Self-Stabilizing Wormhole Routing on Ring Networks

Ajoy K. Datta
Department of Computer Science, University of Nevada Lagse

Maria Gradinariu
IRISA, Campus de Beaulieu, France.

Anthony B. Kenitzki
Department of Computer Science, University of Nevada Lagmse

Sébastien Tixeuil
LRI-CNRS UMR 8623, Université Paris Sud, France.

Abstract initial state, and the system remains in a legitimate state u
til another fault occurs. Thus, a self-stabilizing algonit
Wormhole routing is most common in parallel architec- tolerates transient processor faults. These transieltsfau
tures in which messages are sent in small fragments calledinclude variable corruptions, program counter corruggion
flits. Itis a lightweight and efficient method of routing mes- (which temporarily cause a processor to execute its code in
sages between parallel processors. Self-stabilizatiom is any order), and communication channel corruptions.

technique that guarantees tolerance to transient faulty.(é Routing Protocols. There are many routing protocols for
memory corruption or communication hazard) for a given interconnected processor networks. Some of the most pop-
protocol. Self-stabilization guarantees that the netw@k ular schemes include store and forward, virtual cut-thrpug
covers to a correct behavior in finite time, without the need and wormhole routing. In the store and forward protocol,
for human intervention. Self-stabilization also guar@s®e messages are broken inpackets and each packet is for-
the safety property, meaning that once the network is in awarded in full to each processor along a path. A proces-
legitimate state, it will remain there until another faukt-o sor cannot forward a message packet until the entire mes-
curs. sage packet is received. In 1979, Kermani and Kleinrock
This paper presents the first self-stabilizing network al- proposed an improvement on the store and forward routing
gorithm in the wormhole routing model, using the unidirec- scheme called virtual cut-through [11]. Virtual cut-thgbu
tional ring topology. Our solution benefits from wormhole s a protocol similar to store and forward, except that a
routing by providing high throughput and low latency, and packet is only stored at a processor if the required outgo-
from self-stabilization by ensuring automatic resiliertoe ing channel is not available. Wormhole routing uses a cut

all possible transient failures. through routing technique with a few differences.
Keywords: Distributed Algorithms, Fault-tolerance, Self- In wormhole routing, message packets are broken into
stabilization, Wormhole routing. flow control digits (orflits), each flit is only a few bytes in

size. All routing and message control information is stored
in the first flit (also called thdeader fli). As the header
flit moves through the network toward its destination, ev-
ery processor it passes through will reserve a channel for
the contentdata) flits of the message to pass through. The
Self-stabilization. In 1974, Dijkstra pioneered the con- other flits of the message will thus follow the header flit
cept of self-stabilization in a distributed network [5]. A in a pipe-line fashion. When the laga{) flit of the mes-
distributed system is self-stabilizing if it returns tolex sage passes through a processor, the channel reservation fo
gitimate state in a finite number of steps regardless of the that message is released. If a header flit reaches a processor
~Contact author: Ajoy K. Datta. Emaildat t a@s. unl v. edu. where there is no availablg output channel, the qther flits in
Fax: (702) 895-2639. the message packet remain where they are until the header
TThis author was supported in part by the french project STAR. flit advances. Thus, the flits of the packet wind from current

1. Introduction

processor containing the header flit, all the way back to the 2. Preliminaries
source processor (much like a worm).

A routing protocol needs to be simple and robust [7], and Our network model is a clockwise unidirectional riGg
have a low latency and high throughpuatencyrefers to = {V, E'}, whereV' is a se{1, 2, 3, ...n} of processors,
the time that it takes for a packet to travel from the source @nd E is the set{(1,2),(2,3),(3,4),...(n,1)} of chan-
to its destination. Wormhole routing has an extremely low N€lS. An individual Processgrcan only receive messages
transmission latency, since a flit of a message packet doe®" its incoming (ight) channel(predecessor(p), p), and it
not have to wait for the entire packet to arrive at a processorc@n only transmit messages on its outgoitegtX channel
before it can be transmitted again. The protocddiimple (P;successor(p)).
in that the packet buffers required at each processor need Anactionis ofthe form< guard >— < statement >.
only be a few flits large (a few bytes)High throughput A guard is a boolean expression over processor variables
is achieved througldaptive routingin which a message ~ and an input (such as a messagegtatements a sequence
may take many paths from the source to the destination. AOf Program statements. An action can only be executed at
message may make many adaptive turns in order to avoic® Processop if the corresponding guafd Is true. When an
congestionmeaning that if a header flit reaches a processoraction is executed, all statements in this action are erecut

where an outgoing channel is blocked, it is allowed to move atomically. We assume weakly fair asynchronous envi-
in another direction. ronment for all processors. By weakly fair, we mean that

if a processor has a guarded command that is continuously
enabled, then this guard is eventually executed.
Every message circulating in the network consists of a

Related Work. Considerable research has been done in
making wormhole routing fault tolerant. Papers such as [4]
addvirtual channelgo the network to handle faults. Virtual sequence of flits. Messages have three parts — first flit

channels divide a single physical channel into many, shar-cieq head, followed by a sequence of data flits, and finally,
ing the bandwidth between them. Papers such as [8] use an, it at the end called tail. The communication channels are
adaptive turn-based model to avoid faults. If a faulty pro- £\ in our self-stabilizing wormhole routing algorithm,
cessor is encountered on the network, a message will choosg o assume that all messages sent originate from a single

a path around the failed processor. All of these wormhole gonqer. This assumption is made to prevent deadlock and
routing papers are written to toleraf@l-stop faults [12], gigrvation after the system is stabilized. A self-stabitiz
meaning that one or more processors will cease to function o, passing algorithm on rings [6] can be used to main-
entirely on the network, while the remainder will faithfll i 5 single sender at any time.

execute their programs. Papers such as [1, 2] present self- ggction 5 includes ideas to extend our single sender al-
stabilizing network algorithms in a virtual cut through-set gorithm to a multiple sender scheme.

ting, but not in a wormhole routing environment.

Our Contribution. ~ This paper presents the first self- Problem Specification Our wormhole routing self-
stabilizing wormhole routing algorithm for the ring topol- stabilizing algorithm is correct if and only if the followin
ogy. We identify the faults that may occur due to transient three properties hold:

failures in the wormhole routing setting. Althoughwe only Liveness: Once the network is in a legitimate state, the
consider ring networks in this work, all of these can also network may not deadlock, livelock, or starve.

occur in other topologies such as meshes, hypercees, Reliable Delivery: Once the network is in a legitimate
For example, a local processor fault can cause message flitstate, messages sent must be properly received.

to be lost or introduced at random, leaving fragmented and Convergence: Regardless of initial state, the network
corrupted messages in the network. Data flits can flood must return to a legitimate state in finite time.

all of the processor buffer flits on the network. Misrouted

header flits can cause thg netvvprkto deadlock: Our solutlong. Wormhole Routing

handles these problems in a simple and consistent manner,
by locally checking for memory corruption and locally re-

setting processor state. Network faults can corrupt the local variables of any net-

_ _ _ _ work processor. Thus, message flits and their wormhole
Outline. In Section 2, we provide the underlying model, routing paths can be spontaneously introduced, lost, er cor

system settings, and specification of the problem to beyypted. There are two kinds of corrupted messages to deal
solved. In Section 3, our self-stabilizing wormhole rogtin \yith:

algorithm is presented, along with informal ideas on how

the self-stabilization is achieved. Concluding remarks ca 1. Messages that astructurallynot correct. A transient

be found in Section 5 while extensive formal proofs of cor- fault can cause message fragments to be corrupted be-
rectness can be found in Section 4. yond usefulness, or lost altogether. These messages

may not contain a header flit or a tail flit, and are of the header, the message is eventually dropped. The mes-
one of the following types{(a) Header-less Message sage will then be a header-less message, which was handled
Fragments: This happens when several message flits above.

are in the network without a head¢bh) Header Mes- In some instances, corrupted messages may not be de-
sage FragmentsA header without a tail moves alone tected by our protocol, and hence delivered to the applica-
in the network. (c) Header-less FloodingA single tion layer of the destination protocol. It is the resporigipi
message without a header or a tail occupies all the net-of the application layer to recognize and discard the mes-
work flits except one and moves throughout the net- sage in this case.

work. (d) Misrouted Message# message header flit

is forwarded onward rather than delivered by the des- 3 1 Messages and Data Structures

tination processor. It is then possible to deadlock the

network. MessagesA message is a sequence of flits of a few bytes

2. Messages that ategically not correct. These mes- 10ng. We refer to a member of a flit as flit > . <
sages contain both a header and a tail, but the contentgariable >. We will use the following data structures for
of the message will be corrupted from an application the three types of flits: Header Flits (hflithflit(mid, ttl,
point of view or from a routing point of view. dest), consist of a global uniqgue message identifier (mid), a

time to live (ttl), and a destination (dest). Data Flits @ifli
Given the previous hazards to be taken care of, our algo-dflit(mid, dat), consist of a message id and a fragment of
rithm implements the following solutions to these problems the actual message payload to be sent. Tail Flits (tflit)
Header-less Message Fragmerifghe header of ames- tflit(mid), consist only of a message identifier.
sage is lost before it reaches its destination, the message iConstants. Three constants are used in the protocol. The
discarded. When a header flit of a message is received in thenaximum time to live in hopsnjaxttl) and the maximum
incoming channel of a processor, the channébékedfor message lengthn{axlen) are constant inputs supplied by
that message until the tail of that message is encounteredthe application layer. The third constant is the maximum
Whenever a processor receives a non-header message fragiessage identifienfaxmid) — the largest allowed by the
ment on an incoming channel that is not reserved for thatprocessor software or register size.
message, then the fragment is discarded. Variables. The left channel locki¢hannel) variable holds
Header Message Fragment€orruption can cause the the current message identifier to transmit0df the local
network to be flooded with message headers without tails.processor is not routing a message. If a Procegss®mnot
To correct this, we use a maximum hop counter in the mes-routing a message, therknows that it may deliver received
sage header. When a processor receives a header, it wiltlata and tail flits. The total flits receivefidtal) variable is
know how long the header has been active on the network.used to account the total flits received for a message. This
A global maximum time can be specified by the application, variable is used to prevent a data flit flood, where one or
e.g, an upper bound on the number of nodes in the network, more data flits can remain in the network forever moving in
this bound can be used as the maximum number of hops. a circle. TheBuffer variable represents the flit buffer of a
Header-less FloodingAs the network can start in any processor. Th8uffer variable can only hold a flit value or
arbitrary state, it is possible to have every processodfille no value at all & empty >).
by a non-header value. All processors believe that they areFlow Control. Wormhole Routing flow control is guaran-
forwarding a valid message. The solution to this is to have teed by aClear To Send (CTS) wire that connects each
every processor count how many flits have been forwardedprocessor in a uni-directional link. TI&TS wire on a pro-
in a message. The application layer will specify a maximum cessom for the link < predecessor(p),p > is set to LOW
message length. Since the header-less message has no enghenp is ready for a new message; it is set to HIGH other-
at least one processor eventually decides to begin diszardi wise. This wire can also be modeled as a read-modify-write
the message fragments. shared register between the two processors in the unidirec-
Misrouted MessagesProgram counter corruption can tional link. A processor can read ti@&TS variable of its
cause a processor to simply forward a message rather thasuccessor, but it can only write to its own. Thus €S
deliver it. This can be dealt with in the same manner as variable will allow only one flit to be in the flit buffer of a
header message fragments. As long as the maximum numprocessor at any time, and that the processor will not accept
ber of hops for a message is seftd — 1, a message can another flit into its local buffer until it is empty. Each pro-
never be routed again by its originator. cessor will have a singl€TS variable for each incoming
Messages that are logically not correttis possible for link. This variable will simply be callecCTS for the ring
a header flit to contain a destination that does not exist in protocol, since every processor only has a single incoming
the network. Since each header flit has a timeout stamp inlink.

3.2. Helper Functions Algorithm 2 Self-stabilizing Wormhole routing on rings
(Receive actions) — Processor

The following are the functions called in the main pro- (R1) RECV hflit(mid, ttl, dest)ACTS = LOW —

gram. SENDNEWMESSAGEH] is a function that will ac- I* Receive a header flit. */
tivate when the privileged Processpis idle for too long if hilit.tt] < maxttl A hflit.dest =i —
(that is, wherp has nothing to forward and has nothing in its Ichannel := 0; DELIVERMSG hflit(mid, ttl, dest);

[] (D1) hflit.ttl > maxttl —

Ichannel := 0; DISCARD hflit(mid, ttl, dest);
[] hflit.tt] < maxttl A hflit.dest # i —>
Buffer := hflit(mid, ttl, dest);CTS := HIGH;

flit buffer). The processor will generate a new unique mes-
sage id, an arbitrary destination, and then it will sendats |
neighbor a new correct message starting with a header, nu-

merous data flits, and a tail flitDELIVERMSG] is a func- fi

tion that will deliver a message to the application layezacl (r) | RECV dflit(mid, dat) ACTS = LOW —s

out the channel flit buffer, and set ti&T'S variable of the /* Receive a data flit. */

incoming channel to LOW.DISCARD] is a function that if Ichannel = 0 —

will clear out the channel flit buffer, and set tRa'S vari- DELIVERMSG dflit(mid, dat);

able of the incoming channel to LOWRECV] is a func- [] (D2) Ichannel = dflit.mid A ftotal > maxlen —
tion used to read transmitted data from incoming channel. DISCARD dflit(mid, dat);

[SEND] is a function that transmits data across an outgoing [} Ichannel = dflit.mid A ftotal < maxlen —

Buffer := dflit(mid, dat);CTS := HIGH,;
[] (D3) Ichannel > 0 A Ichannel # dflit.mid —
DISCARD dflit(mid, dat);

channel. TIMEOUT] is a function that will wait a suffi-
ciently long time for a network condition to hold [10]. The

normal timeout actions we use can be implemented with fi

a local clock at each processor using the approach given(Rs)] RECV tflit(mid) ACTS = LOW ——»
in [10]. We make use of the following two predicates in our * Receive a tail flit. */

TIMEOUT actions: if Ichannel =0 —

DELIVERMSG tflit(mid);
[] Ichannel = tflit.mid —

Full = (flitg#ch.1.2+ ... Buffer := tflit(mid); CTS := HIGH;
+it#ch.n — 1.n + flitgch.n.1 = n) [] (D4) Ichannel > 0 A Ichannel # tflit.mid —»
DISCARD tflit(mid):
Empty = (flit#ch.1.2+... fi
tlit#ch.n — Lo + flit#chn.1 = 0) (R4) [TIMEOUT CTS = HIGH A Full —

Buffer := <empty>; CTS := LOW;
whereflit#ch.p.q is the number of messages in transit fi
from Processop to Processog on the channe(p, q) € E,
andn is the size of the network.

3.3. Algorithm Receive actions. The action R1) allows a processor to
receive header flits. Header flits are first checked to see if
they have arrived at the correct destination. When a header
flit is delivered, the Ichannel lock variable is set to 0, the
not routingstatus. Header flits that are not delivered are first
checked for faults (time to live). Faulty header flits are dis
carded, and all others are written to the loBaffer variable

to be routed. Once a flit is written to tiBaiffer variable, the

Algorithm 1 Self-stabilizing Wormhole routing on rings
(Main program)
inputsmaxttl, maxmid, maxlen
var Ichannel: {0.maxmid},
ftotal: {0.maxlen+1},

CTS: {LOW, HIGH} clear to send@TS) variable is set to HIGH (not ready to re-
Buffer: {< empty >, hflit, dflt, tflit } ceive). The actionR2) allows a processor to receive data
begin flits. When a data flit is received, thehannel variable is
RECEIVE actions (presented as Algorithm 2) examined against the message identifier of the data flit. If
[] SEND actions (presented as Algorithm 3) the Ichannel variable is set to 0, then the flit is delivered. If
end thelchannel variable is not equal to the message id of the

data flit, then the flit is discarded. The flit is only routable
if the message id of the data flit is equal to febannel
The wormhole routing algorithm is presented as Algo- variable, and the total flits receivéibtal variable does not
rithms 1, 2, and 3. Th&eceive actionfAlgorithm 2) and exceed thenaxlen constant. Routable data flits are written
Send actiongAlgorithm 3) are described in detail below: to the Buffer variable and th€TS variable is set to HIGH.

The action R3) allows a processor to receive tail flits. Tail flits on the network are full, and no processor haST&S
flits do not require a check against tfietal variable, but value of LOW.

they are handled the same in all other aspects as data flits in
(R2). The action R4) allows the network to recover from i i

a deadlock. This action does not activate until a sufficient Channel
time has passed such that no message flit may be on any
channel in the network. Since Procesgas unable to re-
ceive a new flit for an extremely long time, and is not clear
to receive new flits (Figure 1), thersetsBuffer to nothing, Channel| CTS=HIGH Channel| CTS=HIGH
and theCTS variable to LOW (ready to receive a new flit).

Algorithm 3 Self-stabilizing Wormhole routing on rings Channel

(Send actions) — Processor
D4 CTS=HIGH| 4,

(S1) if Left.CTS = LOW A Buffer = hflit(mid, ttl, dest) —»
/* Can send a header flit. */
if Buffer.ttl > maxttl —
ftotal := 0; Ichannel := 0; SEND tflit(mid); CTS := LOW; Figure 1. Wormhole Routing Deadlock
[] Ichannel := Buffer.mid; Buffer.ttl := Buffer.ttl + 1;
ftotal := 1; SEND hflit(mid, ttl, dest)CTS := LOW;

” CTS=HIGH| p,

fi

(S2 [] Left.CTS = LOW A Buffer = dftit (mid, dat) —» 4. Proof of Correctness
/* Can send a data flit. */
if ftotal > maxlen — The network is considered to be itegitimate statéf all

ftotal := 0; Ichannel := 0; SEND tflit(mid); CTS := LOW, messages in the channels satisfy sonessage predicates
[| frotal := ftotal + 1; SEND dflit(mid, dat);CTS := LOW, (defined below), and the processors satisfy sproeessor

fi : : o -
B e predicateqdefined below). Formally, the legitimacy predi-
(S3 [] Left.CTS = LOW A Buffer = tflit(mid) — cate, Loy is as follows:

/* Can send a tail flit. */
ftotal := 0; Ichannel ;= 0; SEND ftflit(mid); CTS := LOW,;
(S4 [] CTS = HIGH A Buffer =< empty >—»
/* Local invalid condition */

£WREP1/\P2/\P3/\M1/\M2/\M3/\M4

where P's and M'’s represent the processor predicates and

CTS :=LOW, . .
(S5 [| TIMEOUT Buffer :=< empty > Alchannel = 0 message predicates, respectively.
ALeft.CTS = LOW A Empty —» Processor Predicates.No processor should haveGrs
Ichannel := 0: SENDNEWMESSAGE: value of HIGH if it has an emptBuffer (predicateP).
fi Each processagy should have atchannel value equal to

zero (not forwarding), or equal to the message identifier
of the last header flit received by (predicateP,). At
least one processor should havBuffer variable equal to

< empty > and aCTS variable equal to LOW (predicate
P;).

Message PredicatesA message should be well-structured

CTS to LOW. The action $2) allows a processor to route (Predicated:)™. The number of data flits in the message
a data flit. A processor will transmit the fiit, increment the Should be less thanaxlen (predicatel,). The time to live

ftotal variable, and set it€TS to LOW. The action $3) variable in a header flit should never exceealxttl (predi-
allows a processor to route a tail flit. A processor will trans Cat€/3). The message identifiers of the header, data, and

Send actions. The action §1) allows a processor to route
a header flit. A processor will lock its outgoing channel,
initialize its ftotal variable to 1, transmit the flit, and set its

mit the flit. set thdchannel variable to 0. and set i€TS tail flits remain the same and equal throughout the life of a
to LOW. The action $4) prevents a local fault condition ~MeSsage (predicafd). _
in which theCTS variable is set to HIGH, and tHBuffer In the following three sections, we prove the correctness

variable is empty. A processor will merely reset @§'S of the algorithm by proving the liveness and reliable deliv-

variable back to LOW. The actiorsf) is aTIMEOUT ac- LA message is constructed with a header flit, one or more destadftid
tion that prevents a network deadlock condition. Just like a tail flit. Maﬂy rgeSSffgeSdmaylnﬂt hgve efllll of theirhﬂits %n tbmﬂ;mrk Iat

: ; ; : ; ; one time. A header flit and multiple data flits may have beeititegtely
action R4), the action is not activated until enough time ﬁlglivered to the destination while a tail flit remains on tlegwork. A
has passed such that every message channel on the netwokKader fiit may be on the network, while data flits and the taiffay yet
should be empty. The network can deadlock if all buffer to be transmitted.

ery and convergence properties. The proofs are omitted duentroduced onto the network by different processors can ac-

to lack of space.

Lemma 4.1 (Deadlock) Starting from a legitimate config-
uration, the network does not deadlock.

Lemma 4.2 (Starvation) Starting from a legitimate con-
figuration, the network does not starve.

Lemma 4.3 (Livelock) Starting from a legitimate configu-
ration, the network does not livelock.

Theorem 4.1 (Reliable Delivery) Once the network is in a
legitimate state, messages sent are properly received.

We prove that this algorithm will converge to a legitimate
state from any arbitrary initialization in finite time. THs
done following theconvergence staimethod [9]. In this

method, the system converges to fulfill a number of pred-

icatesAq, Ao, ... Ay, such thatforl < i < k, A;1q1isa
refinementof A4; [6]. A predicateA;; refinesA; iff A;
holds when4, ., holds;A; is called arattractor. Using the
convergence stair method, we show thia is an attrac-
tor for true. The conjunction of all message predicates is an

quire resources in a circular-dependent manner.

Both of these problems can be avoided by adding more
available channels for any processor to initiate a message
upon. A simple solution presented in [4] is to add multiple
virtual channelgo the network for each physical channel.
Virtual channels are logical channels which may share the
same physical wire, but each virtual channel contains its
own flit buffer, control program (including local variab)es
and data path. The flit buffers can be represented as an array
of n flit buffers, along with an array of Ichannel lock vari-
ables. Aflit sent from flit bufferi) over the physical channel
will be written to flit buffer§) at the destination processor.

If one virtual channel is allowed per sender processor, then
we can make the same self-stabilizing guarantees as that of
a single processor and a single channel.

References

[1] J. Beauquier, A.K. Datta, and S. Tixeuil. Self-stabiig Census
with Cut-through Constrainfourth Workshop on Self-Stabilizing
Systems (WSS'9%ustin, Texas, IEEE CS Press, pp. 70-77, June
4-5,1999.

attractor for the processor predicates. Thus, we prove that [2] A-'\I/I- Czsltello and G-h Vargﬁehse- Thel FDzll MAC meets
; ; ; ; ; Self-stabilization. Fourth Workshop on Self-Stabilizing Systems
the conjunction of all predicates will eventqglly hold ireth (WSS'99)Austin, Texas, IEEE CS Press, pp. 1-9, June 4.5, 1999.
system, and the system converges to a legitimate state.) i
[3] W.J. Dally and C.L. Seitz. Deadlock-free Message Rayiim
Multiprocessor Interconnection Network&EE Transactions on
Processor Predicates. First we prove that starting from ComputersC-36:547-553, 1987.
an arbitrary configuration, all of the processor legitimacy [4] W.J. Dally. Virtual Channel Flow ControlProc. of the 17th In-
state predicates will be satisfied in finite time. ternational Symposium on Computer Architecfuée—-68, May
1990
- . [5] E.W. Dijkstra. Self stabilizing systems in spite of distited con-
Message Pre_dlcatels' Next we prove that Startl,n_g from an trol. Communications of the Association of the Computing Ma-
arbitrary configuration, all of the message legitimacyestat chinery, 17:643-644, 1974.
predicates will be satisfied in finite time. [6] S.Dolev. Self StabilizationMIT Press. 2000
: : _ [7] C.J. Glass and L.M. Ni. The Turn Model for Adaptive Roufin
Theorem 4.2 (ConvergencepredlcateEWR Is an attrac Proc. 19th Annual Int'l Symposium on Computer Architecture
tor for true May, 1992.
[8] C.J. Glass and L.M. Ni. Fault Tolerant Wormhole Routimyg i
5. Conclusions Meshes Proc. 23rd Annual Int'l Symposium on Fault Tolerant
Computing June, 1993.
] 3 s . . [9] M.G. Gouda and N.J. Multari. Stabilizing CommunicatiBroto-
V:/e tpl’efsentedhtl’lle fII’S';[. self (S)tabllllzmgtﬁlgorlthmb in thz cols IEEE Transactions on Compute®0(4):448-458, 1991
context of wormnole routing. ur algorithm can ne use
. b 9 d 9 h h b [10] M.G. Gouda.Elements of Network Protocol Desiglohn Wiley
to transmit messages between nodes so that they can bene- " 5,4 sons inc. 1998
fit frpm the high throqghput'and low latency of wormhole [11] P. Kermani and L. Kleinrock. Virtual cut-through: A nevem-
routing. Our solution is for ring networks where messages puter communication switching techniqu€omputer Networks
are initiated by a single sender. 3:267-286, 1979.
We can extend our protocol for multiple senders. The [12] N.Lynch. Distributed AlgorithmsMorgan Kaufmann1996.
complications which may arise due to the introduction of [13] L.M. Ni and P.K. McKinley. A Survey of Wormhole Routing

multiple senders include the followin@l.) It is possible to
starvea processor. A processor that needs to send a mes-
sage can be prevented from doing so by other processors
in a unidirectional ring.(2.) It is possible for messages to
deadlock Since we have a ring topology, any two messages

Techniques in Direct Network$EEE Computer26:62—76, 1993.

