3 we can consider the state reached by j L after it traverses one of the pending half-
edges; assume this is the k-th state of the cycle in G (A) We consider two sub-cases, depending on
whether A~! traverses the same half-edge as A or not.

Case 2.1. The robot A~1 traverses the half-edge e pending at v (i.e., the same as A\) This
implies that the k-th label in W is equal to the (j — 1)-th label in W, which is the label of e. We
consider the section of the cycle of G(A\) from the j-th state to the k-th state. The end edges of
this section have the label of e. We now consider the following word: W' = W(j —)W (j)W (j +
.. Wk-1)WEkWE+1)..WHE-1)WHWGHE+1).. Wk -1)WEWkE+1).. W —
DWW (G +1)... W(k—1)W (k) (Note that W(j —1) = W(k) and [W'| > 2 x [W[+2). The two
robots A and A~ cannot follow the same path forever after crossing edge e: otherwise, it would
mean that moving them both backwards, they would also follow the same path forever (which is
impossible since the two robots took different paths at node x in the past). Moreover, the two
robots must separate after at most |W| steps, and since |W'| > 2 x |[W| + 2, they must separate
after at least 1 step and at most || — 1 steps. Now, if the two robots separate from each other at
some point after crossing edge e, let us consider the smallest such that W (j+1) # W(k—1-1), i.e
the nearest place where the two robots separate from one another. Since W(j —1) = W(k), [> 1.
By definition of I, we have W (j+1—1) = W(k—1). Since the considered robots are reduced, we also
have W (j+1—1) # W (j+1). Still by definition of I, we get W (j+1) # W (k—1—1). Finally, because
we consider reduced robots and we have W (j+1—1) = W(k—1), we get W(j+1—1) # W(k—1-1).
Overall, this means that W (j+1—1), W(j+1), and W (k —1—1) are pairwise disjoint. We are now
ready to construct the following graph: from e, there is a chain that ends in W (j+1—1) at node w,
and from this last node a circle W” goes from W (j+1) to W (k—1—1). Since W(j+1) # W(k—1-1)
(see above), |[W"| > 2. We add at w a ring of length [W"| labeled W", starting and ending at w,
so that once A and A~ reach w, each one traverses this ring in the opposite direction, and gets
back to w in the appropriate state to proceed along the path back to the half-edge e. The other
half-edge ¢’ is completed into an edge by adding to it one new node, and the graph obtained is H
Notice that we added at most 2K + 1 new nodes.

Case 2.2. The robot A~! traverses the half-edge ¢’ pending at v’ (i.e., not the same as A\)
Suppose when A~! goes through ¢’ it is in state s. We consider again the section of the cycle of
G(A) from the j-th state to the k-th state (if the section is of length 1, we extend it with W to
make sure there is at least one internal node). We connect e and ¢’ by a path with the labels of this
section, to obtain H. Thus, when A traverses the half-edge e, it follows the newly added path, and

15

gets to v’ in the appropriate state, namely s, to proceed along the same path of A~ but backwards,
and return to z. Notice that we added at most 2K new nodes.

Theorem 4 The graph H is simple and edge-colored. Also, H plus any edge is a p-trap for A
when starting in xg, with at most 2K + 3 nodes more than G.

Proof. It follows directly from Lemma 5 that H is simple and edge-colored. The number of nodes
of H is counted in the previous three cases.

The proof of Case 1 is as follows; the other cases are similar. Assume A _traverses e at step
i < |Wp|. In this case A does not traverse the edge ¢/ of H. Observe that A is trapped in the
segment of G*(A) added to e. This follows because A is in (z;_1,s;_1) before traversing e, and in
(w4, 8;) after traversing it. At this moment it is at the beginning of the segment of G* (A) added,
so it will continue traversing this graph without trying to take an edge not defined, as in Lemma
5. [

4.2 Trapping a Team of Robots

With the results of the previous subsection we are ready to prove our main result.

Theorem 5 For any set A of ¢ non-cooperative K -state robots, there exist a 3-homogenous graph
G and two pairs of neighboring nodes {u,u'} and {v,v'} such that (1) the edge {u,u'} is labeled 0,
(2) starting at w or at v, any robot in A fails to traverse the edge {v,v'}, and (3) G has O(qK)
nodes.

Proof. The proof is by induction on ¢ > 0. The basic step is ¢ = 0. The corresponding graph G
is displayed on Figure 9.

Figure 9: Basic step of the induction

For the induction step, assume that Theorem 5 holds for ¢, and let us show that it holds for
g+ 1. Let A be a set of ¢ + 1 non-cooperative K-state robots, and let A € A. By induction
hypothesis, let G, be an n-node 3-homogenous graph (where n is 10¢/K + O(q)) having two pairs of
neighboring nodes {u, '} and {v, v’} with the edge {u,u'} labeled 0, such that, starting at u or at
«', any robot in A\ {A} fails to traverse the edge {v,v'}. We construct a graph G4 that satisfies
Theorem 5 for A.

Let A be an irreducible robot obtained from A as in Lemma 4. Consider its footprint fp(;l\) =
WoW™, [WoW| < K. We concentrate first our attention on g, and will come back later to the
original robot A. Let us denote by p; the i-th letter in fp(f/l\). Recall that since A is irreducible,
its associated undirected graph G’(g) is edge-colored. Let us place A at node u of Gy, and perform
the construction of the previous subsection, Theorem 4, to obtain a graph H. Then, as in Theorem

16

2, construct an homogenous graph H; from Definition 3, and add the tower at any of the newly
added edges, say {v,v'} of height K + 1 (see Figure 7), to obtain a graph Hy. The edge {v1,v]} in
the gadget of the tower is not traversed by A when starting from wu.

We repeat the same construction by considering the robot A launched from v’ in H,. More
precisely, we construct Gy41 from Hs in the same way Hy was constructed from G,. In particular,
there is a tower in Gy41, and we define the nodes vy and vh of Gg¢+1 as the two internal nodes of
the gadget at the top of this tower. By construction G441 is 3-homogenous. Also, any robot in 4
fails to traverse the edge {va, v} of G441 when starting from w or «'. This is because by induction
hypothesis, starting from u or «’, a robot in A\ {A} never traverses v,v" in G4 and so will never
traverse any of the edges added to obtain G441, and hence does not traverse the edge {vs,v5} of
Gg+1. Starting from u, A fails to traverse the edge {vi,v]} of Ha. This edge being the one that
is “opened” to construct Ggi1 from Hy, A fails to reach any of the two nodes vy or v§ in Ggy1.
Finally, by construction of Gg441 from Hj, A fails to reach any of the two nodes vy or v§ in Gy
when starting from v/, in the same way A fails to reach any of the two nodes w or w’ in Hy when
starting from wu.

To complete the proof, it just remains to compute the size of Gyy1. We claim |Gg41] < |G| +
10K + O(1). We give simple upper bounds on the size of the intermediate graphs. First, we have
|H| < |G4| + 2K + 3 by Theorem 4. Then, we have |H| has 13 more nodes at the most, as in
Definition 3, so |H;| < |G4| + 2K + 16. The tower has 2K + 6 nodes (proof of Theorem 2), so
|Ha| < |Gq|+4K +22. The same procedure for the starting node u’ contributes to another 4K + 22
additional nodes. The result follows. Therefore, |G44+1] < 8¢K + O(q), which completes the proof
of the theorem. [

By simply rewriting Theorem 5, we derive a bound of the size of the smallest trap for a set of
g non-cooperative K-state robots, improving the one by Rollik [10]:

Corollary 2 For any set of ¢ non-cooperative K -state robots, there exists a trap of size O(¢K).

Corollary 3 A team of ¢ non cooperative robots that explores all graphs of size n requires at least
Q(log %) memory bits per robot.

By simply plugging this latter bound in the construction by Rollik [10] for team of locally-
cooperative robots, we get:

K
Corollary 4 For any set of q locally-cooperative K -state robots, there exists a trap of size O(KK),
with q + 1 levels of exponential.

5 Bounds for Exploration With Stop

In this section, we consider the exploration with stop problem, in which a robot must traverse all
edges of the graph, and eventually stop once this task has been achieved. A robot cannot solve this
task in graphs with more nodes than its number of states, by Lemma 1. Thus, the robot is given
pebbles that it can drop and take to/from any node in the graph. It is known that any finite robot
with a finite source of pebbles cannot explore all graphs [10]. On the other hand, it is known that
a robot with unbounded memory can explore all graphs, using only one pebble [6]. An important
issue is to bound the size of the robot as a function of the size of the explored graphs.

17

A 0-p-robot with a pebble or simply p-robot when § is understood, is an automaton A =
(A,S, f,s0), with a finite set of states S, s9 € S, and

f:8x{0,1} - S x A x {pick,drop}.

Every state s € S has a component p(s) € {0,1} that indicates if A has the pebble, p(s) = 1, or
not, p(s) = 0. Only if p(s) = 1 we allow f to be undefined; in such case we say s is a stop state.
For the initial state sg, p(so) = 0. Each node v of the graph is in some state p(v) € {0,1} that
indicates if the pebble is in v, p(v) = 1, or not, p(v) = 0. The initial state of the graph satisfies:
p(v) =1 for exactly one node v.

The movement of a §-p-robot A on a d-regular graph is represented by a sequence of configura-
tions, each one consisting of the state of the robot and the state of the graph. For the initial con-
figuration, A is placed on some node of the graph in state sg, and the pebble is in exactly one node.
In general, if A is in a node v in state s in some configuration, we compute f(s,p(v)) = (¢',1,b).
In the next configuration A will be in the node v’ such that the edge {v,v'} is colored i, in state
s’. Also in the next configuration: if b = drop then p(v) = 1 and p(s’) = 0, and if b = pick then
p(v) = 0 and p(s’) = 1. Tt is assumed that b can be equal to drop only if p(s) = 1 and b can be
equal to pick only if p(v) = 1.

A robot A explores with stop a graph if after starting in any node of the graph that has the
pebble, it traverses all its edges and enters a stop state. A graph which A does not explore with
stop is called a trap for A.

The next theorem shows that a p-robot that performs exploration with stop in all graphs of at
most n nodes requires Q(n'/3) states, or equivalently Q(logn) bits of memory.

Theorem 6 For any K -state p-robot there exists a trap of size O(K3).

Proof. Let A = (A,S, f,s0) be a K-state p-robot. We construct a trap of size O(K?) for A. For
that purpose, we consider the restriction of A to states s such that p(s) = 0 and input 0 (on nodes
with no pebble). This defines a robot (with no pebble, as in Section 2.1) except that some states
may be unreachable from sy. For every state s of this robot, we consider the robot A, that has

s as initial state, and includes only reachable states from s. Let A = {A;} be the set of all these
robots. Thus, |A| < K.

Let G be a graph satisfying Theorem 5 for the set A. Remove edges {u, v’} and {v,v'} from G.
Consider two copies of the resulting graph, with the four nodes of degree 2 indexed by the index of
the copy, 1 and 2. These nodes are re-connected as follows. Let ¢ be the color of the deleted edge
{v,v'}. Create two edges {v1,v5} and {v],va} with color ¢. The resulting graph is denoted by G
(see Figure 10).

Ve *V2
Graph G X X Graph G
V) e A

Figure 10: The graph G,

Consider an infinite ternary tree modified as follows. Each node is replaced by a 6-cycle. Edges
of the cycles are labeled alternatively 1 and 2. Then, edges of the infinite tree are replaced by two
“parallel” edges labeled 0, as depicted on Figure 11. The resulting graph is denoted by T

18

Figure 11: The modified infinite tree T

The two graphs G and T are composed by replacing every pair {{z,y}, {2/, y'}} of parallel edges
in T by a copy of Gi. More precisely, x,y,2’,y are respectively connected to nodes uy, ub, u}, us
in G1. These new edges are labeled 0. The resulting graph is denoted by G3. A “meta-edge” of Go
is defined as a copy of G replacing a parallel edge of T

By definition of G and A, the p-robot A is unable to traverse a meta-edge of G2 without the
help of the pebblet. We now modify G5 to obtain a graph Gs such that the p-robot A is unable to
explore (i3, even with the pebble. G3 contains O(K) 6-cycles of T, and thus has at most O(K?)
nodes. The transformation from G5 to (3 is technical and very similar to the transformation used
in [7] and in [10]. Thus we only sketch the construction of G3, skipping technical details. Since
any p-robot cannot go from a 6-cycle to another 6-node cycle of G2 without using the pebble, we
define key steps as those for which the last time the p-robot leaves a 6-cycle with the pebble, go
through a meta-edge, and enters another 6-cycle with the pebble. Because the number of states is
finite, A will eventually be twice in the same state at these key steps, at two nodes w and w’. With
the same technique as in [7], we identify the nodes w and w’. This leads to the graph G3 with the
desired properties, that is G5 has O(K) 6-cycles, and thus O(K) “parallel” edges. In each pair of
“parallel” edges, there is a copy of G. Since Gy has O(K?) nodes, then G3 has O(K?) nodes. ®

Corollary 5 A robots that explores all graphs of size n and stops requires at least Q2(logn) memory
bits.

6 Conclusions

We have proved that exploration with stop (using one pebble) requires Q(logn) bits for the family
of graphs with at most n nodes. In [7], the same lower bound holds for perpetual exploration. In
fact, [7] proves that perpetual exploration requires ©(D log A) for the family of graphs of diameter
at most D and degree at most A. This latter result is obtained by proving that DFS-exploration
is space-optimal. We thus ask the following question: is Q(Dlog A) bits of memory required to
explore with stop all graphs of diameter at most D and degree at most A?

#Since the {u,u'} edges are “open”, the proof requires to consider the last time the p-robot is in a w node; this is
deferred to the full version of the paper.

19

References

[1] M. Bender, A. Fernandez, D. Ron, A. Sahai and S. Vadhan. The power of a pebble: Exploring and
mapping directed graphs. Information and Computation 176: 1-21, 2002. Prel. Version in STOC 1998.

[2] M. Bender and D. Slonim. The power of team exploration: Two robots can learn unlabeled directed
graphs. In 35th Ann. Symp. on Foundations of Computer Science (FOCS), pages 75-85, 1994.

[3] L. Budach. Automata and labyrinths. Math. Nachrichten, pages 195-282, 1978.

[4] S. Cook and C. Rackoff. Space lower bounds for maze threadability on restricted machines. SIAM J. on
Computing 9(3):636-652, 1980.

[5] K. Diks, P. Fraigniaud, E. Kranakis, and A. Pelc. Tree Exploration with Little Memory. In 13th Annual
ACM-SIAM Symp. on Discrete Algorithms (SODA), pages 588-597, 2002.

[6] G. Dudek, M. Jenkins, E. Milios, and D. Wilkes. Robotic Exploration as Graph Construction. IEEE
Transaction on Robotics and Automation 7(6): 859-865, 1991.

[7] P. Fraigniaud, D. Ilcinkas, G. Peer, A. Pelc, and D. Peleg. Graph Exploration by a Finite Automaton. In
29th International Symposium on Mathematical Foundations of Computer Science (MFCS), LNCS 3153,
pages 451-462, 2004.

[8] P. Fraigniaud, D. Ilcinkas, S. Rajsbaum, S. Tixeuil. Space Lower Bounds for Graph Exploration via
Reduced Automata. In 12th International Colloquium on Structural Information and Communication
Complexity (STROCCO), Mont Saint-Michel, France, May 24-26, 2005: Lecture Notes in Computer
Science #3499, Springer 2005, pp. 140-154.

[9] O. Reingold. Undirected ST-Connectivity in Log-Space. To appear in 37th ACM Symp. on Theory of
Computing (STOC), 2005.

[10] H.-A. Rollik. Automaten in planaren graphen. Acta Informatica 13: 287-298, 1980.

[11] C.-E. Shannon. Presentation of a Maze-Solving Machine. In 8th Conf. of the Josiah Macy Jr. Found.
(Cybernetics), pages 173180, 1951.

20

