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Abstract

A self-stabilizing algorithm, regardless of the initial system state, converges in finite
time to a set of states that satisfy a legitimacy predicate. The mutual exclusion problem is
fundamental in distributed computing, since it permits processors that compete to access
a shared resource to be able to synchronize and get exclusive access to the resource (i.e.
execute their critical section).

It is well known that providing self-stabilization in general uniform networks (e.g.
anonymous rings of arbitrary size) can only be probabilistic. However, all existing uni-
form probabilistic self-stabilizing mutual exclusion algorithms designed to work under
an unfair distributed scheduler (that may choose processors to execute their code in an
arbitrary maneer) suffer from the following common drawback: Once stabilized, there
exists no upper bound on time between two successive executions of the critical section
at a given processor. In this paper, we present the first self-stabilizing algorithm that
guarantees such a bound (O(n3), where n is the network size) while working using an
unfair distributed scheduler. Our algorithm works in an anonymous unidirectional ring
of any size and has a polynomial expected stabilization time.

Keywords: Distributed algorithm, self-stabilization, mutual exclusion, unfair sched-
uler, service time.

1 Introduction

Mutual Exclusion. The mutual exclusion is a fundamental problem in the area of dis-
tributed computing. Consider a distributed system of n processors. Every processor, from
time to time, may need to execute a critical section in which exactly one processor is allowed
to use some shared resource. A distributed system solving the mutual exclusion problem
must guarantee the following two properties:

1. Mutual Exclusion: Exactly one processor is allowed to execute its critical section at any
time.

2. Fairness: Every processor must be able to execute its critical section infinitely often.

∗An extended abstract of this paper appeared in [4]
†This author was supported in part by the french project MobiCoop.
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Self-stabilization. The concept of self-stabilization was first introduced by Edsger W. Di-
jkstra in 1974 [5]. It is now considered to be the most general technique to design a system
to tolerate arbitrary transient faults. A self-stabilizing system guarantees that starting from
an arbitrary state, the system converges to a legal configuration in a finite number of steps,
and remains in a legal state until another fault occurs (see also [6]).

In the context of computer networks, resuming correct behavior after a fault occurs can
be very costly [15] — the whole network may have to be shut down and globally reset in a
good initial state. While this approach is feasible for small networks, it is far from practical
in large networks such as the Internet. Self-stabilization provides a way to recover from
faults without the cost and inconvenience of a generalized human intervention: after a fault
is diagnosed, one simply has to remove, repair, or reinitialize the faulty components, and the
system, by itself, will return to a good global state within a relatively short amount of time.

Scheduler. All components (processors and communication links) of distributed systems
may not share the same speed assumptions (i.e., one processor may execute its code fast,
while many others are very slow). The scheduler is a way to model such different behaviors.
A scheduler chooses processors to execute their code at a given time. If the scheduler is given
more freedom (power) to make its selections, then the task of designing an algorithm to cope
with this scheduler becomes more challenging. In other words, the scheduler works as an
adversary against the algorithm ([2, 7]). The synchronous scheduler is one of the simplest (or
weakest) schedulers — in every computation step, all processors are allowed to execute their
code in lock-step. This scheduler models systems where all processors run (almost) at the
same speed. The k-bounded scheduler may choose enabled processors in such a way that the
ratio of speeds between any two processors is at most k. This scheduler models a situation
where one processor is at most k times faster than another. So, the k-bounded scheduler is a
stronger adversary than the synchronous one. The arbitrary scheduler represents the strongest
possible adversary. It simply can arbitrarily choose any enabled processors.

Related Work. Dijkstra’s three self-stabilizing mutual exclusion algorithms [5] are deter-
ministic and non-uniform (in such an algorithm, some processors are distinguished in the
sense that they are allowed to execute a program that is different from that of the other
processors). In [3], Burns and Pachl presented a deterministic algorithm for uniform uni-
directional rings of prime size, and proved that no deterministic solution exists for rings of
composite size.

Several papers investigated the mutual exclusion problem in the probabilistic (or ran-
domized) setting. Randomization was used to reduce the space in [9, 12], and to deal with
anonymous networks in [1, 11]. However, a common problem in all these probabilistic al-
gorithms is that once stabilized, there is no upper bound on the time between two entries
into the critical section at a particular processor. In other words, although the expected
time between two critical section executions is bounded, there exist computations in which
a particular processor may not get the token infinitely often. We refer to this kind of algo-
rithms as weak probabilistic stabilizing algorithms. Kakugawa and Yamashita [14] presented
a probabilistic uniform self-stabilizing algorithm on uniform rings that does guarantee an
upper bound between two critical section entries. We call this class of algorithms strong
probabilistic stabilizing algorithms. However, the algorithm of [14] works only under the
central scheduler (which allows exactly one enabled processor at any time). All previously
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known algorithms solving the mutual exclusion problem ensure fairness using one of the
two well-known methods: (i) by choosing an ad hoc scheduler (e.g., the fair scheduler in
[9] or randomized central scheduler in [12]) and (ii) by requiring that the correctness of the
system is probabilistic (as in [1] and [11]). The open question in [14] was to design a strong
probabilistic stabilizing algorithm that solves the mutual exclusion problem under an unfair
distributed scheduler.

Our Contributions. We answer the open question of [14] and provide a strong probabilistic
stabilizing algorithm for the mutual exclusion problem in an anonymous unidirectional ring
of any size running under an unfair distributed scheduler. (The distributed scheduler selects
an arbitrary non-empty subset of enabled processors in a computation step at any time.) We
describe the probabilistic self-stabilizing systems in Section 3. We start with a strong prob-
abilistic algorithm that works under a synchronous scheduler—all processors are activated
simultaneously. This first algorithm is derived from the space-optimal weak probabilistic al-
gorithm of [1]. Then we transform it to a strong probabilistic stabilizing algorithm to work
under a k-bounded scheduler (that bounds the ratio of relative speeds of executions of any
two processors to k). Finally, we use the composition technique described in [2] to stabilize
the algorithm under an unfair distributed scheduler (Section 4). We show that the maximum
expected stabilization time is O(n3) under the unfair and k-bounded scheduler, and O(n2)
under the synchronous scheduler. After stabilization, the upper bound between two occur-
rences of the privilege at a given processor is O(n3) under the unfair scheduler, O(kn) under
the k-bounded scheduler, and O(n) for the synchronous scheduler.

Outline. In Section 2, we present the underlying model for our algorithms. We also define
properties related to self-stabilization in the context of probabilistic systems. We present
three algorithms and their correctness proofs in Section 4. The complexity results of all
algorithms are provided in Section 5. Concluding remarks are made in Section 6.

2 Model

Distributed Systems We model a distributed system S = (C, T, I) as a transition system
where C is the set of system configurations, T is a transition function from C to C, and I is
the set of initial configurations. A probabilistic distributed system is a distributed system where
a probabilistic distribution is defined on the transition function of the system.

We consider unidirectional ring networks where the processors maintain two types of
variables: local variables and field variables. Each processor, Pi, has two neighbors denoted by
lefti (the counter-clockwise neighbor of Pi) and righti (the clockwise neighbor of Pi). The
local variables of Pi cannot be accessed by any of its neighbors, whereas the field variables
of Pi are part of the shared register which is used to communicate with Pi’s right neighbor.
A processor can write only into its own shared register and can read only from the shared
registers owned by its left neighbor or itself. The state of a processor is defined by the values
of its local and field variables. A processor may change its state by executing its local algo-
rithm (defined below). A configuration of a distributed system is an instance of the state of its
processors.

The algorithm executed by each processor is described by a finite set of guarded actions
of the form 〈guard〉 −→ 〈statement〉. Each guard of processor Pi is a boolean expression
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involving Pi’s variables and lefti’s field variables. A processor Pi is enabled in configuration
c if at least one of the guards of the program of Pi is true in c. Let c be a configuration and
CH be a subset of enabled processors in c. We denote by {c : CH} the set of configurations
that are reachable from c if every processor in CH executes an action starting from c. A
computation step is a tuple (c, CH, c′), where c′ ∈ {c : CH}. Note that all configurations
∈ {c : CH} are reachable from c by executing exactly one computation step. In a probabilistic
distributed system, every computation step is associated with a probabilistic value (the sum
of the probabilities of the computation steps determined by {c : CH} is 1). A computation of
a distributed system is a maximal sequence of computation steps. A history of a computation
is a finite prefix of the computation. A history of length n (denoted by hn) starting with the
initial configuration c0 can be defined recursively as follows:

hn ≡
{

(c0, CH0, c1) if n = 1
[hn−1(cn−1, CHn−1, cn)] otherwise

The probabilistic value of a history is the product of the probabilities of all the computation
steps in the history. If hn is a history such that

hn = [(c0, CH0, c1) . . . (cn−1, CHn−1, cn)]

then we use the following notations: the length of the history hn (equal to n) is denoted
as length(hn), the last configuration in hn (which is cn) is represented by last(hn), and the
first configuration in hn (which is c0) is referred to as first(hn) (first can also be used for
an infinite computation). A computation fragment is a finite sequence of computation steps.
Let h be a history, x be a computation fragment such that first(x) = last(h), and e be a
computation such that first(e) = last(h). Then [hx] denotes a history corresponding to the
computation steps in h and x, and (he) denotes a computation containing the steps in h and
e.

3 Probabilistic Systems

In this section, we give an outline of the probabilistic model used in the rest of the paper. A
detailed description of this model is available in [2].

Scheduler. A scheduler is a predicate over the system computations. In a computation, a
transition (ci, ci+1) occurs due to the execution of a nonempty subset of the enabled pro-
cessors in configuration ci. In every computation step, this subset is chosen by the sched-
uler. The interaction between a scheduler and the distributed system generates some special
structures, called strategies. The scheduler strategy definition is based on the tree of com-
putations (all the computations having the same initial configuration). Let c be a system
configuration and S a distributed system. The tree representing all computations in S start-
ing from the configuration c is the tree rooted at c and is denoted as T ree(S, c). Let n1 be a
configuration in T ree(S, c). A branch originating from n1 represents the set of all T ree(S, c)
computations starting in n1 with the same first transition. The degree of n1 is the number of
branches rooted in n1.

Definition 3.1 (Strategy) Let S be a distributed system, D a scheduler, and c a configuration in S.
We define a strategy w.r.t. D as the set of computations represented by the tree obtained by pruning
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Figure 1: Cone and subcone in a strategy.

T ree(S, c) such that the degree of any processor is at most 1, and any execution in the pruned tree
satisfies D.

The following definition introduces the notion of cone of execution which can be seen
intuitivelly as a branch in a strategy (see Figure 1).

Definition 3.2 (Cone) Let s be a strategy of a scheduler D. A cone Ch(s) corresponding to a history
h is defined as the set of all possible computations under D which create the same history h.

For example, Figure 1 presents a cone Ch(s) whose history h is equal to [(c0, CH0, c
1
1)].

The probabilistic value of a cone Ch(s) is the probabilistic value of the history h (i.e., the
product of the probabilities of all computation steps in h).

Definition 3.3 (Subcone) A cone Ch′(s) is called a subcone of Ch(s) if and only if h′ = [hx], where
x is a computation fragment.

For example, Figure 1 presents a cone C′h′(s) whose history h′ is equal to

[(c0, CH0, c
1
1) . . . (c1

n−1, CHn−1, c
1
n)]

Since h′ = [hx] (with x equal to [. . . (c1
n−1, CHn−1, c

1
n)]), C′h′(s) is a subcone of Ch(s).

Let S be a system, D a scheduler, and s a strategy of D. The set of computations under
D that reach a configuration c′ satisfying predicate P (denoted as c′ ` P ) is denoted as EPs,
and its associated probabilistic value is represented by Pr(EPs). We call a predicate P a
closed predicate if the following is true: If P holds in configuration c, then P also holds in any
configuration reachable from c.

5



Probabilistic Self-Stabilizing Systems. A probabilistic self-stabilizing system is a proba-
bilistic distributed system satisfying two important properties: probabilistic convergence (the
probability of the system to converge to a configuration satisfying a legitimacy predicate is 1)
and correctness (once the system is in a configuration satisfying a legitimacy predicate, it sat-
isfies the system specification). In this context, the correctness comes in two variants: weak
correctness (the system correctness is only probabilistic) and strong correctness (the system
correctness is certain).

Definition 3.4 (Strong Probabilistic Stabilization) A system S is strong self-stabilizing un-
der scheduler D for a specification SP if and only if there exists a closed legitimacy predicate L such
that in any strategy s of S under D, the two following conditions hold:
(i) The probability of the set of computations under D, starting from c, reaching a configuration c′,
such that c′ satisfies L is 1 (probabilistic convergence). (Formally, ∀s, Pr(ELs) = 1).
(ii) All computations, starting from a configuration c′ such that c′ satisfies L, satisfy SP (strong
correctness).(Formally, ∀s,∀e, e′ ∈ s, e = (he′) :: last(h) ` L ⇒ e′ ` SP ).

Convergence of Probabilistic Stabilizing Systems. We borrow a result of [2] to prove the
probabilistic convergence of the algorithms presented in this paper. This result is built upon
some previous work on probabilistic automata ([16, 17, 18, 19]) and provides a complete
framework for the verification of self-stabilizing probabilistic algorithms. We need to intro-
duce a few terms before we are ready to present this result. First, we explain a key property,
called local convergence and denoted by LC. Informally, the LC property characterizes a
probabilistic self-stabilizing system in the following way: The system reaches a configura-
tion which satisfies a particular predicate, in a bounded number of computation steps with
a positive probability.

Definition 3.5 (Local Convergence) Let s be a strategy, and P1 and P2 be two predicates on con-
figurations, where P1 is a closed predicate. Let δ be a positive number ∈]0, 1[ and N a positive integer.
Let Ch(s) be a cone with last(h) ` P1 and let M denote the set of subcones Ch′(s) of Ch(s) such that
last(h′) ` P2 and length(h′)− length(h) ≤ N . Then Ch(s) satisfies the local convergence property
denoted as LC(P1, P2, δ,N) if and only if Pr(

⋃
Ch′ (s)∈M Ch′(s)) ≥ δ.

Now, if in strategy s, there exist δs > 0 and Ns ≥ 1 such that any cone Ch(s) with last(h) `
P1 satisfies LC(P1, P2, δs, Ns), then the result of [2] states that the probability of the set of
computations under D reaching configurations satisfying P1 ∧ P2 is 1. Formally:

Theorem 3.1 ([2]) Let s be a strategy. Let P1 and P2 be closed predicates on configurations such
that Pr(EP1s) = 1. If ∃δs > 0 and ∃Ns ≥ 1 such that any cone Ch(s) with last(h) ` P1 satisfies
LC(P1, P2, δs, Ns), then Pr(EP12s) = 1, where P12 = P1 ∧ P2.

4 Strong Probabilistic Stabilizing Mutual Exclusion

In this section, we present three solutions to the mutual exclusion problem for three differ-
ent schedulers: synchronous scheduler (Section 4.1), k-bounded scheduler (Section 4.2) and
arbitrary scheduler (Section 4.3).
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Specification of the Mutual Exclusion Problem We specify the mutual exclusion prob-
lem (SPME) as follows: There is exactly one privilege in the system at any time and every
processor obtains the privilege infinitely often.

4.1 Synchronous Scheduler

The algorithm for mutual exclusion under the synchronous scheduler is presented as Algo-
rithm 4.1.

Algorithm 4.1 Mutual exclusion under a synchronous scheduler (for p).
Field variables:

tp ∈ [0,mnd(n)− 1] (the privilege.)
Variables:

go_aheadp ∈ {pass, wait}.
rand_boolp holds a random value in {1, 0}. Each value has a probability of 1/2.

Predicate:
Privilege(p) ≡ tp − tlp 6= 1 mod mnd(n)

Macro:
Pass_privilege(p) : tp := (tlp + 1) mod mnd(n)

Actions:
A1:: Privilege(p) ∧ go_aheadp=wait −→

if (rand_boolp = 1) then go_aheadp=pass;
else Pass_privilege(p);

A2:: Privilege(p) ∧ go_aheadp=pass −→
Pass_privilege(p);
if (rand_boolp = 0) then go_aheadp=wait;

In Algorithm 4.1, every processor p in the system has a field variable tp. A processor is
privileged if and only if the difference between tp and tlp (the tp variable of its left neighbor) is
not 1. It was proven in [1] that if operations on tp variables are made always modulo mnd(n)1,
where n is the number of processors in the ring, then at least one privilege is always present
in the ring.

A privileged processor tosses a coin to decide whether it wants to pass the privilege or
not. If it decides to keep the privilege, it can do so for one more computation step. The
purpose of the go_aheadp variable is to prevent processor p from keeping the token too long.
This allows the algorithm to achieve an upper bound on the service time (the time between
two consecutive grants given to processor p to enter its critical section).

We define the legitimacy predicate LME as follows:

LME ≡ There exists exactly one privilege.

Correctness proof. In this subsection, we will show that every processor enjoys the privi-
lege infinitely often.

Lemma 4.1 Starting from any legitimate configuration, each node is privileged once in at most every
2× n computation steps, where n is the size of the ring.

1mnd(n) denotes the minimum non-divisor of n. For example, mnd(5) = 2.
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Proof: Let c be a legitimate configuration. Let p1 be the processor holding the privilege in c.
If the value of p1’s local variable go_ahead equals wait, then p1 executes Action A1. A coin is
tossed with two possible outcomes:

1. p1 changes go_ahead to pass, and in the next computation step, Action A2 is executed,
making p1 to pass the privilege to its right neighbor.

2. p1 passes the privilege immediately to its right neighbor.

Therefore, within at most two computation steps, the privilege is passed from p1 to p2.
Since the size of the ring is n, p1 gets privileged again within 2× n computational steps. 2

Corollary 4.1 The privilege circulates infinitely often in the ring.

Proof of Convergence In order to prove the probabilistic convergence of Algorithm 4.1, we
first show that for any strategy s, all cones of s satisfy the local convergence property. Then,
by Theorem 3.1, the probabilistic convergence of the system will be established.

Notation 4.1 Let Priv(c) denote the number of privileged processors in configuration c.

Lemma 4.2 Let s be a strategy of Algorithm 4.1 under a synchronous scheduler starting from con-
figuration c. There exist δ > 0 and N ≥ 1 such that any cone of s satisfies

LC(true,LME , δ,N)

Proof: The proof is done using the following two steps:

1. In strategy s, there exists a cone Ch1(s), such that configuration last(h1) satisfies the
property:

Priv(last(h1)) ≤ Priv(c)− 1

2. Repeat the argument of (1) by considering Ch1(s) as the current strategy, until the num-
ber of privileges becomes equal to 1.

Proposition 4.1 Let s be a strategy. There exist δ1 > 0, N1 ≥ 1, and a cone Ch1(s) such that

Pr(Ch1(s)) ≥ δ1

length(h1) ≤ N1

and
Priv(last(h1)) ≤ Priv(c0)− 1

Proof: Assume that Priv(c0) = m. Let us number the privileges (ti)i=1,m clockwise such that

dist(tm, t1) = min1≤i≤m−1dist(ti, ti+1)

where dist(p, q) is the distance from p to q measured following the clockwise direction. Let
di be the distance in c0 between ti and ti+1. We want to prove that the probability that
the distance between the privileges tm and t1 decreases, is strictly positive. Intuitively, this
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means that there is a positive probability that the “speed” of privilege tm increases as it ap-
proaches t1. We consider privileges tm, t1, and t2, and calculate the probability of t2 leaving
a go_ahead variable equal to wait, and that of t1 leaving a go_ahead variable equal to pass.
The worst initial configuration for our scenario is when every processor p between tm and
t1 has go_aheadp = wait, and every processor p′ between t1 and t2 has go_aheadp′ = pass.
We will show that even then, there is a positive probability that tm approaches t1. The proof
consists of the following two steps:

1. Let us calculate the probability δ0 to obtain a cone Ch0(s) such that in last(h0), the
three following conditions hold: (1) tm reached the processor which held t1 in c0, (2)
t1 reached the processor which held t2 in c0, and (3) all the processors visited by t1
set their variable go_ahead to pass and all processors visited by all other privileges set
their variable go_ahead to wait. With the above three conditions satisfied, we establish
that:

δ0 = δ1
0 × δ2

0 × δ3
0

where:

(a) δ1
0 is the probability for tm to reach the processor which held t1 in c0.

δ1
0 ≥

(
1
4

)dm

(b) δ2
0 is the probability for t1 to reach the processor which held t2 in c0 while all

processors visited by t1 set their go_ahead variable to pass.

δ2
0 ≥

(
1
4

)d1

(c) δ3
0 is the probability for all processors visited by all other privileges to set their

go_ahead variable to wait.

δ3
0 ≥

(
1
4

)(m−2)max(d1,2dm)

Thus,

δ0 ≥
(

1
4

)(m−1)max(d1,2dm)+dm

In last(h0),
dist(tm, t1) ≤ 2× dm

and
length(h0) ≤ max(2× dm, d1)

2. Let us calculate the probability δ1 to obtain a subcone Ch1(s) of cone Ch0(s) such that
Priv(last(h1)) ≤ Priv(c0)− 1. This situation is possible because the probability of tm to
have twice the speed of t1 is positive. We have:

δ1 ≥ δ0 ×
(

1
4

)(m+2)dm

≥ (
1
4

)(m−1)max(d1,2dm)+(m+3)dm
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and
length(h1) ≤ dm + length(h0)

≤ (dm + max(2× dm, d1))

Hence

δ1 ≥
(

1
4

)2×n2

and length(h1) ≤ 2n. In last(h1), we have Priv(last(h1)) ≤ m− 1.

2

Proposition 4.1 still holds for cone Ch1(s). Thus, the probability to obtain a subcone
Ch2(s), where Priv(last(h2)) ≤ m−2, is strictly positive. By induction, cone Chm−1(s) (where
Priv(last(hm− 1)) = 1) is obtained with positive probability

δ ≥
(

1
4

)2×n3

and
length(hm− 1) ≤ 2× n2

2

From Lemmas 4.1 and 4.2, and Theorem 3.1, we claim:

Theorem 4.1 Algorithm 4.1 is strong probabilistic stabilizing for SPME under a synchronous sched-
uler.

4.2 k-Bounded Scheduler

In Algorithm 4.2, the variable go_aheadp is now extended to include values between 0 and
2k + 1 (where k is a parameter of the algorithm). When go_aheadp = (2k + 1), the processor
must pass the privilege and randomly change its value. Otherwise, the processor strictly
increases its go_aheadp value. All the values between 0 and 2k represent wait states and
2k + 1 represents a pass state.

Lemma 4.3 (Strong Correctness) Starting from any legitimate configuration, each processor is
privileged within (2k + 2)× n computation steps, where n is the size of the ring.

Proof: The worst scenario in terms of a privilege being held at processor p is as follows: p has
its go_aheadp = 0 and every time p is chosen, rand_boolp = 0. In the worst case, the privilege
remains at p for (2k +2) steps (for 2k +1 steps, go_aheadp is incremented, and finally, in step
2k + 2, the privilege is passed). 2

Lemma 4.4 (Probabilistic Convergence) Let s be a strategy of Algorithm 4.2 under a k-bounded
scheduler starting in configuration c. There exist δ > 0 and N ≥ 1 such that every cone of s satisfies
LC(true,LME , δ,N).

Proof: In the following, dist(p, q) denotes the distance between Processors p and q, which
is equal to the number of the processors between p and q in the clockwise direction, plus 1.
Assume that in c, there are m privileges t1, . . . , tm, where

dist(tm, t1) = min1≤i≤m−1(dist(ti, ti+1))
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Algorithm 4.2 Mutual exclusion under a k-bounded scheduler (for p)
Field:

tp ∈ [0,mnd(n)− 1] (the privilege)
Variables:

rand_boolp holds any value in {0, 1}. Each value has a probability of 1/2.
go_aheadp holds any integer value in [0..(2k+1)].

Predicate:
Privilege(p) ≡ tp − tlp 6= 1 mod mnd(n)

Macro:
Pass_privilege(p) : tp := (tlp + 1) mod mnd(n)

Actions:
A1:: Privilege(p) ∧ go_aheadp 6= (2k+1) −→

if (rand_boolp = 1) then go_aheadp:=(2k+1) else go_aheadp :=
go_aheadp + 1;
A2:: Privilege(p) ∧ go_aheadp=(2k+1) −→

Pass_privilege(p); if (rand_boolp = 0) then
go_aheadp:=random(0..2k+1);

Let di be the distance in c between ti and ti+1. In the worst case, every processor p between
tm and t1 is in the “worst” wait state (go_ahead = 0), and every processor p′ between t1 and
t2 is in the pass state (go_aheadp′ = 2k + 1). We now consider the following two cases:

1. We calculate the probability δ0 to obtain a cone Ch0(s), where last(h0) satisfies the fol-
lowing three properties: (1) tm reached the processor which held t1 in c, (2) t1 reached
the processor which held t2 in c, and (3) all the processors visited by t1 set their variable
go_ahead to 2k + 1, and the processors visited by all other privileges set their variable
go_ahead to 0. Then in last(h0),

dist(tm, t1) ≤ (2k + 2)× dm,

length(h0) ≤ max(d1, (2k + 2)dm)

and
δ0 = δ1

0 × δ2
0 × δ3

0

where:

(a) δ1
0 represents the probability for tm to reach the processor which had t1 in c

δ1
0 ≥

(
1
2

)(2k+2)dm

(b) δ2
0 represents the probability for t1 to reach the processor which had t2 in c, while

all processors visited by t1 set their go_ahead variable to 2k + 1

δ2
0 ≥

(
1
2
× 1

2k + 2

)d1

11



(c) δ3
0 represents the probability that all processors visited by all other privileges set

their go_ahead variable to 0

δ3
0 ≥

(
1
4
× 1

2k + 2

)(m−2)max((2k+2)dm,d1)

Thus,

δ0 ≥ (
1
2

)max((2k+2)dm,d1)m
(

1
2k+2

)d1+(m−2)max((2k+2)dm,d1)

≥
(

1
2 × 1

2k+2

)max((2k+2)dm,d1)m

2. We calculate the probability δ1 that cone Ch0(s) has a subcone Ch1(s) such that

Priv(last(h1)) ≤ Priv(c)− 1

In order to keep tokens tm and t1 as far as possible from each other, the k-bounded
scheduler chooses the processors holding t1 as often as possible. Remark that in order
to keep distant the tokens tm and t1 the k-bounded scheduler privilegiates the pro-
cessors holding t1. By the scheduler definition, anytime the processor holding t1 is
chosen k times, every other processor is chosen at least once. Nevertheless, after 2k +2
choices of the processor holding t1, the distance between tm and t1 is decreased by 1
(i.e. t1 moves one step forward, while tm moves two steps forward). Then, after at most
(2k + 2)2dm choices of t1, tokens tm and t1 merge. Hence, the probability that tokens
tm and t1 merge and conditions (2) and (3) be verified is

δ1 ≥ δ0

(
1
2

)2kdm(2k+2) (
1
2
× 1

2k + 2

)2dm(2k+2) (
1
4
× 1

2k + 2

)(m−2)dm(2k+2)

The length of the history h1 is

length(h1) ≤ length(h0) + dm × (2k + 2)2

≤ max(d1, (2k + 2)× dm) + dm × (2k + 2)2

and

δ1 ≥
(

1
2

)2(2k+2)n(n+2(k+1)) (
1

2k + 2

)2(2k+2)n(n+1)

Reapplying (2) for the cone Ch1(s), there is a positive probability to obtain a sub-cone
Ch2(s) such that Priv(last(h2)) ≤ m− 2, and then a positive probability δ to obtain a subcone
Chm−1(s), where the number of privileges is 1. We now have:

δ ≥
(

1
2

)2(2k+2)n2(n+2(k+1)) (
1

2k + 2

)2(2k+2)n2(n+1)

and
length(hm− 1) ≤ (2k + 2)2 × n2

2

>From Lemmas 4.3 and 4.4, and Theorem 3.1, we can claim the following result:

Theorem 4.2 Algorithm 4.2 is strong probabilistic stabilizing for SPME .
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4.3 Unfair Scheduler

In this section, we extend Algorithm 4.2 for an unfair scheduler. The idea of cross-over com-
position (introduced in [2]) is used to implement this extension. The cross-over composition
can be seen as a black box with two algorithms as input (denoted by A and B) and one al-
gorithm as output (denoted by O). The composition goal is to improve Algorithm A with
nice properties of Algorithm B. The output Algorithm O solves the same problem as A, but
benefits from the properties of algorithm B.

Definition 4.1 (Cross-over Composition) Let A be an algorithm with n rules as follows:

∀i ∈ {1, . . . , n}, < guard ai >⇒< action ai >

Let B be an algorithm with m rules as follows:

∀j ∈ {1, . . . , m} < guard bi >⇒< action bj >

The cross-over composition with A and B as entries, is the algorithm with the following rules:
∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , m}

< guard ai > ∧ < guard bj >⇒< action ai >;< action bj >

and ∀j ∈ {1, . . . ,m}

¬ < guard ai > ∧ . . . ∧ ¬ < guard an > ∧ < guard bj >⇒< action bj >

Algorithm 4.3 results from crossover composition of Algorithm 4.2 and the deterministic
token passing algorithm of [2] (the tokens related to this algorithm are referred to as fair priv-
ileges). Algorithm 4.3 combines the best of both algorithms, retaining the strong probabilistic
stabilization of Algorithm 4.2 and the unfair distributed scheduler support of the token pass-
ing algorithm. In the worst case, a (n− 1)-bounded scheduler is guaranteed, which gives an
O(n3) computation step time complexity.

Theorem 4.3 Algorithm 4.3 is strong probabilistic stabilizing for SPME under an unfair scheduler.

Proof: The proof directly follows from Theorems 3.1 and 4.2. 2

5 Complexity

5.1 Space Complexity

The minimum non-divisor of n is O(log(n)) [13]. Therefore, Algorithm 4.3 needs O(log(n −
1) + 2 × log(log(n))) bits per processor. Algorithms 4.1 and 4.2 use O(log(log(n))) and
O(log(k) + log(log(n))) bits per processor, respectively. Moreover, since it has been shown in
[10] that mnd(n) is constant on average (over all values of n), it follows that on average, the
space complexity of Algorithm 4.3 is log(n), and that the space complexity of Algorithms 4.1
and 4.2 are O(1) and O(log(k)), respectively.
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Algorithm 4.3 Mutual exclusion under an unfair scheduler (for p) with k = n− 1
Fields:

tp ∈ [0,mnd(n)− 1] (the privilege)
ftp ∈ [0,mnd(n)− 1] (xsthe fair privilege)

Variables:
rand_boolp holds any value in {0, 1}. Each value has a probability of 1/2.
go_aheadp holds any integer value in [0..(2k+1)].

Predicates:
Privilege(p) ≡ tp − tlp 6= 1 mod mnd(n)
Fair_privilege(p) ≡ ftp − ftlp 6= 1 mod mnd(n)

Macros:
Pass_privilege(p) : tp := (tlp + 1) mod mnd(n)
Pass_Fair_privilege(p) : ftp := (ftlp + 1) mod mnd(n)

Actions:
A1:: Privilege(p) ∧ go_aheadp 6= (2k+1) ∧ Fair_privilege(p) −→

Pass_Fair_privilege(p)
if (rand_boolp = 1) then go_aheadp=(2k+1) else go_ahead + +;

A2:: Privilege(p) ∧ go_aheadp=2k+1 ∧ Fair_privilege(p) −→
Pass_Fair_privilege(p) ; Pass_privilege(p);
if (rand_boolp = 0) then go_aheadp=random(0..2k+1);

A3:: ¬Privilege(p) ∧ Fair_privilege(p) −→
Pass_Fair_privilege(p)

5.2 Time Complexity

In this section, we first provide the stabilization time for all three algorithms (i.e., the time
to recover from a fault), and then the propagation delay of the token once the system is
stabilized (i.e., the service time needed to grant a processor to enter its critical section).

5.2.1 Stabilization Time

As the convergence of our algorithms is only probabilistic, we can only guarantee maximum
expected stabilization time. In the literature (e.g., [7]), the maximum expected stabilization
time is expressed in terms of rounds, where a round is a minimal computation fragment
during which every processor executes one action.

From Lemmas 4.1 and 4.3, a round is O(n) computation steps under the synchronous
scheduler, and O(nk) computation steps using the k-bounded and unfair scheduler.

Algorithm 4.1. We consider the behavior of m pairs of successive tokens during one round.
The probability that no two consecutive tokens merge in this round is less than

p =
(

1
2

)m×n

Thus, the probability that at least one pair of two consecutive tokens merges is more than
q = 1 − p. Then, the expected number of rounds before the system reaches a configuration
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with m− 1 tokens is E[m,m− 1] < 1
q , i.e.,

E[m,m− 1] <
2m×n

2m×n − 1

The maximum expected number of rounds (let us denote it by T4.1) to converge from an
arbitrary configuration (where the number of privileges is m) to a legitimate configuration
(where the number of privileges is 1) is given by the formula

T4.1 ≤
m∑

i=2

2in

2in − 1
≤ m + 2

If T4.1 is O(m) rounds and m ≤ n, then T4.1 is O(n2) computation steps.

Algorithm 4.2 where k = n − 1 and Algorithm 4.3. We now calculate the maximum ex-
pected number of rounds for Algorithm 4.2 (where k = n − 1) to stabilize starting from the
worst possible configuration (with m tokens).

First, we find an upper bound on the expected number of rounds needed to reach a
configuration where the number of tokens is one less than that in the starting configuration.
We consider the behavior of m pairs of successive tokens during one round. The probability
that no two consecutive tokens merge is less than

p =
(

1
2
× 1

(2k + 2)

)m×n

Thus, the probability that at least one pair of consecutive tokens merges is more than q =
1− p. Then, the expected number of rounds before the system reaches a configuration with
m− 1 tokens is E[m,m− 1] < 1

q , i.e.

E[m,m− 1] <
2(2k + 2)m×n

2(2k + 2)m×n − 1

The maximum expected number of rounds T4.2 before stabilization of Algorithm 4.2
(where k = n − 1) from a configuration with m privileges to a configuration with 1 priv-
ilege is given by the formula

T4.2 ≤
m∑

i=2

E[i, i− 1] =
m∑

i=2

2(2n− 1)in

2(2n− 1)in − 1
≤ m

Since T4.2 is O(m) rounds and m ≤ n, T4.2 is O(n3) computation steps. A processor executing
Algorithm 4.3 executes a rule of Algorithm 4.2 if and only if it holds a fair token. For the time
complexity analysis, the worst number of fair tokens is 1. Hence, the bound provided for
Algorithm 4.2 holds for Algorithm 4.3 too. Therefore, its time complexity is O(n3).

5.2.2 Propagation Delay

Once stabilized, in the worst case, the upper bound between two appearances of a privilege
at the same processor p in Algorithms 4.1, 4.2, and 4.3 is 2×n, (2k+2)×n, and n3, respectively.
The average delays are 3×n

2 , (2k+3)×n
2 and n2(n+1)

2 , respectively.
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6 Conclusion

We presented a solution to the open problem of having a strong probabilistic self-stabilizing
mutual exclusion algorithm under an unfair distributed scheduler. Once the system is sta-
bilized, a processor only waits a bounded (polynomial) amount of time. Bounding the coin
tossing as presented in this paper can be applied to several other probabilistic algorithms
(e.g., [8, 13]) to provide a bound of the service time. The service time provided by our solu-
tions is (2k + 2)× n (Algorithm 4.2) and n3(Algorithm 4.3) respectively. The average service
times are (2k+3)×n

2 and n2(n+1)
2 for the two algorithms.

References

[1] J. Beauquier, S. Cordier, and S. Delaët. Optimum probabilistic self-stabilization on uni-
form rings. In Proceedings of the Second Workshop on Self-Stabilizing Systems, pages 15.1–
15.15, 1995.

[2] J Beauquier, M Gradinariu, and C Johnen. Crossover composition. In Proceedings of the
Fifth Workshop on Self-stabilizing Systems (WSS 2001), pages 19–34, 2001.

[3] J. Burns and J. Pachl. Uniform self-stabilizing rings. ACM Transactions on Programming
Languages and Systems, 11:330–344, 1989.

[4] A K Datta, M Gradinariu, and S Tixeuil. Self-stabilizing mutual exclusion using unfair
distributed scheduler. In Proceedings of IPDPS’2000, Cancuun, Mexico, pages 465–470,
May 2000.

[5] E. Dijkstra. Self stabilizing systems in spite of distributed control. Communications of the
Association of the Computing Machinery, 17:643–644, 1974.

[6] S Dolev. Self-stabilization. The MIT Press, 2000.

[7] S. Dolev, A. Israeli, and S. Moran. Analyzing expected time by scheduler-luck games.
IEEE Transactions on Software Engineering, 21:429–439, 1995.

[8] J. Durand-Lose. Randomized uniform self-stabilizing mutual exclusion. In Proceedings
of the Second International Comference on Principles of Distributed Systems, pages 89–98,
1998.

[9] M. Flatebo and A. Datta. Two-state self-stabilizing algorithms for token rings. IEEE
Transactions on Software Engineering, 20:500–504, 1994.

[10] M Gradinariu and S Tixeuil. Tight space uniform self-stabilizing l-exclusion. In Proceed-
ings of the International Conference on Distributed Computing Systems (ICDCS 2001), April
2001.

[11] T. Herman. Probabilistic self-stabilization. Information Processing Letters, 35:63–67, 1990.

[12] T. Herman. Self-stabilization: randomness to reduce space. Distributed Computing, 6:95–
98, 1992.

16



[13] A. Israeli and M. Jalfon. Token management schemes and random walks yield self-
stabilizing mutual exclusion. In PODC90 Proceedings of the Ninth Annual ACM Sympo-
sium on Principles of Distributed Computing, pages 119–131, 1990.

[14] H. Kakugawa and M. Yamashita. Uniform and self-stabilizing token rings allowing
unfair daemon. IEEE Transactions on Parallel and Distributed Systems, 8:154–162, 1997.

[15] Raida Perlman. Interconnections: Bridges, Routers, Switches, and Internetworking Protocols.
Addison-Wesley Longman, 2000.

[16] A. Pogosyants, R. Segala, and N. Lynch. Verification of the randomized consensus
algorithm of Aspen and Herlihy: a case study. Distributed Computing, 13(4):155–186,
2000.

[17] R. Segala. Modeling and Verification of Randomized Distributed Real-Time Systems. PhD
thesis, MIT, Departament of Electrical Engineering and Computer Science, 1995.

[18] R. Segala and N. Lynch. Probabilistic simulations for probabilistic processes. In
Springer-Verlag, editor, CONCUR ’94, Concurrency Theory, 5th International Conference
, LNCS:836, Uppsala, Sweden, August 1994.

[19] S. H. Wu, S. A. Smolka, and E. W. Stark. Composition and behaviors of probabilistic
i/o automata. In CONCUR’94, 5th International Conference Concurrency theory LNCS:836,
pages 513–528, 994.

17


