
Self-Stabilizing Wormhole Routing on Ring Networks�
Ajoy K. Datta

Department of Computer Science, University of Nevada Las Vegas.

Maria Gradinariu
IRISA, Campus de Beaulieu, France.

Anthony B. Kenitzki
Department of Computer Science, University of Nevada Las Vegas.

Sébastien Tixeuily
LRI-CNRS UMR 8623, Université Paris Sud, France.

Abstract

Wormhole routing is most common in parallel architec-
tures in which messages are sent in small fragments called
flits. It is a lightweight and efficient method of routing mes-
sages between parallel processors. Self-stabilization isa
technique that guarantees tolerance to transient faults (e.g.
memory corruption or communication hazard) for a given
protocol. Self-stabilization guarantees that the networkre-
covers to a correct behavior in finite time, without the need
for human intervention. Self-stabilization also guarantees
the safety property, meaning that once the network is in a
legitimate state, it will remain there until another fault oc-
curs.

This paper presents the first self-stabilizing network al-
gorithm in the wormhole routing model, using the unidirec-
tional ring topology. Our solution benefits from wormhole
routing by providing high throughput and low latency, and
from self-stabilization by ensuring automatic resilienceto
all possible transient failures.

Keywords: Distributed Algorithms, Fault-tolerance, Self-
stabilization, Wormhole routing.

1. Introduction

Self-stabilization. In 1974, Dijkstra pioneered the con-
cept of self-stabilization in a distributed network [5]. A
distributed system is self-stabilizing if it returns to ale-
gitimatestate in a finite number of steps regardless of the�Contact author: Ajoy K. Datta. Email:datta@cs.unlv.edu.
Fax: (702) 895-2639.yThis author was supported in part by the french project STAR.

initial state, and the system remains in a legitimate state un-
til another fault occurs. Thus, a self-stabilizing algorithm
tolerates transient processor faults. These transient faults
include variable corruptions, program counter corruptions
(which temporarily cause a processor to execute its code in
any order), and communication channel corruptions.

Routing Protocols. There are many routing protocols for
interconnected processor networks. Some of the most pop-
ular schemes include store and forward, virtual cut-through,
and wormhole routing. In the store and forward protocol,
messages are broken intopackets, and each packet is for-
warded in full to each processor along a path. A proces-
sor cannot forward a message packet until the entire mes-
sage packet is received. In 1979, Kermani and Kleinrock
proposed an improvement on the store and forward routing
scheme called virtual cut-through [11]. Virtual cut-through
is a protocol similar to store and forward, except that a
packet is only stored at a processor if the required outgo-
ing channel is not available. Wormhole routing uses a cut
through routing technique with a few differences.

In wormhole routing, message packets are broken into
flow control digits (orflits), each flit is only a few bytes in
size. All routing and message control information is stored
in the first flit (also called theheader flit). As the header
flit moves through the network toward its destination, ev-
ery processor it passes through will reserve a channel for
the content (data) flits of the message to pass through. The
other flits of the message will thus follow the header flit
in a pipe-line fashion. When the last (tail) flit of the mes-
sage passes through a processor, the channel reservation for
that message is released. If a header flit reaches a processor
where there is no available output channel, the other flits in
the message packet remain where they are until the header
flit advances. Thus, the flits of the packet wind from current



processor containing the header flit, all the way back to the
source processor (much like a worm).

A routing protocol needs to be simple and robust [7], and
have a low latency and high throughput.Latencyrefers to
the time that it takes for a packet to travel from the source
to its destination. Wormhole routing has an extremely low
transmission latency, since a flit of a message packet does
not have to wait for the entire packet to arrive at a processor
before it can be transmitted again. The protocol issimple
in that the packet buffers required at each processor need
only be a few flits large (a few bytes).High throughput
is achieved throughadaptive routing, in which a message
may take many paths from the source to the destination. A
message may make many adaptive turns in order to avoid
congestion, meaning that if a header flit reaches a processor
where an outgoing channel is blocked, it is allowed to move
in another direction.

Related Work. Considerable research has been done in
making wormhole routing fault tolerant. Papers such as [4]
addvirtual channelsto the network to handle faults. Virtual
channels divide a single physical channel into many, shar-
ing the bandwidth between them. Papers such as [8] use an
adaptive turn-based model to avoid faults. If a faulty pro-
cessor is encountered on the network, a message will choose
a path around the failed processor. All of these wormhole
routing papers are written to toleratefail-stop faults [12],
meaning that one or more processors will cease to function
entirely on the network, while the remainder will faithfully
execute their programs. Papers such as [1, 2] present self-
stabilizing network algorithms in a virtual cut through set-
ting, but not in a wormhole routing environment.

Our Contribution. This paper presents the first self-
stabilizing wormhole routing algorithm for the ring topol-
ogy. We identify the faults that may occur due to transient
failures in the wormhole routing setting. Although we only
consider ring networks in this work, all of these can also
occur in other topologies such as meshes, hypercubes,etc.
For example, a local processor fault can cause message flits
to be lost or introduced at random, leaving fragmented and
corrupted messages in the network. Data flits can flood
all of the processor buffer flits on the network. Misrouted
header flits can cause the network to deadlock. Our solution
handles these problems in a simple and consistent manner,
by locally checking for memory corruption and locally re-
setting processor state.

Outline. In Section 2, we provide the underlying model,
system settings, and specification of the problem to be
solved. In Section 3, our self-stabilizing wormhole routing
algorithm is presented, along with informal ideas on how
the self-stabilization is achieved. Concluding remarks can
be found in Section 5 while extensive formal proofs of cor-
rectness can be found in Section 4.

2. Preliminaries

Our network model is a clockwise unidirectional ringG
= fV , Eg, whereV is a setf1, 2, 3, ...ng of processors,
and E is the setf(1; 2); (2; 3); (3; 4); :::(n; 1)g of chan-
nels. An individual Processorp can only receive messages
on its incoming (right) channel(predecessor(p); p), and it
can only transmit messages on its outgoing (left) channel(p; successor(p)).

An action is of the form< guard >�!< statement >.
A guard is a boolean expression over processor variables
and an input (such as a message). Astatementis a sequence
of program statements. An action can only be executed at
a processorp if the corresponding guard is true. When an
action is executed, all statements in this action are executed
atomically. We assume aweakly fair asynchronous envi-
ronment for all processors. By weakly fair, we mean that
if a processor has a guarded command that is continuously
enabled, then this guard is eventually executed.

Every message circulating in the network consists of a
sequence of flits. Messages have three parts — first flit
called head, followed by a sequence of data flits, and finally,
a flit at the end called tail. The communication channels are
FIFO. In our self-stabilizing wormhole routing algorithm,
we assume that all messages sent originate from a single
sender. This assumption is made to prevent deadlock and
starvation after the system is stabilized. A self-stabilizing
token passing algorithm on rings [6] can be used to main-
tain a single sender at any time.

Section 5 includes ideas to extend our single sender al-
gorithm to a multiple sender scheme.

Problem Specification Our wormhole routing self-
stabilizing algorithm is correct if and only if the following
three properties hold:

Liveness: Once the network is in a legitimate state, the
network may not deadlock, livelock, or starve.

Reliable Delivery: Once the network is in a legitimate
state, messages sent must be properly received.

Convergence: Regardless of initial state, the network
must return to a legitimate state in finite time.

3. Wormhole Routing

Network faults can corrupt the local variables of any net-
work processor. Thus, message flits and their wormhole
routing paths can be spontaneously introduced, lost, or cor-
rupted. There are two kinds of corrupted messages to deal
with:

1. Messages that arestructurallynot correct. A transient
fault can cause message fragments to be corrupted be-
yond usefulness, or lost altogether. These messages



may not contain a header flit or a tail flit, and are of
one of the following types:(a) Header-less Message
Fragments:This happens when several message flits
are in the network without a header.(b) Header Mes-
sage Fragments:A header without a tail moves alone
in the network. (c) Header-less Flooding:A single
message without a header or a tail occupies all the net-
work flits except one and moves throughout the net-
work. (d) Misrouted Messages:A message header flit
is forwarded onward rather than delivered by the des-
tination processor. It is then possible to deadlock the
network.

2. Messages that arelogically not correct. These mes-
sages contain both a header and a tail, but the contents
of the message will be corrupted from an application
point of view or from a routing point of view.

Given the previous hazards to be taken care of, our algo-
rithm implements the following solutions to these problems:

Header-less Message Fragments.If the header of a mes-
sage is lost before it reaches its destination, the message is
discarded. When a header flit of a message is received in the
incoming channel of a processor, the channel islockedfor
that message until the tail of that message is encountered.
Whenever a processor receives a non-header message frag-
ment on an incoming channel that is not reserved for that
message, then the fragment is discarded.

Header Message Fragments.Corruption can cause the
network to be flooded with message headers without tails.
To correct this, we use a maximum hop counter in the mes-
sage header. When a processor receives a header, it will
know how long the header has been active on the network.
A global maximum time can be specified by the application,
e.g., an upper bound on the number of nodes in the network,
this bound can be used as the maximum number of hops.

Header-less Flooding.As the network can start in any
arbitrary state, it is possible to have every processor filled
by a non-header value. All processors believe that they are
forwarding a valid message. The solution to this is to have
every processor count how many flits have been forwarded
in a message. The application layer will specify a maximum
message length. Since the header-less message has no end,
at least one processor eventually decides to begin discarding
the message fragments.

Misrouted Messages.Program counter corruption can
cause a processor to simply forward a message rather than
deliver it. This can be dealt with in the same manner as
header message fragments. As long as the maximum num-
ber of hops for a message is set tojV j � 1, a message can
never be routed again by its originator.

Messages that are logically not correct.It is possible for
a header flit to contain a destination that does not exist in
the network. Since each header flit has a timeout stamp in

the header, the message is eventually dropped. The mes-
sage will then be a header-less message, which was handled
above.

In some instances, corrupted messages may not be de-
tected by our protocol, and hence delivered to the applica-
tion layer of the destination protocol. It is the responsibility
of the application layer to recognize and discard the mes-
sage in this case.

3.1. Messages and Data Structures

Messages.A message is a sequence of flits of a few bytes
long. We refer to a member of a flit as< 
it > : <variable >. We will use the following data structures for
the three types of flits: Header Flits (hflit), hflit(mid, ttl,
dest), consist of a global unique message identifier (mid), a
time to live (ttl), and a destination (dest). Data Flits (dflit),
dflit(mid, dat), consist of a message id and a fragment of
the actual message payload to be sent. Tail Flits (tflit),
tflit(mid), consist only of a message identifier.
Constants. Three constants are used in the protocol. The
maximum time to live in hops (maxttl) and the maximum
message length (maxlen) are constant inputs supplied by
the application layer. The third constant is the maximum
message identifier (maxmid) — the largest allowed by the
processor software or register size.
Variables. The left channel lock (lchannel) variable holds
the current message identifier to transmit, or0 if the local
processor is not routing a message. If a Processorp is not
routing a message, thenp knows that it may deliver received
data and tail flits. The total flits received (ftotal) variable is
used to account the total flits received for a message. This
variable is used to prevent a data flit flood, where one or
more data flits can remain in the network forever moving in
a circle. TheBuffer variable represents the flit buffer of a
processor. TheBuffer variable can only hold a flit value or
no value at all (< empty >).
Flow Control. Wormhole Routing flow control is guaran-
teed by aClear To Send (CTS) wire that connects each
processor in a uni-directional link. TheCTS wire on a pro-
cessorp for the link< predecessor(p); p > is set to LOW
whenp is ready for a new message; it is set to HIGH other-
wise. This wire can also be modeled as a read-modify-write
shared register between the two processors in the unidirec-
tional link. A processor can read theCTS variable of its
successor, but it can only write to its own. Thus theCTS
variable will allow only one flit to be in the flit buffer of a
processor at any time, and that the processor will not accept
another flit into its local buffer until it is empty. Each pro-
cessor will have a singleCTS variable for each incoming
link. This variable will simply be calledCTS for the ring
protocol, since every processor only has a single incoming
link.



3.2. Helper Functions

The following are the functions called in the main pro-
gram. [SENDNEWMESSAGE] is a function that will ac-
tivate when the privileged Processorp is idle for too long
(that is, whenp has nothing to forward and has nothing in its
flit buffer). The processor will generate a new unique mes-
sage id, an arbitrary destination, and then it will send its left
neighbor a new correct message starting with a header, nu-
merous data flits, and a tail flit. [DELIVERMSG ] is a func-
tion that will deliver a message to the application layer, clear
out the channel flit buffer, and set theCTS variable of the
incoming channel to LOW. [DISCARD] is a function that
will clear out the channel flit buffer, and set theCTS vari-
able of the incoming channel to LOW. [RECV] is a func-
tion used to read transmitted data from incoming channel.
[SEND] is a function that transmits data across an outgoing
channel. [TIMEOUT ] is a function that will wait a suffi-
ciently long time for a network condition to hold [10]. The
normal timeout actions we use can be implemented with
a local clock at each processor using the approach given
in [10]. We make use of the following two predicates in our
TIMEOUT actions:

Full � (
it#ch:1:2 + : : :+
it#ch:n� 1:n+ 
it#ch:n:1 = n)
Empty � (
it#ch:1:2 + : : :+
it#ch:n� 1:n+ 
it#ch:n:1 = 0)
where
it#ch:p:q is the number of messages in transit

from Processorp to Processorq on the channel(p; q) 2 E,
andn is the size of the network.

3.3. Algorithm

Algorithm 1 Self-stabilizing Wormhole routing on rings
(Main program)

inputsmaxttl, maxmid, maxlen
var lchannel: f0..maxmidg,

ftotal: f0..maxlen+1g,
CTS: fLOW, HIGHg
Buffer: f< empty >, hflit, dflit, tflitg

begin
RECEIVE actions (presented as Algorithm 2)[] SEND actions (presented as Algorithm 3)

end

The wormhole routing algorithm is presented as Algo-
rithms 1, 2, and 3. TheReceive actions(Algorithm 2) and
Send actions(Algorithm 3) are described in detail below:

Algorithm 2 Self-stabilizing Wormhole routing on rings
(Receive actions) — Processori
(R1) RECV hflit(mid, ttl, dest)^CTS = LOW �!

/* Receive a header flit. */
if h
it:ttl � maxttl ^ h
it:dest = i �!

lchannel := 0; DELIVERMSG hflit(mid, ttl, dest);[] (D1) h
it:ttl > maxttl �!
lchannel := 0; DISCARD hflit(mid, ttl, dest);[] h
it:ttl � maxttl ^ h
it:dest 6= i �!
Buffer := hflit(mid, ttl, dest);CTS := HIGH;

fi
(R2) [] RECV dflit(mid, dat)^CTS = LOW �!

/* Receive a data flit. */
if lchannel = 0 �!

DELIVERMSG dflit(mid, dat);[] (D2) lchannel = d
it:mid ^ ftotal > maxlen �!
DISCARD dflit(mid, dat);[] lchannel = d
it:mid ^ ftotal � maxlen �!
Buffer := dflit(mid, dat);CTS := HIGH;[] (D3) lchannel > 0 ^ lchannel 6= d
it:mid �!
DISCARD dflit(mid, dat);

fi
(R3) [] RECV tflit(mid) ^CTS = LOW �!

/* Receive a tail flit. */
if lchannel = 0 �!

DELIVERMSG tflit(mid);[] lchannel = t
it:mid �!
Buffer := tflit(mid); CTS := HIGH;[] (D4) lchannel > 0 ^ lchannel 6= t
it:mid �!
DISCARD tflit(mid);

fi
(R4) [] TIMEOUT CTS = HIGH ^ Full �!

Buffer := <empty>; CTS := LOW;
fi

Receive actions. The action (R1) allows a processor to
receive header flits. Header flits are first checked to see if
they have arrived at the correct destination. When a header
flit is delivered, the lchannel lock variable is set to 0, the
not routingstatus. Header flits that are not delivered are first
checked for faults (time to live). Faulty header flits are dis-
carded, and all others are written to the localBuffer variable
to be routed. Once a flit is written to theBuffer variable, the
clear to send (CTS) variable is set to HIGH (not ready to re-
ceive). The action (R2) allows a processor to receive data
flits. When a data flit is received, thelchannel variable is
examined against the message identifier of the data flit. If
the lchannel variable is set to 0, then the flit is delivered. If
the lchannel variable is not equal to the message id of the
data flit, then the flit is discarded. The flit is only routable
if the message id of the data flit is equal to thelchannel
variable, and the total flits receivedftotal variable does not
exceed themaxlen constant. Routable data flits are written
to the Buffer variable and theCTS variable is set to HIGH.



The action (R3) allows a processor to receive tail flits. Tail
flits do not require a check against theftotal variable, but
they are handled the same in all other aspects as data flits in
(R2). The action (R4) allows the network to recover from
a deadlock. This action does not activate until a sufficient
time has passed such that no message flit may be on any
channel in the network. Since Processorp is unable to re-
ceive a new flit for an extremely long time, and is not clear
to receive new flits (Figure 1), thenp setsBuffer to nothing,
and theCTS variable to LOW (ready to receive a new flit).

Algorithm 3 Self-stabilizing Wormhole routing on rings
(Send actions) — Processori
(S1) if Left:CTS = LOW ^ Buffer = h
it(mid; ttl; dest) �!

/* Can send a header flit. */
if Buffer:ttl � maxttl �!

ftotal := 0; lchannel := 0; SEND tflit(mid); CTS := LOW;[] lchannel := Buffer.mid;Buffer.ttl := Buffer.ttl + 1;
ftotal := 1; SEND hflit(mid, ttl, dest);CTS := LOW;

fi
(S2) [] Left:CTS = LOW ^ Buffer = d
it(mid; dat) �!

/* Can send a data flit. */
if ftotal � maxlen �!

ftotal := 0; lchannel := 0; SEND tflit(mid); CTS := LOW;[] ftotal := ftotal + 1; SEND dflit(mid, dat);CTS := LOW;
fi

(S3) [] Left:CTS = LOW ^ Buffer = t
it(mid) �!
/* Can send a tail flit. */

ftotal := 0; lchannel := 0; SEND tflit(mid); CTS := LOW;
(S4) [] CTS = HIGH ^ Buffer =< empty >�!

/* Local invalid condition */
CTS := LOW;

(S5) [] TIMEOUT Buffer :=< empty > ^lchannel = 0^Left:CTS = LOW ^ Empty �!
lchannel := 0; SENDNEWMESSAGE;

fi

Send actions. The action (S1) allows a processor to route
a header flit. A processor will lock its outgoing channel,
initialize its ftotal variable to 1, transmit the flit, and set its
CTS to LOW. The action (S2) allows a processor to route
a data flit. A processor will transmit the flit, increment the
ftotal variable, and set itsCTS to LOW. The action (S3)
allows a processor to route a tail flit. A processor will trans-
mit the flit, set thelchannel variable to 0, and set itsCTS
to LOW. The action (S4) prevents a local fault condition
in which theCTS variable is set to HIGH, and theBuffer
variable is empty. A processor will merely reset itsCTS
variable back to LOW. The action (S5) is aTIMEOUT ac-
tion that prevents a network deadlock condition. Just like
action (R4), the action is not activated until enough time
has passed such that every message channel on the network
should be empty. The network can deadlock if all buffer

flits on the network are full, and no processor has aCTS
value of LOW.

Flit 1p1 Flit 2p2
Flit 4p4 Flit 3p3

Channel

CTS=HIGH

Channel CTS=HIGH

Channel

CTS=HIGH

Channel CTS=HIGH

Figure 1. Wormhole Routing Deadlock

4. Proof of Correctness

The network is considered to be in alegitimate stateif all
messages in the channels satisfy somemessage predicates
(defined below), and the processors satisfy someprocessor
predicates(defined below). Formally, the legitimacy predi-
cate,LWR is as follows:LWR � P1 ^ P2 ^ P3 ^M1 ^M2 ^M3 ^M4
whereP ’s andM ’s represent the processor predicates and
message predicates, respectively.
Processor Predicates.No processor should have aCTS
value of HIGH if it has an emptyBuffer (predicateP1).
Each processorp should have anlchannel value equal to
zero (not forwarding), or equal to the message identifier
of the last header flit received byp (predicateP2). At
least one processor should have aBuffer variable equal to< empty > and aCTS variable equal to LOW (predicateP3).
Message Predicates.A message should be well-structured
(predicateM1)1. The number of data flits in the message
should be less thanmaxlen (predicateM2). The time to live
variable in a header flit should never exceedmaxttl (predi-
cateM3). The message identifiers of the header, data, and
tail flits remain the same and equal throughout the life of a
message (predicateM4).

In the following three sections, we prove the correctness
of the algorithm by proving the liveness and reliable deliv-

1A message is constructed with a header flit, one or more data flits, and
a tail flit. Many messages may not have all of their flits on the network at
one time. A header flit and multiple data flits may have been legitimately
delivered to the destination while a tail flit remains on the network. A
header flit may be on the network, while data flits and the tail flit may yet
to be transmitted.



ery and convergence properties. The proofs are omitted due
to lack of space.

Lemma 4.1 (Deadlock)Starting from a legitimate config-
uration, the network does not deadlock.

Lemma 4.2 (Starvation) Starting from a legitimate con-
figuration, the network does not starve.

Lemma 4.3 (Livelock) Starting from a legitimate configu-
ration, the network does not livelock.

Theorem 4.1 (Reliable Delivery)Once the network is in a
legitimate state, messages sent are properly received.

We prove that this algorithm will converge to a legitimate
state from any arbitrary initialization in finite time. Thisis
done following theconvergence stairmethod [9]. In this
method, the system converges to fulfill a number of pred-
icatesA1; A2; : : : Ak, such that for1 � i < k, Ai+1 is a
refinementof Ai [6]. A predicateAi+1 refinesAi iff Ai
holds whenAi+1 holds;Ai is called anattractor. Using the
convergence stair method, we show thatLWR is an attrac-
tor for true. The conjunction of all message predicates is an
attractor for the processor predicates. Thus, we prove that
the conjunction of all predicates will eventually hold in the
system, and the system converges to a legitimate state.

Processor Predicates. First we prove that starting from
an arbitrary configuration, all of the processor legitimacy
state predicates will be satisfied in finite time.

Message Predicates. Next we prove that starting from an
arbitrary configuration, all of the message legitimacy state
predicates will be satisfied in finite time.

Theorem 4.2 (Convergence)PredicateLWR is an attrac-
tor for true.

5. Conclusions

We presented the first self-stabilizing algorithm in the
context of wormhole routing. Our algorithm can be used
to transmit messages between nodes so that they can bene-
fit from the high throughput and low latency of wormhole
routing. Our solution is for ring networks where messages
are initiated by a single sender.

We can extend our protocol for multiple senders. The
complications which may arise due to the introduction of
multiple senders include the following:(1.) It is possible to
starvea processor. A processor that needs to send a mes-
sage can be prevented from doing so by other processors
in a unidirectional ring.(2.) It is possible for messages to
deadlock. Since we have a ring topology, any two messages

introduced onto the network by different processors can ac-
quire resources in a circular-dependent manner.

Both of these problems can be avoided by adding more
available channels for any processor to initiate a message
upon. A simple solution presented in [4] is to add multiple
virtual channelsto the network for each physical channel.
Virtual channels are logical channels which may share the
same physical wire, but each virtual channel contains its
own flit buffer, control program (including local variables),
and data path. The flit buffers can be represented as an array
of n flit buffers, along with an array ofn lchannel lock vari-
ables. A flit sent from flit buffer(i) over the physical channel
will be written to flit buffer(i) at the destination processor.
If one virtual channel is allowed per sender processor, then
we can make the same self-stabilizing guarantees as that of
a single processor and a single channel.

References

[1] J. Beauquier, A.K. Datta, and S. Tixeuil. Self-stabilizing Census
with Cut-through Constraint.Fourth Workshop on Self-Stabilizing
Systems (WSS’99),Austin, Texas, IEEE CS Press, pp. 70-77, June
4-5, 1999.

[2] A.M. Costello and G. Varghese. The FDDI MAC meets
Self-stabilization. Fourth Workshop on Self-Stabilizing Systems
(WSS’99),Austin, Texas, IEEE CS Press, pp. 1-9, June 4-5, 1999.

[3] W.J. Dally and C.L. Seitz. Deadlock-free Message Routing in
Multiprocessor Interconnection Networks,IEEE Transactions on
Computers, C-36:547-553, 1987.

[4] W.J. Dally. Virtual Channel Flow Control,Proc. of the 17th In-
ternational Symposium on Computer Architecture, 60–68, May
1990

[5] E.W. Dijkstra. Self stabilizing systems in spite of distributed con-
trol. Communications of the Association of the Computing Ma-
chinery, 17:643–644, 1974.

[6] S. Dolev. Self StabilizationMIT Press. 2000

[7] C.J. Glass and L.M. Ni. The Turn Model for Adaptive Routing
Proc. 19th Annual Int’l Symposium on Computer Architecture,
May, 1992.

[8] C.J. Glass and L.M. Ni. Fault Tolerant Wormhole Routing in
Meshes Proc. 23rd Annual Int’l Symposium on Fault Tolerant
Computing, June, 1993.

[9] M.G. Gouda and N.J. Multari. Stabilizing CommunicationProto-
cols IEEE Transactions on Computers, 40(4):448-458, 1991

[10] M.G. Gouda.Elements of Network Protocol DesignJohn Wiley
and Sons Inc. 1998

[11] P. Kermani and L. Kleinrock. Virtual cut-through: A newcom-
puter communication switching technique.Computer Networks,
3:267-286, 1979.

[12] N. Lynch. Distributed Algorithms.Morgan Kaufmann, 1996.

[13] L.M. Ni and P.K. McKinley. A Survey of Wormhole Routing
Techniques in Direct Networks.IEEE Computer, 26:62–76, 1993.


